A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications
Corresponding Author: Daxiang Cui
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 154
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Highlights:
1 The characteristics of metal- and metal oxide-based nanozymes with diverse construction are dissertated.
2 The intrinsic properties and catalytic mechanism of metal- and metal oxide-based nanozymes are discussed.
3 The recent applications of metal- and metal oxide-based nanozymes in biological analysis, relieving inflammation, antibacterial, and cancer therapy are reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Qu, H. Xu, P. Xu, K. Chen, R. Mu et al., Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. Anal. Chem. 86(19), 9367–9371 (2014). https://doi.org/10.1021/ac502522b
- L. Chen, N. Wang, X. Wang, S. Ai, Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim. Acta 180(15), 1517–1522 (2013). https://doi.org/10.1007/s00604-013-1068-6
- Y.H. Lin, J.S. Ren, X.G. Qu, Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 47(4), 1097–1105 (2014). https://doi.org/10.1021/ar400250z
- Z. Gao, M. Xu, M. Lu, G. Chen, D. Tang, Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens. Bioelectron. 70, 194–201 (2015). https://doi.org/10.1016/j.bios.2015.03.039
- W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B 7(6), 850–875 (2019). https://doi.org/10.1039/C8TB02878H
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- M. Mirhosseini, A. Shekari-Far, F. Hakimian, B.F. Haghiralsadat, S.K. Fatemi et al., Core–shell Au@Co-Fe hybrid nanoparticles as peroxidase mimetic nanozyme for antibacterial application. Process Biochem. 95, 131–138 (2020). https://doi.org/10.1016/j.procbio.2020.05.003
- D. Li, Q. Guo, L. Ding, W. Zhang, L. Cheng et al., Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral ph for combating burn infections. ChemBioChem 21(18), 2620–2627 (2020). https://doi.org/10.1002/cbic.202000066
- L. Han, J. Shi, A. Liu, Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sens. Actuators B-Chem. 252, 919–926 (2017). https://doi.org/10.1016/j.snb.2017.06.096
- H. Gu, Q. Huang, J. Zhang, W. Li, Y. Fu, Heparin as a bifunctional biotemplate for Pt nanocluster with exclusively peroxidase mimicking activity at near-neutral pH. Colloids Surf. A 606, 125455 (2020). https://doi.org/10.1016/j.colsurfa.2020.125455
- T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@ Pt nanorods as nanozyme probe. Int. J. Nanomed. 13, 4795 (2018). https://doi.org/10.2147/IJN.S202056
- Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206–2210 (2010). https://doi.org/10.1002/adma.200903783
- N. Alizadeh, A. Salimi, T.-K. Sham, P. Bazylewski, G. Fanchini, Hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers as a dual-function enzyme with pH-switchable peroxidase and catalase mimic activities for cancer cell detection and enhanced photodynamic therapy. Chem. Eng. J. 417, 129134 (2021). https://doi.org/10.1016/j.cej.2021.129134
- J. Shah, R. Purohit, R. Singh, A.S. Karakoti, S. Singh, ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloids Interface Sci. 456, 100–107 (2015). https://doi.org/10.1016/j.jcis.2015.06.015
- M. Sharifi, S.H. Hosseinali, P. Yousefvand, A. Salihi, M.S. Shekha et al., Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng. C 108, 110422 (2020). https://doi.org/10.1016/j.msec.2019.110422
- S. Guo, Y. Han, L. Guo, Mechanistic study of catalase-and superoxide dismutation-mimic activities of cobalt oxide nanozyme from first-principles microkinetic modeling. Catal. Surv. Asia 24(1), 70–85 (2020). https://doi.org/10.1007/s10563-019-09290-4
- M. Gharib, A. Kornowski, H. Noei, W.J. Parak, I. Chakraborty, Protein-protected porous bimetallic AgPt nanoparticles with pH-switchable peroxidase/catalase-mimicking activity. ACS Mater. Lett. 1(3), 310–319 (2019). https://doi.org/10.1021/acsmaterialslett.9b00164
- J. Xi, G. Wei, Q. Wu, Z. Xu, Y. Liu et al., Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater. Sci. 7(10), 4131–4141 (2019). https://doi.org/10.1039/C9BM00705A
- N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56(45), 14267–14271 (2017). https://doi.org/10.1002/anie.201708573
- B. Jiang, L. Fang, K. Wu, X. Yan, K. Fan, Ferritins as natural and artificial nanozymes for Theranostics. Theranostics 10(2), 687 (2020). https://doi.org/10.7150/thno.39827
- B. Unnikrishnan, C.-W. Lien, H.-W. Chu, C.-C. Huang, A review on metal nanozyme-based sensing of heavy metal ions: challenges and future perspectives. J. Hazard. Mater. 401, 123397 (2020). https://doi.org/10.1016/j.jhazmat.2020.123397
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
- N. Cheng, J.C. Li, D. Liu, Y.H. Lin, D. Du, Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15(48), 7 (2019). https://doi.org/10.1002/smll.201901485
- B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 131(15), 4965–4970 (2019). https://doi.org/10.1002/ange.201813994
- M.S. Kim, J. Lee, H.S. Kim, A. Cho, K.H. Shim et al., Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 30(1), 1905410 (2020). https://doi.org/10.1002/adfm.201905410
- X.H. Niu, Q.R. Shi, W.L. Zhu, D. Liu, H.Y. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–N-x moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 142, 8 (2019). https://doi.org/10.1016/j.bios.2019.111495
- H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31(45), 1805368 (2019). https://doi.org/10.1002/adma.201805368
- W. Chen, S. Li, J. Wang, K. Sun, Y. Si, Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale 11(34), 15783–15793 (2019). https://doi.org/10.1039/C9NR04771A
- S. Cai, R. Yang, Noble Metal-Based Nanozymes (Springer, Singapore, 2020), pp. 331–365
- A. Zhang, W. Guo, H. Ke, X. Zhang, H. Zhang et al., Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens. Bioelectron. 101, 219–226 (2018). https://doi.org/10.1016/j.bios.2017.10.040
- X. Niu, Q. Shi, W. Zhu, D. Liu, H. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 142, 111495 (2019). https://doi.org/10.1016/j.bios.2019.111495
- Z. Xi, W. Gao, X. Xia, Size effect in Pd−Ir core–shell nanoparticles as nanozymes. ChemBioChem 21(17), 2440–2444 (2020). https://doi.org/10.1002/cbic.202000147
- L. Jin, Y. Sun, L. Shi, C. Li, Y. Shen, PdPt bimetallic nanowires with efficient oxidase mimic activity for the colorimetric detection of acid phosphatase in acidic media. J. Mater. Chem. B 7(29), 4561–4567 (2019). https://doi.org/10.1039/C9TB00730J
- X. Wang, Q. Tu, B. Zhao, Y. An, J.-C. Wang et al., Effects of poly(l-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials 34(4), 1155–1169 (2013). https://doi.org/10.1016/j.Biomaterials2012.10.063
- S. Fan, M. Zhao, L. Ding, H. Li, S. Chen, Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens. Bioelectron. 89, 846–852 (2017). https://doi.org/10.1016/j.bios.2016.09.108
- W. Lu, J. Zhang, N. Li, Z. You, Z. Feng et al., Co3O4@β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuators B-Chem. 303, 127106 (2020). https://doi.org/10.1016/j.snb.2019.127106
- Q. Chen, S. Li, Y. Liu, X. Zhang, Y. Tang et al., Size-controllable Fe–N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B-Chem. 305, 127511 (2020). https://doi.org/10.1016/j.snb.2019.127511
- K.L. Fan, J.Q. Xi, L. Fan, P.X. Wang, C.H. Zhu et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 11 (2018). https://doi.org/10.1038/s41467-018-03903-8
- A. Zhang, S. Pan, Y. Zhang, J. Chang, J. Cheng et al., Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 9(12), 3443–3458 (2019). https://doi.org/10.7150/thno.33266
- A. Zhang, Q. Zhang, G. Alfranca, S. Pan, Z. Huang et al., GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system. Nano Res. 13(1), 160–172 (2020). https://doi.org/10.1007/s12274-019-2591-5
- Z. Chen, J.-J. Yin, Y.-T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5), 4001–4012 (2012). https://doi.org/10.1021/nn300291r
- J. Zhao, X. Cai, W. Gao, L. Zhang, D. Zou et al., Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10(31), 26108–26117 (2018). https://doi.org/10.1021/acsami.8b10345
- J. Ma, J. Qiu, S. Wang, Nanozymes for catalytic cancer immunotherapy. ACS Appl. Nano Mater. 3(6), 4925–4943 (2020). https://doi.org/10.1021/acsanm.0c00396
- H. Dong, Y. Fan, W. Zhang, N. Gu, Y. Zhang, Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 30(5), 1273–1296 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00171
- Z. Wang, R. Zhang, X. Yan, K. Fan, Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater. Today 41, 81–119 (2020). https://doi.org/10.1016/j.mattod.2020.08.020
- H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon Nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57(30), 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
- M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
- J. Zhang, J. Liu, Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale 12(5), 2914–2923 (2020). https://doi.org/10.1039/C9NR10822J
- L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93(3), 1221–1231 (2021). https://doi.org/10.1021/acs.analchem.0c04084
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- Y. Zhang, F.M. Wang, C.Q. Liu, Z.Z. Wang, L.H. Kang et al., Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
- X.Y. Mu, J.Y. Wang, Y.H. Li, F.J. Xu, W. Long et al., Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano 13(2), 1870–1884 (2019). https://doi.org/10.1021/acsnano.8b08045
- J. Han, L. Zhang, L. Hu, K. Xing, X. Lu et al., Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157: H7 in milk. J. Dairy Sci. 101(7), 5770–5779 (2018). https://doi.org/10.3168/jds.2018-14429
- X. Lin, Y. Liu, Z. Tao, J. Gao, J. Deng et al., Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 94, 471–477 (2017). https://doi.org/10.1016/j.bios.2017.01.008
- L. Huang, W. Zhang, K. Chen, W. Zhu, X. Liu et al., Facet-selective response of trigger molecule to CeO2 1 1 0 for up-regulating oxidase-like activity. Chem. Eng. J. 330, 746–752 (2017). https://doi.org/10.1016/j.cej.2017.08.026
- J. Yao, Y. Cheng, M. Zhou, S. Zhao, S.C. Lin et al., ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9(11), 2927–2933 (2018). https://doi.org/10.1039/c7sc05476a
- N. Cheng, Y. Song, M.M.A. Zeinhom, Y.C. Chang, L. Sheng et al., Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces 9(46), 40671–40680 (2017). https://doi.org/10.1021/acsami.7b12734
- J. Liu, L. Meng, Z. Fei, P.J. Dyson, L. Zhang, On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron. 121, 159–165 (2018). https://doi.org/10.1016/j.bios.2018.08.004
- T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@ Pt nanorods as nanozyme probe [Corrigendum]. Int. J. Nanomed. 14, 1281–1282 (2019). https://doi.org/10.2147/IJN.S202056
- H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen et al., A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim. Acta 184(12), 4629–4635 (2017). https://doi.org/10.1007/s00604-017-2509-4
- C. Wang, C. Liu, J. Luo, Y. Tian, N. Zhou, Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 936, 75–82 (2016). https://doi.org/10.1016/j.aca.2016.07.013
- P. Weerathunge, R. Ramanathan, V.A. Torok, K. Hodgson, Y. Xu et al., Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 91(5), 3270–3276 (2019)
- W. He, Y.-T. Zhou, W.G. Wamer, X. Hu, X. Wu et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3), 765–773 (2013). https://doi.org/10.1016/j.Biomaterials2012.10.010
- L. Long, R. Cai, J. Liu, X. Wu, A novel nanoprobe based on core–shell Au@Pt@Mesoporous SiO2 nanozyme with enhanced activity and stability for mumps virus diagnosis. Front. Chem. 8, 463 (2020). https://doi.org/10.3389/fchem.2020.00463
- C. Wei, Y. Liu, X. Zhu, X. Chen, Y. Zhou et al., Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials 238, 119848 (2020). https://doi.org/10.1016/j.Biomaterials2020.119848
- B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan et al., Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13(7), 1506–1520 (2018). https://doi.org/10.1038/s41596-018-0001-1
- C. Ge, G. Fang, X. Shen, Y. Chong, W.G. Wamer et al., Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 10(11), 10436–10445 (2016). https://doi.org/10.1021/acsnano.6b06297
- F. Ratto, P. Matteini, F. Rossi, R. Pini, Size and shape control in the overgrowth of gold nanorods. J. Nanopart. Res. 12(6), 2029–2036 (2010). https://doi.org/10.1007/s11051-009-9712-0
- R. Das, A. Dhiman, A. Kapil, V. Bansal, T.K. Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 411(6), 1229–1238 (2019). https://doi.org/10.1007/s00216-018-1555-z
- Y. Li, X. Jian, S. Zhou, Y. Lu, C. Zhao et al., Protein shell-encapsulated pt clusters as continuous O2-supplied biocoats for photodynamic therapy in hypoxic cancer cells. ACS Appl. Mater. Interfaces 11(19), 17215–17225 (2019). https://doi.org/10.1021/acsami.9b02484
- M. Cui, J. Zhou, Y. Zhao, Q. Song, Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B-Chem. 243, 203–210 (2017). https://doi.org/10.1016/j.snb.2016.11.145
- A.J. Kora, Multifaceted activities of plant gum synthesised platinum nanoparticles: catalytic, peroxidase, PCR enhancing and antioxidant activities. IET Nanobiotechnol. 13(6), 602–608 (2019)
- J. Ali, N. Ali, L. Wang, H. Waseem, G. Pan, Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159, 18–25 (2019). https://doi.org/10.1016/j.mimet.2019.02.010
- K. Tapan, L. Sau Andrey, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22(16), 1781–1804 (2010). https://doi.org/10.1002/adma.200901271
- S. Biswas, P. Tripathi, N. Kumar, S. Nara, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sens. Actuators B-Chem. 231, 584–592 (2016). https://doi.org/10.1016/j.snb.2016.03.066
- M. Sharifi, K. Faryabi, A.J. Talaei, M.S. Shekha, M. Ale-Ebrahim et al., Antioxidant properties of gold nanozyme: a review. J. Mol. Liq. 297, 112004 (2020). https://doi.org/10.1016/j.molliq.2019.112004
- L.T. Lanh, T.T. Hoa, N.D. Cuong, D.Q. Khieu, D.T. Quang et al., Shape and size controlled synthesis of Au nanorods: H2S gas-sensing characterizations and antibacterial application. J. Alloys Compd. 635, 265–271 (2015). https://doi.org/10.1016/j.jallcom.2015.02.146
- G.-W. Wu, S.-B. He, H.-P. Peng, H.-H. Deng, A.-L. Liu et al., Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal. Chem. 86(21), 10955–10960 (2014). https://doi.org/10.1021/ac503544w
- M.S. Hizir, M. Top, M. Balcioglu, M. Rana, N.M. Robertson et al., Multiplexed activity of perauxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 88(1), 600–605 (2016). https://doi.org/10.1021/acs.analchem.5b03926
- C.P. Liu, T.H. Wu, C.Y. Liu, K.C. Chen, Y.X. Chen et al., Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 13(26), 9 (2017). https://doi.org/10.1002/smll.201700278
- W. He, X. Han, H. Jia, J. Cai, Y. Zhou et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7(1), 1–10 (2017). https://doi.org/10.1038/srep40103
- S. Ge, W. Liu, H. Liu, F. Liu, J. Yu et al., Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens. Bioelectron. 71, 456–462 (2015). https://doi.org/10.1016/j.bios.2015.04.055
- Q. Wang, L. Zhang, C. Shang, Z. Zhang, S. Dong, Triple-enzyme mimetic activity of nickel–palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016). https://doi.org/10.1039/C6CC00194G
- S. Cai, C. Qi, Y. Li, Q. Han, R. Yang et al., PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 4(10), 1869–1877 (2016). https://doi.org/10.1039/C5TB02052B
- W. He, X. Han, H. Jia, J. Cai, Y. Zhou et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7(1), 40103 (2017). https://doi.org/10.1038/srep40103
- V. Mariyappan, M. Keerthi, S.-M. Chen, G. Boopathy, Facile synthesis of α-Sm2S3/MoS2 bimetallic sulfide as a high-performance electrochemical sensor for the detection of antineoplastic drug 5-fluorouracil in a biological samples. J. Electrochem. Soc. 167(11), 117506 (2020). https://doi.org/10.1149/1945-7111/aba1a5
- U. Jain, S. Gupta, N. Chauhan, Construction of an amperometric glycated hemoglobin biosensor based on Au–Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode. Int. J. Biol. Macromol. 105, 549–555 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.084
- I. Taurino, G. Sanzò, R. Antiochia, C. Tortolini, F. Mazzei et al., Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC Trend. Anal. Chem. 79, 151–159 (2016). https://doi.org/10.1016/j.trac.2016.01.020
- T.L. Botha, E.E. Elemike, S. Horn, D.C. Onwudiwe, J.P. Giesy et al., Cytotoxicity of Ag, Au and Ag–Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci. Rep. 9(1), 4169 (2019). https://doi.org/10.1038/s41598-019-40816-y
- İ Aktitiz, R. Varol, N. Akkurt, M.F. Saraç, In-situ synthesis of 3D printable mono- and Bi-metallic (Cu/Ag) nanoparticles embedded polymeric structures with enhanced electromechanical properties. Polym. Test. 90, 106724 (2020). https://doi.org/10.1016/j.polymertesting.2020.106724
- S.A. Nadeem, S. Naz, J.S. Ali, A. Mannan et al., Synthesis, characterization and biological activities of monometallic and bimetallic nanoparticles using Mirabilis jalapa leaf extract. Biotechnol. Rep. 22, e00338 (2019). https://doi.org/10.1016/j.btre.2019.e00338
- S. Yallappa, J. Manjanna, B.L. Dhananjaya, Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta A 137, 236–243 (2015). https://doi.org/10.1016/j.saa.2014.08.030
- Y. Sun, J. Wang, W. Li, J. Zhang, Y. Zhang et al., DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols. Biosens. Bioelectron. 74, 1038–1046 (2015). https://doi.org/10.1016/j.bios.2015.08.001
- Z. Zhu, Y. Zhai, C. Zhu, Z. Wang, S. Dong, Bimetallic alloy nanowires and nanosponges: a comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction. Electrochem. Commun. 36, 22–25 (2013). https://doi.org/10.1016/j.elecom.2013.08.024
- F.F. Tao, Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 41(24), 7977–7979 (2012). https://doi.org/10.1039/C2CS90093A
- R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B 109(26), 12663–12676 (2005). https://doi.org/10.1021/jp051066p
- J. Golchin, K. Golchin, N. Alidadian, S. Ghaderi, S. Eslamkhah et al., Nanozyme applications in biology and medicine: an overview. Artif. Cell. Nanomed. B 45(6), 1069–1076 (2017). https://doi.org/10.1080/21691401.2017.1313268
- B. Liu, J. Liu, Sensors and biosensors based on metal oxide nanomaterials. TrAC Trend. Anal. Chem. 121, 115690 (2019). https://doi.org/10.1016/j.trac.2019.115690
- L. Huang, Q. Zhu, J. Zhu, L. Luo, S. Pu et al., Portable colorimetric detection of mercury(II) Based on a non-noble metal nanozyme with tunable activity. Inorg. Chem. 58(2), 1638–1646 (2019). https://doi.org/10.1021/acs.inorgchem.8b03193
- Q. Wang, J. Jiang, L. Gao, Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomed. Mater. 16(4), 042002 (2021). https://doi.org/10.1088/1748-605x/abe7b4
- S.V. Salihov, Y.A. Ivanenkov, S.P. Krechetov, M.S. Veselov, N.V. Sviridenkova et al., Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles. J. Magn. Magn. Mater. 394, 173–178 (2015). https://doi.org/10.1016/j.jmmm.2015.06.012
- S. Likhitkar, A.K. Bajpai, Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydr. Polym. 87(1), 300–308 (2012). https://doi.org/10.1016/j.carbpol.2011.07.053
- J. Mu, L. Zhang, M. Zhao, Y. Wang, Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A-Chem. 378, 30–37 (2013). https://doi.org/10.1016/j.molcata.2013.05.016
- W. Qin, L. Su, C. Yang, Y. Ma, H. Zhang et al., Colorimetric detection of sulfite in foods by a TMB–O2–Co3O4 nanoparticles detection system. J. Agric. Food Chem. 62(25), 5827–5834 (2014). https://doi.org/10.1021/jf500950p
- W. Li, G.-C. Fan, F. Gao, Y. Cui, W. Wang et al., High-activity Fe3O4 nanozyme as signal amplifier: a simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron. 127, 64–71 (2019). https://doi.org/10.1016/j.bios.2018.11.043
- J. Mu, X. Zhao, J. Li, E.-C. Yang, X.-J. Zhao, Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 4(31), 5217–5221 (2016). https://doi.org/10.1039/C6TB01390B
- Q. Han, X. Wang, X. Liu, Y. Zhang, S. Cai et al., MoO3−x nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J. Colloids Interface Sci. 539, 575–584 (2019). https://doi.org/10.1016/j.jcis.2018.12.093
- D.-X. Nie, G.-Y. Shi, Y.-Y. Yu, Fe3O4 magnetic nanoparticles as peroxidase mimetics used in colorimetric determination of 2,4-dinitrotoluene. Chin. J. Anal. Chem. 44(2), 179–185 (2016). https://doi.org/10.1016/S1872-2040(16)60902-7
- X. Ai, L. Wu, M. Zhang, X. Hou, L. Yang et al., Analytical method for the determination of trace toxic elements in milk based on combining Fe3O4 nanoparticles accelerated UV fenton-like digestion and solid phase extraction. J. Agric. Food Chem. 62(34), 8586–8593 (2014). https://doi.org/10.1021/jf501638k
- F.F. Peng, Y. Zhang, N. Gu, Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin. Chem. Lett. 19(6), 730–733 (2008). https://doi.org/10.1016/j.cclet.2008.03.021
- K. Zhang, W. Zuo, Z. Wang, J. Liu, T. Li et al., A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv. 5(14), 10632–10640 (2015). https://doi.org/10.1039/C4RA15675G
- H.-P. Feng, L. Tang, G.-M. Zeng, Y. Zhou, Y.-C. Deng et al., Core-shell nanomaterials: applications in energy storage and conversion. Adv. Colloids Interface Sci. 267, 26–46 (2019). https://doi.org/10.1016/j.cis.2019.03.001
- A. Ángeles-Pascual, J.R. Piñón-Hernández, M. Estevez-González, U. Pal, S. Velumani et al., Structure, magnetic and cytotoxic behaviour of solvothermally grown Fe3O4@Au core-shell nanoparticles. Mater. Charact. 142, 237–244 (2018). https://doi.org/10.1016/j.matchar.2018.05.041
- M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu et al., Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem. A Eur. J. 16(21), 6243–6250 (2010). https://doi.org/10.1002/chem.200903516
- J. Lu, B. Fu, M.C. Kung, G. Xiao, J.W. Elam et al., Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335(6073), 1205–1208 (2012). https://doi.org/10.1126/science.1212906
- H. Su, Q. Tian, C.-A. Hurd Price, L. Xu, K. Qian et al., Nanoporous core@shell particles: design, preparation, applications in bioadsorption and biocatalysis. Nano Today 31, 100834 (2020). https://doi.org/10.1016/j.nantod.2019.100834
- O. Adeniyi, S. Sicwetsha, P. Mashazi, Nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxidase-like activity and colorimetric glucose sensing. ACS Appl. Mater. Interfaces 12(2), 1973–1987 (2020). https://doi.org/10.1021/acsami.9b15123
- L. Wang, K.G. Neoh, E.-T. Kang, B. Shuter, Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 32(8), 2166–2173 (2011). https://doi.org/10.1016/j.Biomaterials2010.11.042
- Y. Yang, J. Shi, G. Kawamura, M. Nogami, Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 58(10), 862–865 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.017
- T. Li, B. Albee, M. Alemayehu, R. Diaz, L. Ingham et al., Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 398(2), 689–700 (2010). https://doi.org/10.1007/s00216-010-3915-1
- Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin, Core–shell nanostructured catalysts. Acc. Chem. Res. 46(8), 1816–1824 (2013). https://doi.org/10.1021/ar300230s
- C. Zheng, W. Ke, T. Yin, X. An, Intrinsic peroxidase-like activity and the catalytic mechanism of gold@carbon dots nanocomposites. RSC Adv. 6(42), 35280–35286 (2016). https://doi.org/10.1039/c6ra01917j
- X. Liu, X. Wang, Q. Han, C. Qi, C. Wang et al., Facile synthesis of IrO2/rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta 203, 227–234 (2019). https://doi.org/10.1016/j.talanta.2019.05.070
- A. Li, Y. Chen, L. Zhang, in Hybrid Nanozyme: More Than One Plus One. ed. by X. Yan (Springer, Singapore, 2020), pp. 367–391
- B.F. Urbano, I. Villenas, B.L. Rivas, C.H. Campos, Cationic polymer–TiO2 nanocomposite sorbent for arsenate removal. Chem. Eng. J. 268, 362–370 (2015). https://doi.org/10.1016/j.cej.2015.01.068
- Y. Zare, Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl. Clay Sci. 115, 61–66 (2015). https://doi.org/10.1016/j.clay.2015.07.021
- Y. Zare, I. Shabani, Polymer/metal nanocomposites for biomedical applications. Mater. Sci. Eng. C 60, 195–203 (2016). https://doi.org/10.1016/j.msec.2015.11.023
- Y. Lin, Y. Huang, J. Ren, X. Qu, Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 6(7), e114 (2014). https://doi.org/10.1038/am.2014.42
- S. Venkateswarlu, M. Yoon, Core–shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@DAPF) for fast removal of Pb(II) from aqueous solutions. ACS Appl. Mater. Interfaces 7(45), 25362–25372 (2015). https://doi.org/10.1021/acsami.5b07723
- S. Yousefinejad, H. Rasti, M. Hajebi, M. Kowsari, S. Sadravi et al., Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sens. Actuators B-Chem. 247, 691–696 (2017). https://doi.org/10.1016/j.snb.2017.02.145
- X. Ma, X. Ren, X. Guo, C. Fu, Q. Wu et al., Multifunctional iron-based metal−organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 214, 119223 (2019). https://doi.org/10.1016/j.Biomaterials2019.119223
- L. Gao, X. Gao, X. Yan, in Kinetics and Mechanisms for Nanozymes. ed. by X. Yan (Springer, Singapore, 2020), pp. 17–39
- W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12), 7451–7458 (2010). https://doi.org/10.1021/nn102592h
- W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang et al., BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens. Bioelectron. 66, 251–258 (2015). https://doi.org/10.1016/j.bios.2014.11.032
- L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang et al., Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 9(11), 10027–10033 (2017). https://doi.org/10.1021/acsami.7b01616
- S.-B. He, F.-Q. Chen, L.-F. Xiu, H.-P. Peng, H.-H. Deng et al., Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan-coated palladium nanozyme. Anal. Bioanal. Chem. 412(2), 499–506 (2020). https://doi.org/10.1007/s00216-019-02270-7
- G.-J. Cao, X. Jiang, H. Zhang, T.R. Croley, J.-J. Yin, Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Adv. 7(82), 52210–52217 (2017). https://doi.org/10.1039/C7RA10370K
- L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed et al., Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta 762, 83–86 (2013). https://doi.org/10.1016/j.aca.2012.11.056
- S. He, L. Yang, P. Balasubramanian, S. Li, H. Peng et al., Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O2. J. Mater. Chem. A 8(47), 25226–25234 (2020). https://doi.org/10.1039/D0TA09247A
- G. Jin, J. Liu, C. Wang, W. Gu, G. Ran et al., Ir nanoparticles with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Appl. Catal. B-Environ. 267, 118725 (2020). https://doi.org/10.1016/j.apcatb.2020.118725
- T.G. Choleva, V.A. Gatselou, G.Z. Tsogas, D.L. Giokas, Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim. Acta 185(1), 22 (2017). https://doi.org/10.1007/s00604-017-2582-8
- M. Wang, M. Chang, Q. Chen, D. Wang, C. Li et al., Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 252, 120093 (2020). https://doi.org/10.1016/j.Biomaterials2020.120093
- C.-X. Zhang, Y.-C. Gao, H.-W. Li, Y. Wu, Gold–platinum bimetallic nanoclusters for oxidase-like catalysis. ACS Appl. Nano Mater. 3(9), 9318–9328 (2020). https://doi.org/10.1021/acsanm.0c01965
- K. Shah, S. Bhagat, D. Varade, S. Singh, Novel synthesis of polyoxyethylene cholesteryl ether coated Fe–Pt nanoalloys: a multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids Surf. A-Physicochem. Eng. Asp. 553, 50–57 (2018). https://doi.org/10.1016/j.colsurfa.2018.05.034
- J. Ge, J.-H. Yu, H. Yang, D. Yang, R. Cai, Human serum albumin templated MnO2 nanosheets as an efficient biomimetic oxidase for biomolecule sensing. J. Mater. Chem. B 8(48), 11090–11095 (2020). https://doi.org/10.1039/D0TB01766C
- J. Wang, H. Tao, T. Lu, Y. Wu, Adsorption enhanced the oxidase-mimicking catalytic activity of octahedral-shape Mn3O4 nanoparticles as a novel colorimetric chemosensor for ultrasensitive and selective detection of arsenic. J. Colloids Interface Sci. 584, 114–124 (2021). https://doi.org/10.1016/j.jcis.2020.09.107
- A. Dhall, A. Burns, J. Dowding, S. Das, S. Seal et al., Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. Environ. Sci. Nano 4(8), 1742–1749 (2017). https://doi.org/10.1039/C7EN00394C
- L. Huang, W. Zhang, K. Chen, W. Zhu, X. Liu et al., Facet-selective response of trigger molecule to CeO2 110 for up-regulating oxidase-like activity. Chem. Eng. J. 330, 746–752 (2017). https://doi.org/10.1016/j.cej.2017.08.026
- X. Liu, L. Yan, H. Ren, Y. Cai, C. Liu et al., Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens. Bioelectron. 165, 112342 (2020). https://doi.org/10.1016/j.bios.2020.112342
- D. Wei, X. Zhang, B. Chen, K. Zeng, Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: application for the detection of streptomycin. Anal. Chim. Acta 1126, 106–113 (2020). https://doi.org/10.1016/j.aca.2020.06.009
- F. Wei, X. Cui, Z. Wang, C. Dong, J. Li et al., Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 408, 127240 (2021). https://doi.org/10.1016/j.cej.2020.127240
- R. Zhang, N. Lu, J. Zhang, R. Yan, J. Li et al., Ultrasensitive aptamer-based protein assays based on one-dimensional core–shell nanozymes. Biosens. Bioelectron. 150, 111881 (2020). https://doi.org/10.1016/j.bios.2019.111881
- Y. Wang, H. Li, L. Guo, Q. Jiang, F. Liu, A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy. RSC Adv. 9(33), 18815–18822 (2019). https://doi.org/10.1039/C8RA05487H
- S. Bhagat, N.V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti et al., Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloids Interface Sci. 513, 831–842 (2018). https://doi.org/10.1016/j.jcis.2017.11.064
- Z. Wang, L. Chen, D. Wang, Z. Ding, X. Zhang et al., High-performance photocathodic bioanalysis based on core–shell structured Cu2O@TiO2 nanowire arrays with air–liquid–solid joint interfaces. CCS Chem. (2021). https://doi.org/10.31635/ccschem.021.202100842
- J. Wang, P. Ni, C. Chen, Y. Jiang, C. Zhang et al., Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core–shell nanoparticles. Microchim. Acta 187(2), 115 (2020). https://doi.org/10.1007/s00604-019-4070-9
- V.-K. Tran, P.K. Gupta, Y. Park, S.E. Son, W. Hur et al., Functionalized bimetallic IrPt alloy nanoparticles: multi-enzyme mimics for colorimetric and fluorometric detection of hydrogen peroxide and glucose. J. Taiwan Inst. Chem. Eng. 120, 336–343 (2021). https://doi.org/10.1016/j.jtice.2021.03.029
- W. Yang, J. Li, M. Wang, X. Sun, Y. Liu et al., A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core–shell Fe3O4/CoFe-LDH hybrid. Colloids Surf. B-Biointerfaces 188, 110742 (2020). https://doi.org/10.1016/j.colsurfb.2019.110742
- S.-B. He, L. Yang, X.-L. Lin, L.-M. Chen, H.-P. Peng et al., Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid. Talanta 211, 120707 (2020). https://doi.org/10.1016/j.talanta.2019.120707
- L. Liu, J. Du, W.-E. Liu, Y. Guo, G. Wu et al., Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 411(10), 2189–2200 (2019). https://doi.org/10.1007/s00216-019-01655-y
- C.H. Tonial, M.F.F. Rodrigues, M.A. Bosse, I.M.O. Sousa, J.D. de Lima et al., Technical and economic evaluation of cultivation and obtaining of Varronia curassavica Jacq. Essent. Oil. Ind. Crop Prod. 154, 12 (2020). https://doi.org/10.1016/j.indcrop.2020.112650
- O.M. Ighodaro, O.A. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J. Med. 54(4), 287–293 (2018). https://doi.org/10.1016/j.ajme.2017.09.001
- F.M. Wang, E.G. Ju, Y.J. Guan, J.S. Ren, X.G. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 6 (2017). https://doi.org/10.1002/smll.201603051
- S. Bhagat, N.V.S. Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti et al., Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloids Interface Sci. 513, 831–842 (2018). https://doi.org/10.1016/j.jcis.2017.11.064
- R. Singh, S. Singh, Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf. B-Biointerfaces 175, 625–635 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.042
- Y.-C. Ma, Y.-H. Zhu, X.-F. Tang, L.-F. Hang, W. Jiang et al., Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomater. Sci. 7(7), 2740–2748 (2019). https://doi.org/10.1039/C9BM00333A
- J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.Biomaterials2015.01.012
- I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4), 1411–1420 (2011). https://doi.org/10.1039/C0NR00875C
- C. Xu, X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6(3), e90 (2014). https://doi.org/10.1038/am.2013.88
- S. Guo, Y. Han, L. Guo, Mechanistic study of catalase- and superoxide dismutation-mimic activities of cobalt oxide nanozyme from first-principles microkinetic modeling. Catal. Surv. Asia 24(1), 70–85 (2020). https://doi.org/10.1007/s10563-019-09290-4
- MathSciNet
- Z. Wang, X. Shen, X. Gao, Y. Zhao, Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale 11(28), 13289–13299 (2019). https://doi.org/10.1039/c9nr03473k
- M.A. Komkova, E.E. Karyakina, A.A. Karyakin, Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 140(36), 11302–11307 (2018). https://doi.org/10.1021/jacs.8b05223
- H. Lück, in Peroxidase. ed. by H.-U. Bergmeyer (Academic Press, London, 1965), pp. 895–897
- M. Behbahani, H. Mohabatkar, M. Nosrati, Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J. Theor. Biol. 411, 1–5 (2016). https://doi.org/10.1016/j.jtbi.2016.09.001
- A.O. Falade, U.U. Nwodo, B.C. Iweriebor, E. Green, L.V. Mabinya et al., Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6(1), e00394 (2017). https://doi.org/10.1002/mbo3.394
- M. Khanmohammadi, M.B. Dastjerdi, A. Ai, A. Ahmadi, A. Godarzi et al., Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater. Sci. 6(6), 1286–1298 (2018). https://doi.org/10.1039/C8BM00056E
- J. Duarte Baumer, A. Valério, S.M.A.G.U. de Souza, G.S. Erzinger, A. Furigo et al., Toxicity of enzymatically decolored textile dyes solution by horseradish peroxidase. J. Hazard. Mater. 360, 82–88 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.102
- R.A. Lawrence, R.F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71(4), 952–958 (1976). https://doi.org/10.1016/0006-291X(76)90747-6
- H. Rekik, N. Zaraî Jaouadi, K. Bouacem, B. Zenati, S. Kourdali et al., Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int. J. Biol. Macromol. 125, 514–525 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.053
- M. Debnath, M. Dolai, K. Pal, A. Dutta, H.M. Lee et al., Two dinuclear oxidovanadium(V) complexes of N2O2 donor amine-bis(phenolate) ligands with bromo-peroxidase activities: kinetic, catalytic and computational studies. Inorg. Chim. Acta 480, 149–158 (2018). https://doi.org/10.1016/j.ica.2018.04.044
- X.Y. Wang, L. Qin, M. Zhou, Z.P. Lou, H. Wei, Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal. Chem. 90(19), 11696–11702 (2018). https://doi.org/10.1021/acs.analchem.8b03374
- R. Walther, A.K. Winther, A.S. Fruergaard, W. van den Akker, L. Sorensen et al., Identification and directed development of non-organic catalysts with apparent pan-enzymatic mimicry into nanozymes for efficient prodrug conversion. Angew. Chem. Int. Ed. 58(1), 278–282 (2019). https://doi.org/10.1002/anie.201812668
- Z. Yang, C. Wang, X. Lu, Conducting polymer-based peroxidase mimics: synthesis, synergistic enhanced properties and applications. Sci. China Mater. 61(5), 653–670 (2018). https://doi.org/10.1007/s40843-018-9235-3
- H.-Q. Zheng, C.-Y. Liu, X.-Y. Zeng, J. Chen, J. Lü et al., MOF-808: a metal–organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 57(15), 9096–9104 (2018). https://doi.org/10.1021/acs.inorgchem.8b01097
- B. Garg, T. Bisht, Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21(12), 16 (2016). https://doi.org/10.3390/molecules21121653
- X. Zhang, G. Li, G. Chen, D. Wu, X. Zhou et al., Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020). https://doi.org/10.1016/j.ccr.2020.213376
- N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin et al., Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem. 17(3), 526–533 (2010). https://doi.org/10.1016/j.ultsonch.2009.11.001
- M.A. Voinov, J.O.S. Pagán, E. Morrison, T.I. Smirnova, A.I. Smirnov, Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J. Am. Chem. Soc. 133(1), 35–41 (2011). https://doi.org/10.1021/ja104683w
- R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze et al., V2O5 Nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21(3), 501–509 (2011). https://doi.org/10.1002/adfm.201001302
- Y. Ding, B. Yang, H. Liu, Z. Liu, X. Zhang et al., FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensor. Actuators B-Chem. 259, 775–783 (2018). https://doi.org/10.1016/j.snb.2017.12.115
- J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012). https://doi.org/10.1039/C2CC17013B
- Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021). https://doi.org/10.1016/j.nantod.2021.101076
- A.L. Hu, H.H. Deng, X.Q. Zheng, Y.Y. Wu, X.L. Lin et al., Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosens. Bioelectron. 97, 21–25 (2017). https://doi.org/10.1016/j.bios.2017.05.037
- A.A. Vernekar, T. Das, S. Ghosh, G. Mugesh, A remarkably efficient MnFe2O4-based oxidase nanozyme. Chemistry 11(1), 72–76 (2016). https://doi.org/10.1002/asia.201500942
- X. Xu, S. Wu, D. Guo, X. Niu, Construction of a recyclable oxidase-mimicking Fe3O4@MnOx-based colorimetric sensor array for quantifying and identifying chlorophenols. Anal. Chim. Acta 1107, 203–212 (2020). https://doi.org/10.1016/j.aca.2020.02.024
- X. Zhang, Y. Huang, Evaluation of the antioxidant activity of phenols and tannic acid determination with Mn3O4 nano-octahedrons as an oxidase mimic. Anal. Methods 7(20), 8640–8646 (2015). https://doi.org/10.1039/C5AY01732G
- H. Cheng, S. Lin, F. Muhammad, Y.-W. Lin, H. Wei, Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 1(11), 1336–1343 (2016). https://doi.org/10.1021/acssensors.6b00500
- R. Ragg, F. Natalio, M.N. Tahir, H. Janssen, A. Kashyap et al., Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014). https://doi.org/10.1021/nn501235j
- M. Comotti, C. Della-Pina, E. Falletta, M. Rossi, Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 348(3), 313–316 (2006). https://doi.org/10.1002/adsc.200505389
- H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 11(1), 49–52 (2012). https://doi.org/10.1038/nmat3143
- X. Zhang, X. Jiang, T.R. Croley, M.D. Boudreau, W. He et al., Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. J. Environ. Sci. Health Pt. C 37(2), 99–115 (2019). https://doi.org/10.1080/10590501.2019.1602991
- Y. Liu, H. Wu, Y. Chong, W.G. Wamer, Q. Xia et al., Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 7(35), 19709–19717 (2015). https://doi.org/10.1021/acsami.5b05180
- J. Liu, X. Jiang, L. Wang, Z. Hu, T. Wen et al., Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 8(12), 4024–4037 (2015). https://doi.org/10.1007/s12274-015-0904-x
- M. Chen, Z. Wang, J. Shu, X. Jiang, W. Wang et al., Mimicking a natural enzyme system: cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg. Chem. 56(16), 9400–9403 (2017). https://doi.org/10.1021/acs.inorgchem.7b01393
- Y. Zhang, Y. Jin, H. Cui, X. Yan, K. Fan, Nanozyme-based catalytic Theranostics. RSC Adv. 10(1), 10–20 (2020). https://doi.org/10.1039/C9RA09021E
- H. Bayr, Reactive oxygen species. Crit. Care Med. 33(12), S498–S501 (2005). https://doi.org/10.1097/01.CCM.0000186787.64500.12
- G. Wu, V. Berka, P.J. Derry, K. Mendoza, E. Kakadiaris et al., Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 13(10), 11203–11213 (2019). https://doi.org/10.1021/acsnano.9b04229
- N. Singh, M. Geethika, S.M. Eswarappa, G. Mugesh, Manganese-based nanozymes: multienzyme redox activity and effect on the nitric oxide produced by endothelial nitric oxide synthase. Chem.-Eur. J. 24(33), 8393–8403 (2018). https://doi.org/10.1002/chem.201800770
- Y.Y. Huang, Z. Liu, C.Q. Liu, E.G. Ju, Y. Zhang et al., Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55(23), 6646–6650 (2016). https://doi.org/10.1002/anie.201600868
- C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/B615134E
- J.-D. Cafun, K.O. Kvashnina, E. Casals, V.F. Puntes, P. Glatzel, Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles. ACS Nano 7(12), 10726–10732 (2013). https://doi.org/10.1021/nn403542p
- S. Guo, L. Guo, Unraveling the multi-enzyme-like activities of iron oxide nanozyme via a first-principles microkinetic study. J. Phys. Chem. C 123(50), 30318–30334 (2019). https://doi.org/10.1021/acs.jpcc.9b07802
- L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, C. Frigeri, Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chem. Commun. 22, 2253–2254 (2000). https://doi.org/10.1039/B005244M
- R. Bonomi, F. Selvestrel, V. Lombardo, C. Sissi, S. Polizzi et al., Phosphate diester and DNA hydrolysis by a multivalent, nanoparticle-based catalyst. J. Am. Chem. Soc. 130(47), 15744–15745 (2008). https://doi.org/10.1021/ja801794t
- P. Pengo, S. Polizzi, L. Pasquato, P. Scrimin, Carboxylate−imidazole cooperativity in dipeptide-functionalized gold nanoparticles with esterase-like activity. J. Am. Chem. Soc. 127(6), 1616–1617 (2005). https://doi.org/10.1021/ja043547c
- D. Kisailus, M. Najarian, J.C. Weaver, D.E. Morse, Functionalized gold nanoparticles mimic catalytic activity of a polysiloxane-synthesizing enzyme. Adv. Mater. 17(10), 1234–1239 (2005). https://doi.org/10.1002/adma.200401109
- Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: hidden talents. Adv. Mater. 26(25), 4200–4217 (2014). https://doi.org/10.1002/adma.201400238
- M.H. Kuchma, C.B. Komanski, J. Colon, A. Teblum, A.E. Masunov et al., Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed.-Nanotechnol. Biol. Med. 6(6), 738–744 (2010). https://doi.org/10.1016/j.nano.2010.05.004
- G. Cheng, J.-L. Zhang, Y.-L. Liu, D.-H. Sun, J.-Z. Ni, Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem. Commun. 47(20), 5732–5734 (2011). https://doi.org/10.1039/C1CC10533G
- C. Xu, Z. Liu, L. Wu, J. Ren, X. Qu, Nucleoside Triphosphates as promoters to enhance nanoceria enzyme-like activity and for single-nucleotide polymorphism typing. Adv. Funct. Mater. 24(11), 1624–1630 (2014). https://doi.org/10.1002/adfm.201301649
- R. Tian, J. Sun, Y. Qi, B. Zhang, S. Guo et al., Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose. Nanomaterials 7(11), 347 (2017). https://doi.org/10.3390/nano7110347
- N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 129(45), 14455–14459 (2017). https://doi.org/10.1002/anie.201708573
- S. Liu, F. Lu, R. Xing, J.-J. Zhu, Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem. Eur. J. 17(2), 620–625 (2011). https://doi.org/10.1002/chem.201001789
- J. Mu, L. Zhang, M. Zhao, Y. Wang, Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interfaces 6(10), 7090–7098 (2014). https://doi.org/10.1021/am406033q
- G. Fang, W. Li, X. Shen, J.M. Perez-Aguilar, Y. Chong et al., Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 9(1), 129 (2018). https://doi.org/10.1038/s41467-017-02502-3
- K.N. Han, J.-S. Choi, J. Kwon, Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-02948-x
- V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018). https://doi.org/10.1039/C8NR00325D
- Y. Liu, Y. Xiang, D. Ding, R. Guo, Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv. 6(113), 112435–112444 (2016). https://doi.org/10.1039/C6RA23773H
- T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/B922024K
- E.G. Heckert, A.S. Karakoti, S. Seal, W.T. Self, The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18), 2705–2709 (2008). https://doi.org/10.1016/j.Biomaterials2008.03.014
- X. Wang, W. Cao, L. Qin, T. Lin, W. Chen et al., Boosting the peroxidase-like activity of nanostructured nickel by inducing its 3+ oxidation state in lanio(3) perovskite and its application for biomedical assays. Theranostics 7(8), 2277–2286 (2017). https://doi.org/10.7150/thno.19257
- J. Xi, G. Wei, L. An, Z. Xu, Z. Xu et al., Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 19(11), 7645–7654 (2019). https://doi.org/10.1021/acs.nanolett.9b02242
- X. Fan, B. Cai, R. Du, R. Hübner, M. Georgi et al., Ligand-exchange-mediated fabrication of gold aerogels containing different Au(I) content with peroxidase-like behavior. Chem. Mater. 31(24), 10094–10099 (2019). https://doi.org/10.1021/acs.chemmater.9b03121
- M. Sun, H. Qian, J. Liu, Y. Li, S. Pang et al., A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv. 7(12), 7073–7078 (2017). https://doi.org/10.1039/C6RA25956A
- L. Chen, J.M. Chabu, Y. Liu, Bimetallic AgM (M= Pt, Pd, Au) nanostructures: synthesis and applications for surface-enhanced Raman scattering. RSC Adv. 3(13), 4391–4399 (2013). https://doi.org/10.1039/C3RA23137B
- W. He, X. Wu, J. Liu, X. Hu, K. Zhang et al., Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 22(9), 2988–2994 (2010). https://doi.org/10.1021/cm100393v
- K. Zhang, X. Hu, J. Liu, J.-J. Yin, S. Hou et al., Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir 27(6), 2796–2803 (2011). https://doi.org/10.1021/la104566e
- Y. Wang, H. Zhao, H. Song, J. Dong, J. Xu, Monodispersed gold nanoparticles entrapped in ordered mesoporous carbon/silica nanocomposites as xanthine oxidase mimic for electrochemical sensing of xanthine. Microchim. Acta 187(10), 543 (2020). https://doi.org/10.1007/s00604-020-04494-2
- C. Liu, Y. Yan, X. Zhang, Y. Mao, X. Ren et al., Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of Monascus pigments. Nanoscale 12(5), 3068–3075 (2020). https://doi.org/10.1039/C9NR10135G
- X. Xia, J. Zhang, N. Lu, M.J. Kim, K. Ghale et al., Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9(10), 9994–10004 (2015). https://doi.org/10.1021/acsnano.5b03525
- S. Zeng, W. Zhang, N. Liu, H. Su, Inverse CeO2/CuO catalysts prepared by hydrothermal method for preferential CO oxidation. Catal. Lett. 143(10), 1018–1024 (2013). https://doi.org/10.1007/s10562-013-1065-8
- I. Yeriskin, M. Nolan, Effect of La doping on CO adsorption at ceria surfaces. J. Chem. Phys. 131(24), 244702 (2009). https://doi.org/10.1063/1.3271910
- J. Qin, J. Lu, M. Cao, C. Hu, Synthesis of porous CuO–CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2(12), 2739–2743 (2010). https://doi.org/10.1039/C0NR00446D
- J. Wang, S. Lin, Z. Han, Y. Liu, Glutamine-assisted synthesis of Cu-doped CeO2 nanowires with an improved low-temperature CO oxidation activity. RSC Adv. 5(36), 28619–28623 (2015). https://doi.org/10.1039/C4RA16556J
- S. Zhang, Y. Liu, S. Sun, J. Wang, Q. Li et al., Catalytic patch with redox Cr/CeO(2) nanozyme of noninvasive intervention for brain trauma. Theranostics 11(6), 2806–2821 (2021). https://doi.org/10.7150/thno.51912
- D. Jampaiah, T. Srinivasa Reddy, A.E. Kandjani, P.R. Selvakannan, Y.M. Sabri et al., Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J. Mater. Chem. B 4(22), 3874–3885 (2016). https://doi.org/10.1039/c6tb00422a
- B. Liu, Z. Huang, J. Liu, Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F-detection. Nanoscale 8(28), 13562–13567 (2016). https://doi.org/10.1039/C6NR02730J
- J. Lian, P. Liu, C. Jin, Z. Shi, X. Luo et al., Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Microchim. Acta 186(6), 332 (2019). https://doi.org/10.1007/s00604-019-3439-0
- M. Parra-Robert, M. Zeng, Y. Shu, G. Fernández-Varo, M. Perramón et al., Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale (2021). https://doi.org/10.1039/D1NR00790D
- X. Meng, I. Zare, X. Yan, K. Fan, Protein-protected metal nanoclusters: an emerging ultra-small nanozyme. WIREs Nanomed. Nanobiotechnol. 12(3), e1602 (2020). https://doi.org/10.1002/wnan.1602
- R.S. Aparna, J.S.A. Devi, J. Nebu, S.S. Syamchand, S. George, Rapid response of dopamine towards insitu synthesised copper nanocluster in presence of H2O2. J. Photochem. Photobiol. A-Chem. 379, 63–71 (2019). https://doi.org/10.1016/j.jphotochem.2019.04.043
- B. Liu, J. Liu, Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 7(33), 13831–13835 (2015). https://doi.org/10.1039/C5NR04176G
- J. Huo, J. Hao, J. Mu, Y. Wang, Surface modification of Co3O4 nanoplates as efficient peroxidase nanozymes for biosensing application. ACS Appl. Bio. Mater. 4(4), 3443–3452 (2021). https://doi.org/10.1021/acsabm.1c00017
- Y. Yue, H. Wei, J. Guo, Y. Yang, Ceria-based peroxidase-mimicking nanozyme with enhanced activity: a coordination chemistry strategy. Colloid Surf. A-Physicochem. Eng. Asp. 610, 125715 (2021). https://doi.org/10.1016/j.colsurfa.2020.125715
- Y. Zhao, Y. Wang, A. Mathur, Y. Wang, V. Maheshwari et al., Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 11(38), 17841–17850 (2019). https://doi.org/10.1039/C9NR05346H
- G. Darabdhara, B. Sharma, M.R. Das, R. Boukherroub, S. Szunerits, Cu–Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sensor. Actuators B-Chem. 238, 842–851 (2017). https://doi.org/10.1016/j.snb.2016.07.106
- C. Xie, X. Wen, C. Xiao, S. Wei, X. Wu et al., Copper nanoclusters/red globe flower carbon as a fenton-like catalyst for the degradation of amido black 10B. Water Air Soil Pollut. 231(6), 280 (2020). https://doi.org/10.1007/s11270-020-04539-5
- H. Su, D.-D. Liu, M. Zhao, W.-L. Hu, S.-S. Xue et al., Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 7(15), 8233–8242 (2015). https://doi.org/10.1021/acsami.5b01271
- T. Li, P. Hu, J. Li, P. Huang, W. Tong et al., Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf. A-Physicochem. Eng. Asp. 577, 456–463 (2019). https://doi.org/10.1016/j.colsurfa.2019.06.012
- A.P. Nagvenkar, A. Gedanken, Cu0.89Zn0.11O, A new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Inter. 8(34), 22301–22308 (2016). https://doi.org/10.1021/acsami.6b05354
- Y. Liu, H. Wu, M. Li, J.-J. Yin, Z. Nie, pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6(20), 11904–11910 (2014). https://doi.org/10.1039/c4nr03848g
- W. He, Y.-T. Zhou, W.G. Wamer, M.D. Boudreau, J.-J. Yin, Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33(30), 7547–7555 (2012). https://doi.org/10.1016/j.Biomaterials2012.06.076
- B. Unnikrishnan, C.-W. Lien, H.-W. Chu, C.-C. Huang, A review on metal nanozyme-based sensing of heavy metal ions: challenges and future perspectives. J. Hazard. Mater. 401, 123397 (2021). https://doi.org/10.1016/j.jhazmat.2020.123397
- Y. Liu, Y. Zheng, D. Ding, R. Guo, Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir 33(48), 13811–13820 (2017). https://doi.org/10.1021/acs.langmuir.7b03430
- C.-F. Peng, Y.-Y. Zhang, L.-Y. Wang, Z.-Y. Jin, G. Shao, Colorimetric assay for the simultaneous detection of Hg2+ and Ag+ based on inhibiting the peroxidase-like activity of core–shell Au@Pt nanoparticles. Anal. Methods 9(30), 4363–4370 (2017). https://doi.org/10.1039/C7AY01317E
- H. Deng, S. He, X. Lin, L. Yang, Z. Lin et al., Target-triggered inhibiting oxidase-mimicking activity of platinum nanoparticles for ultrasensitive colorimetric detection of silver ion. Chin. Chem. Lett. 30(9), 1659–1662 (2019). https://doi.org/10.1016/j.cclet.2019.05.032
- Z.-J. Xie, M.-R. Shi, L.-Y. Wang, C.-F. Peng, X.-L. Wei, Colorimetric determination of Pb2+ ions based on surface leaching of Au@Pt nanoparticles as peroxidase mimic. Microchim. Acta 187(4), 255 (2020). https://doi.org/10.1007/s00604-020-04234-6
- W. Zhang, X. Niu, S. Meng, X. Li, Y. He et al., Histidine-mediated tunable peroxidase-like activity of nanosized Pd for photometric sensing of Ag+. Sens. Actuators B-Chem. 273, 400–407 (2018). https://doi.org/10.1016/j.snb.2018.06.071
- Y. Liu, D. Ding, Y. Zhen, R. Guo, Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 92, 140–146 (2017). https://doi.org/10.1016/j.bios.2017.01.036
- L. Han, H. Zhang, F. Li, Bioinspired nanozymes with pH-independent and metal ions-controllable activity: field-programmable logic conversion of sole logic gate system. Part. Part. Syst. Charact. 35(9), 1800207 (2018)
- C. Wang, H. Wang, B. Xu, H. Liu, Photo-responsive nanozymes: mechanism, activity regulation, and biomedical applications. VIEW 2(1), 20200045 (2021). https://doi.org/10.1002/VIW.20200045
- H. Wang, W. Yang, X. Wang, L. Huang, Y. Zhang et al., A CeO2@MnO2 core–shell hollow heterojunction as glucose oxidase-like photoenzyme for photoelectrochemical sensing of glucose. Sens. Actuat. B-Chem. 304, 127389 (2020). https://doi.org/10.1016/j.snb.2019.127389
- H. Yang, B. Xu, S. Li, Q. Wu, M. Lu et al., A photoresponsive nanozyme for synergistic catalytic therapy and dual phototherapy. Small 17(10), 2007090 (2021). https://doi.org/10.1002/smll.202007090
- Q. Zhang, S. Chen, H. Wang, A surface plasmon-enhanced nanozyme-based fenton process for visible-light-driven aqueous ammonia oxidation. Green Chem. 20(17), 4067–4074 (2018). https://doi.org/10.1039/C8GC01317A
- M. Zhu, Y. Dai, Y. Wu, K. Liu, X. Qi et al., Bandgap control of α-Fe2O3 nanozymes and their superior visible light promoted peroxidase-like catalytic activity. Nanotechnology 29(46), 465704 (2018). https://doi.org/10.1088/1361-6528/aaddc2
- F. Wang, E. Ju, Y. Guan, J. Ren, X. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 1603051 (2017). https://doi.org/10.1002/smll.201603051
- N.V.S. Vallabani, A.S. Karakoti, S.
References
Z. Qu, H. Xu, P. Xu, K. Chen, R. Mu et al., Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. Anal. Chem. 86(19), 9367–9371 (2014). https://doi.org/10.1021/ac502522b
L. Chen, N. Wang, X. Wang, S. Ai, Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim. Acta 180(15), 1517–1522 (2013). https://doi.org/10.1007/s00604-013-1068-6
Y.H. Lin, J.S. Ren, X.G. Qu, Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 47(4), 1097–1105 (2014). https://doi.org/10.1021/ar400250z
Z. Gao, M. Xu, M. Lu, G. Chen, D. Tang, Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens. Bioelectron. 70, 194–201 (2015). https://doi.org/10.1016/j.bios.2015.03.039
W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B 7(6), 850–875 (2019). https://doi.org/10.1039/C8TB02878H
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
M. Mirhosseini, A. Shekari-Far, F. Hakimian, B.F. Haghiralsadat, S.K. Fatemi et al., Core–shell Au@Co-Fe hybrid nanoparticles as peroxidase mimetic nanozyme for antibacterial application. Process Biochem. 95, 131–138 (2020). https://doi.org/10.1016/j.procbio.2020.05.003
D. Li, Q. Guo, L. Ding, W. Zhang, L. Cheng et al., Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral ph for combating burn infections. ChemBioChem 21(18), 2620–2627 (2020). https://doi.org/10.1002/cbic.202000066
L. Han, J. Shi, A. Liu, Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sens. Actuators B-Chem. 252, 919–926 (2017). https://doi.org/10.1016/j.snb.2017.06.096
H. Gu, Q. Huang, J. Zhang, W. Li, Y. Fu, Heparin as a bifunctional biotemplate for Pt nanocluster with exclusively peroxidase mimicking activity at near-neutral pH. Colloids Surf. A 606, 125455 (2020). https://doi.org/10.1016/j.colsurfa.2020.125455
T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@ Pt nanorods as nanozyme probe. Int. J. Nanomed. 13, 4795 (2018). https://doi.org/10.2147/IJN.S202056
Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206–2210 (2010). https://doi.org/10.1002/adma.200903783
N. Alizadeh, A. Salimi, T.-K. Sham, P. Bazylewski, G. Fanchini, Hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers as a dual-function enzyme with pH-switchable peroxidase and catalase mimic activities for cancer cell detection and enhanced photodynamic therapy. Chem. Eng. J. 417, 129134 (2021). https://doi.org/10.1016/j.cej.2021.129134
J. Shah, R. Purohit, R. Singh, A.S. Karakoti, S. Singh, ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloids Interface Sci. 456, 100–107 (2015). https://doi.org/10.1016/j.jcis.2015.06.015
M. Sharifi, S.H. Hosseinali, P. Yousefvand, A. Salihi, M.S. Shekha et al., Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng. C 108, 110422 (2020). https://doi.org/10.1016/j.msec.2019.110422
S. Guo, Y. Han, L. Guo, Mechanistic study of catalase-and superoxide dismutation-mimic activities of cobalt oxide nanozyme from first-principles microkinetic modeling. Catal. Surv. Asia 24(1), 70–85 (2020). https://doi.org/10.1007/s10563-019-09290-4
M. Gharib, A. Kornowski, H. Noei, W.J. Parak, I. Chakraborty, Protein-protected porous bimetallic AgPt nanoparticles with pH-switchable peroxidase/catalase-mimicking activity. ACS Mater. Lett. 1(3), 310–319 (2019). https://doi.org/10.1021/acsmaterialslett.9b00164
J. Xi, G. Wei, Q. Wu, Z. Xu, Y. Liu et al., Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater. Sci. 7(10), 4131–4141 (2019). https://doi.org/10.1039/C9BM00705A
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56(45), 14267–14271 (2017). https://doi.org/10.1002/anie.201708573
B. Jiang, L. Fang, K. Wu, X. Yan, K. Fan, Ferritins as natural and artificial nanozymes for Theranostics. Theranostics 10(2), 687 (2020). https://doi.org/10.7150/thno.39827
B. Unnikrishnan, C.-W. Lien, H.-W. Chu, C.-C. Huang, A review on metal nanozyme-based sensing of heavy metal ions: challenges and future perspectives. J. Hazard. Mater. 401, 123397 (2020). https://doi.org/10.1016/j.jhazmat.2020.123397
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
N. Cheng, J.C. Li, D. Liu, Y.H. Lin, D. Du, Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15(48), 7 (2019). https://doi.org/10.1002/smll.201901485
B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 131(15), 4965–4970 (2019). https://doi.org/10.1002/ange.201813994
M.S. Kim, J. Lee, H.S. Kim, A. Cho, K.H. Shim et al., Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 30(1), 1905410 (2020). https://doi.org/10.1002/adfm.201905410
X.H. Niu, Q.R. Shi, W.L. Zhu, D. Liu, H.Y. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–N-x moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 142, 8 (2019). https://doi.org/10.1016/j.bios.2019.111495
H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31(45), 1805368 (2019). https://doi.org/10.1002/adma.201805368
W. Chen, S. Li, J. Wang, K. Sun, Y. Si, Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale 11(34), 15783–15793 (2019). https://doi.org/10.1039/C9NR04771A
S. Cai, R. Yang, Noble Metal-Based Nanozymes (Springer, Singapore, 2020), pp. 331–365
A. Zhang, W. Guo, H. Ke, X. Zhang, H. Zhang et al., Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens. Bioelectron. 101, 219–226 (2018). https://doi.org/10.1016/j.bios.2017.10.040
X. Niu, Q. Shi, W. Zhu, D. Liu, H. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 142, 111495 (2019). https://doi.org/10.1016/j.bios.2019.111495
Z. Xi, W. Gao, X. Xia, Size effect in Pd−Ir core–shell nanoparticles as nanozymes. ChemBioChem 21(17), 2440–2444 (2020). https://doi.org/10.1002/cbic.202000147
L. Jin, Y. Sun, L. Shi, C. Li, Y. Shen, PdPt bimetallic nanowires with efficient oxidase mimic activity for the colorimetric detection of acid phosphatase in acidic media. J. Mater. Chem. B 7(29), 4561–4567 (2019). https://doi.org/10.1039/C9TB00730J
X. Wang, Q. Tu, B. Zhao, Y. An, J.-C. Wang et al., Effects of poly(l-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials 34(4), 1155–1169 (2013). https://doi.org/10.1016/j.Biomaterials2012.10.063
S. Fan, M. Zhao, L. Ding, H. Li, S. Chen, Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens. Bioelectron. 89, 846–852 (2017). https://doi.org/10.1016/j.bios.2016.09.108
W. Lu, J. Zhang, N. Li, Z. You, Z. Feng et al., Co3O4@β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuators B-Chem. 303, 127106 (2020). https://doi.org/10.1016/j.snb.2019.127106
Q. Chen, S. Li, Y. Liu, X. Zhang, Y. Tang et al., Size-controllable Fe–N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B-Chem. 305, 127511 (2020). https://doi.org/10.1016/j.snb.2019.127511
K.L. Fan, J.Q. Xi, L. Fan, P.X. Wang, C.H. Zhu et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 11 (2018). https://doi.org/10.1038/s41467-018-03903-8
A. Zhang, S. Pan, Y. Zhang, J. Chang, J. Cheng et al., Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 9(12), 3443–3458 (2019). https://doi.org/10.7150/thno.33266
A. Zhang, Q. Zhang, G. Alfranca, S. Pan, Z. Huang et al., GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system. Nano Res. 13(1), 160–172 (2020). https://doi.org/10.1007/s12274-019-2591-5
Z. Chen, J.-J. Yin, Y.-T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5), 4001–4012 (2012). https://doi.org/10.1021/nn300291r
J. Zhao, X. Cai, W. Gao, L. Zhang, D. Zou et al., Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10(31), 26108–26117 (2018). https://doi.org/10.1021/acsami.8b10345
J. Ma, J. Qiu, S. Wang, Nanozymes for catalytic cancer immunotherapy. ACS Appl. Nano Mater. 3(6), 4925–4943 (2020). https://doi.org/10.1021/acsanm.0c00396
H. Dong, Y. Fan, W. Zhang, N. Gu, Y. Zhang, Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 30(5), 1273–1296 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00171
Z. Wang, R. Zhang, X. Yan, K. Fan, Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater. Today 41, 81–119 (2020). https://doi.org/10.1016/j.mattod.2020.08.020
H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon Nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57(30), 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
J. Zhang, J. Liu, Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale 12(5), 2914–2923 (2020). https://doi.org/10.1039/C9NR10822J
L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93(3), 1221–1231 (2021). https://doi.org/10.1021/acs.analchem.0c04084
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
Y. Zhang, F.M. Wang, C.Q. Liu, Z.Z. Wang, L.H. Kang et al., Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
X.Y. Mu, J.Y. Wang, Y.H. Li, F.J. Xu, W. Long et al., Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano 13(2), 1870–1884 (2019). https://doi.org/10.1021/acsnano.8b08045
J. Han, L. Zhang, L. Hu, K. Xing, X. Lu et al., Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157: H7 in milk. J. Dairy Sci. 101(7), 5770–5779 (2018). https://doi.org/10.3168/jds.2018-14429
X. Lin, Y. Liu, Z. Tao, J. Gao, J. Deng et al., Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 94, 471–477 (2017). https://doi.org/10.1016/j.bios.2017.01.008
L. Huang, W. Zhang, K. Chen, W. Zhu, X. Liu et al., Facet-selective response of trigger molecule to CeO2 1 1 0 for up-regulating oxidase-like activity. Chem. Eng. J. 330, 746–752 (2017). https://doi.org/10.1016/j.cej.2017.08.026
J. Yao, Y. Cheng, M. Zhou, S. Zhao, S.C. Lin et al., ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9(11), 2927–2933 (2018). https://doi.org/10.1039/c7sc05476a
N. Cheng, Y. Song, M.M.A. Zeinhom, Y.C. Chang, L. Sheng et al., Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces 9(46), 40671–40680 (2017). https://doi.org/10.1021/acsami.7b12734
J. Liu, L. Meng, Z. Fei, P.J. Dyson, L. Zhang, On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron. 121, 159–165 (2018). https://doi.org/10.1016/j.bios.2018.08.004
T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@ Pt nanorods as nanozyme probe [Corrigendum]. Int. J. Nanomed. 14, 1281–1282 (2019). https://doi.org/10.2147/IJN.S202056
H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen et al., A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim. Acta 184(12), 4629–4635 (2017). https://doi.org/10.1007/s00604-017-2509-4
C. Wang, C. Liu, J. Luo, Y. Tian, N. Zhou, Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 936, 75–82 (2016). https://doi.org/10.1016/j.aca.2016.07.013
P. Weerathunge, R. Ramanathan, V.A. Torok, K. Hodgson, Y. Xu et al., Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 91(5), 3270–3276 (2019)
W. He, Y.-T. Zhou, W.G. Wamer, X. Hu, X. Wu et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3), 765–773 (2013). https://doi.org/10.1016/j.Biomaterials2012.10.010
L. Long, R. Cai, J. Liu, X. Wu, A novel nanoprobe based on core–shell Au@Pt@Mesoporous SiO2 nanozyme with enhanced activity and stability for mumps virus diagnosis. Front. Chem. 8, 463 (2020). https://doi.org/10.3389/fchem.2020.00463
C. Wei, Y. Liu, X. Zhu, X. Chen, Y. Zhou et al., Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials 238, 119848 (2020). https://doi.org/10.1016/j.Biomaterials2020.119848
B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan et al., Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13(7), 1506–1520 (2018). https://doi.org/10.1038/s41596-018-0001-1
C. Ge, G. Fang, X. Shen, Y. Chong, W.G. Wamer et al., Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 10(11), 10436–10445 (2016). https://doi.org/10.1021/acsnano.6b06297
F. Ratto, P. Matteini, F. Rossi, R. Pini, Size and shape control in the overgrowth of gold nanorods. J. Nanopart. Res. 12(6), 2029–2036 (2010). https://doi.org/10.1007/s11051-009-9712-0
R. Das, A. Dhiman, A. Kapil, V. Bansal, T.K. Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 411(6), 1229–1238 (2019). https://doi.org/10.1007/s00216-018-1555-z
Y. Li, X. Jian, S. Zhou, Y. Lu, C. Zhao et al., Protein shell-encapsulated pt clusters as continuous O2-supplied biocoats for photodynamic therapy in hypoxic cancer cells. ACS Appl. Mater. Interfaces 11(19), 17215–17225 (2019). https://doi.org/10.1021/acsami.9b02484
M. Cui, J. Zhou, Y. Zhao, Q. Song, Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B-Chem. 243, 203–210 (2017). https://doi.org/10.1016/j.snb.2016.11.145
A.J. Kora, Multifaceted activities of plant gum synthesised platinum nanoparticles: catalytic, peroxidase, PCR enhancing and antioxidant activities. IET Nanobiotechnol. 13(6), 602–608 (2019)
J. Ali, N. Ali, L. Wang, H. Waseem, G. Pan, Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159, 18–25 (2019). https://doi.org/10.1016/j.mimet.2019.02.010
K. Tapan, L. Sau Andrey, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22(16), 1781–1804 (2010). https://doi.org/10.1002/adma.200901271
S. Biswas, P. Tripathi, N. Kumar, S. Nara, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sens. Actuators B-Chem. 231, 584–592 (2016). https://doi.org/10.1016/j.snb.2016.03.066
M. Sharifi, K. Faryabi, A.J. Talaei, M.S. Shekha, M. Ale-Ebrahim et al., Antioxidant properties of gold nanozyme: a review. J. Mol. Liq. 297, 112004 (2020). https://doi.org/10.1016/j.molliq.2019.112004
L.T. Lanh, T.T. Hoa, N.D. Cuong, D.Q. Khieu, D.T. Quang et al., Shape and size controlled synthesis of Au nanorods: H2S gas-sensing characterizations and antibacterial application. J. Alloys Compd. 635, 265–271 (2015). https://doi.org/10.1016/j.jallcom.2015.02.146
G.-W. Wu, S.-B. He, H.-P. Peng, H.-H. Deng, A.-L. Liu et al., Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal. Chem. 86(21), 10955–10960 (2014). https://doi.org/10.1021/ac503544w
M.S. Hizir, M. Top, M. Balcioglu, M. Rana, N.M. Robertson et al., Multiplexed activity of perauxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 88(1), 600–605 (2016). https://doi.org/10.1021/acs.analchem.5b03926
C.P. Liu, T.H. Wu, C.Y. Liu, K.C. Chen, Y.X. Chen et al., Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 13(26), 9 (2017). https://doi.org/10.1002/smll.201700278
W. He, X. Han, H. Jia, J. Cai, Y. Zhou et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7(1), 1–10 (2017). https://doi.org/10.1038/srep40103
S. Ge, W. Liu, H. Liu, F. Liu, J. Yu et al., Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens. Bioelectron. 71, 456–462 (2015). https://doi.org/10.1016/j.bios.2015.04.055
Q. Wang, L. Zhang, C. Shang, Z. Zhang, S. Dong, Triple-enzyme mimetic activity of nickel–palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016). https://doi.org/10.1039/C6CC00194G
S. Cai, C. Qi, Y. Li, Q. Han, R. Yang et al., PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 4(10), 1869–1877 (2016). https://doi.org/10.1039/C5TB02052B
W. He, X. Han, H. Jia, J. Cai, Y. Zhou et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7(1), 40103 (2017). https://doi.org/10.1038/srep40103
V. Mariyappan, M. Keerthi, S.-M. Chen, G. Boopathy, Facile synthesis of α-Sm2S3/MoS2 bimetallic sulfide as a high-performance electrochemical sensor for the detection of antineoplastic drug 5-fluorouracil in a biological samples. J. Electrochem. Soc. 167(11), 117506 (2020). https://doi.org/10.1149/1945-7111/aba1a5
U. Jain, S. Gupta, N. Chauhan, Construction of an amperometric glycated hemoglobin biosensor based on Au–Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode. Int. J. Biol. Macromol. 105, 549–555 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.084
I. Taurino, G. Sanzò, R. Antiochia, C. Tortolini, F. Mazzei et al., Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC Trend. Anal. Chem. 79, 151–159 (2016). https://doi.org/10.1016/j.trac.2016.01.020
T.L. Botha, E.E. Elemike, S. Horn, D.C. Onwudiwe, J.P. Giesy et al., Cytotoxicity of Ag, Au and Ag–Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci. Rep. 9(1), 4169 (2019). https://doi.org/10.1038/s41598-019-40816-y
İ Aktitiz, R. Varol, N. Akkurt, M.F. Saraç, In-situ synthesis of 3D printable mono- and Bi-metallic (Cu/Ag) nanoparticles embedded polymeric structures with enhanced electromechanical properties. Polym. Test. 90, 106724 (2020). https://doi.org/10.1016/j.polymertesting.2020.106724
S.A. Nadeem, S. Naz, J.S. Ali, A. Mannan et al., Synthesis, characterization and biological activities of monometallic and bimetallic nanoparticles using Mirabilis jalapa leaf extract. Biotechnol. Rep. 22, e00338 (2019). https://doi.org/10.1016/j.btre.2019.e00338
S. Yallappa, J. Manjanna, B.L. Dhananjaya, Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta A 137, 236–243 (2015). https://doi.org/10.1016/j.saa.2014.08.030
Y. Sun, J. Wang, W. Li, J. Zhang, Y. Zhang et al., DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols. Biosens. Bioelectron. 74, 1038–1046 (2015). https://doi.org/10.1016/j.bios.2015.08.001
Z. Zhu, Y. Zhai, C. Zhu, Z. Wang, S. Dong, Bimetallic alloy nanowires and nanosponges: a comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction. Electrochem. Commun. 36, 22–25 (2013). https://doi.org/10.1016/j.elecom.2013.08.024
F.F. Tao, Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 41(24), 7977–7979 (2012). https://doi.org/10.1039/C2CS90093A
R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B 109(26), 12663–12676 (2005). https://doi.org/10.1021/jp051066p
J. Golchin, K. Golchin, N. Alidadian, S. Ghaderi, S. Eslamkhah et al., Nanozyme applications in biology and medicine: an overview. Artif. Cell. Nanomed. B 45(6), 1069–1076 (2017). https://doi.org/10.1080/21691401.2017.1313268
B. Liu, J. Liu, Sensors and biosensors based on metal oxide nanomaterials. TrAC Trend. Anal. Chem. 121, 115690 (2019). https://doi.org/10.1016/j.trac.2019.115690
L. Huang, Q. Zhu, J. Zhu, L. Luo, S. Pu et al., Portable colorimetric detection of mercury(II) Based on a non-noble metal nanozyme with tunable activity. Inorg. Chem. 58(2), 1638–1646 (2019). https://doi.org/10.1021/acs.inorgchem.8b03193
Q. Wang, J. Jiang, L. Gao, Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomed. Mater. 16(4), 042002 (2021). https://doi.org/10.1088/1748-605x/abe7b4
S.V. Salihov, Y.A. Ivanenkov, S.P. Krechetov, M.S. Veselov, N.V. Sviridenkova et al., Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles. J. Magn. Magn. Mater. 394, 173–178 (2015). https://doi.org/10.1016/j.jmmm.2015.06.012
S. Likhitkar, A.K. Bajpai, Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydr. Polym. 87(1), 300–308 (2012). https://doi.org/10.1016/j.carbpol.2011.07.053
J. Mu, L. Zhang, M. Zhao, Y. Wang, Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A-Chem. 378, 30–37 (2013). https://doi.org/10.1016/j.molcata.2013.05.016
W. Qin, L. Su, C. Yang, Y. Ma, H. Zhang et al., Colorimetric detection of sulfite in foods by a TMB–O2–Co3O4 nanoparticles detection system. J. Agric. Food Chem. 62(25), 5827–5834 (2014). https://doi.org/10.1021/jf500950p
W. Li, G.-C. Fan, F. Gao, Y. Cui, W. Wang et al., High-activity Fe3O4 nanozyme as signal amplifier: a simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron. 127, 64–71 (2019). https://doi.org/10.1016/j.bios.2018.11.043
J. Mu, X. Zhao, J. Li, E.-C. Yang, X.-J. Zhao, Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 4(31), 5217–5221 (2016). https://doi.org/10.1039/C6TB01390B
Q. Han, X. Wang, X. Liu, Y. Zhang, S. Cai et al., MoO3−x nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J. Colloids Interface Sci. 539, 575–584 (2019). https://doi.org/10.1016/j.jcis.2018.12.093
D.-X. Nie, G.-Y. Shi, Y.-Y. Yu, Fe3O4 magnetic nanoparticles as peroxidase mimetics used in colorimetric determination of 2,4-dinitrotoluene. Chin. J. Anal. Chem. 44(2), 179–185 (2016). https://doi.org/10.1016/S1872-2040(16)60902-7
X. Ai, L. Wu, M. Zhang, X. Hou, L. Yang et al., Analytical method for the determination of trace toxic elements in milk based on combining Fe3O4 nanoparticles accelerated UV fenton-like digestion and solid phase extraction. J. Agric. Food Chem. 62(34), 8586–8593 (2014). https://doi.org/10.1021/jf501638k
F.F. Peng, Y. Zhang, N. Gu, Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin. Chem. Lett. 19(6), 730–733 (2008). https://doi.org/10.1016/j.cclet.2008.03.021
K. Zhang, W. Zuo, Z. Wang, J. Liu, T. Li et al., A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv. 5(14), 10632–10640 (2015). https://doi.org/10.1039/C4RA15675G
H.-P. Feng, L. Tang, G.-M. Zeng, Y. Zhou, Y.-C. Deng et al., Core-shell nanomaterials: applications in energy storage and conversion. Adv. Colloids Interface Sci. 267, 26–46 (2019). https://doi.org/10.1016/j.cis.2019.03.001
A. Ángeles-Pascual, J.R. Piñón-Hernández, M. Estevez-González, U. Pal, S. Velumani et al., Structure, magnetic and cytotoxic behaviour of solvothermally grown Fe3O4@Au core-shell nanoparticles. Mater. Charact. 142, 237–244 (2018). https://doi.org/10.1016/j.matchar.2018.05.041
M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu et al., Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem. A Eur. J. 16(21), 6243–6250 (2010). https://doi.org/10.1002/chem.200903516
J. Lu, B. Fu, M.C. Kung, G. Xiao, J.W. Elam et al., Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335(6073), 1205–1208 (2012). https://doi.org/10.1126/science.1212906
H. Su, Q. Tian, C.-A. Hurd Price, L. Xu, K. Qian et al., Nanoporous core@shell particles: design, preparation, applications in bioadsorption and biocatalysis. Nano Today 31, 100834 (2020). https://doi.org/10.1016/j.nantod.2019.100834
O. Adeniyi, S. Sicwetsha, P. Mashazi, Nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxidase-like activity and colorimetric glucose sensing. ACS Appl. Mater. Interfaces 12(2), 1973–1987 (2020). https://doi.org/10.1021/acsami.9b15123
L. Wang, K.G. Neoh, E.-T. Kang, B. Shuter, Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 32(8), 2166–2173 (2011). https://doi.org/10.1016/j.Biomaterials2010.11.042
Y. Yang, J. Shi, G. Kawamura, M. Nogami, Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 58(10), 862–865 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.017
T. Li, B. Albee, M. Alemayehu, R. Diaz, L. Ingham et al., Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 398(2), 689–700 (2010). https://doi.org/10.1007/s00216-010-3915-1
Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin, Core–shell nanostructured catalysts. Acc. Chem. Res. 46(8), 1816–1824 (2013). https://doi.org/10.1021/ar300230s
C. Zheng, W. Ke, T. Yin, X. An, Intrinsic peroxidase-like activity and the catalytic mechanism of gold@carbon dots nanocomposites. RSC Adv. 6(42), 35280–35286 (2016). https://doi.org/10.1039/c6ra01917j
X. Liu, X. Wang, Q. Han, C. Qi, C. Wang et al., Facile synthesis of IrO2/rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta 203, 227–234 (2019). https://doi.org/10.1016/j.talanta.2019.05.070
A. Li, Y. Chen, L. Zhang, in Hybrid Nanozyme: More Than One Plus One. ed. by X. Yan (Springer, Singapore, 2020), pp. 367–391
B.F. Urbano, I. Villenas, B.L. Rivas, C.H. Campos, Cationic polymer–TiO2 nanocomposite sorbent for arsenate removal. Chem. Eng. J. 268, 362–370 (2015). https://doi.org/10.1016/j.cej.2015.01.068
Y. Zare, Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl. Clay Sci. 115, 61–66 (2015). https://doi.org/10.1016/j.clay.2015.07.021
Y. Zare, I. Shabani, Polymer/metal nanocomposites for biomedical applications. Mater. Sci. Eng. C 60, 195–203 (2016). https://doi.org/10.1016/j.msec.2015.11.023
Y. Lin, Y. Huang, J. Ren, X. Qu, Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 6(7), e114 (2014). https://doi.org/10.1038/am.2014.42
S. Venkateswarlu, M. Yoon, Core–shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@DAPF) for fast removal of Pb(II) from aqueous solutions. ACS Appl. Mater. Interfaces 7(45), 25362–25372 (2015). https://doi.org/10.1021/acsami.5b07723
S. Yousefinejad, H. Rasti, M. Hajebi, M. Kowsari, S. Sadravi et al., Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sens. Actuators B-Chem. 247, 691–696 (2017). https://doi.org/10.1016/j.snb.2017.02.145
X. Ma, X. Ren, X. Guo, C. Fu, Q. Wu et al., Multifunctional iron-based metal−organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 214, 119223 (2019). https://doi.org/10.1016/j.Biomaterials2019.119223
L. Gao, X. Gao, X. Yan, in Kinetics and Mechanisms for Nanozymes. ed. by X. Yan (Springer, Singapore, 2020), pp. 17–39
W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12), 7451–7458 (2010). https://doi.org/10.1021/nn102592h
W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang et al., BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens. Bioelectron. 66, 251–258 (2015). https://doi.org/10.1016/j.bios.2014.11.032
L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang et al., Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 9(11), 10027–10033 (2017). https://doi.org/10.1021/acsami.7b01616
S.-B. He, F.-Q. Chen, L.-F. Xiu, H.-P. Peng, H.-H. Deng et al., Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan-coated palladium nanozyme. Anal. Bioanal. Chem. 412(2), 499–506 (2020). https://doi.org/10.1007/s00216-019-02270-7
G.-J. Cao, X. Jiang, H. Zhang, T.R. Croley, J.-J. Yin, Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Adv. 7(82), 52210–52217 (2017). https://doi.org/10.1039/C7RA10370K
L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed et al., Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta 762, 83–86 (2013). https://doi.org/10.1016/j.aca.2012.11.056
S. He, L. Yang, P. Balasubramanian, S. Li, H. Peng et al., Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O2. J. Mater. Chem. A 8(47), 25226–25234 (2020). https://doi.org/10.1039/D0TA09247A
G. Jin, J. Liu, C. Wang, W. Gu, G. Ran et al., Ir nanoparticles with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Appl. Catal. B-Environ. 267, 118725 (2020). https://doi.org/10.1016/j.apcatb.2020.118725
T.G. Choleva, V.A. Gatselou, G.Z. Tsogas, D.L. Giokas, Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim. Acta 185(1), 22 (2017). https://doi.org/10.1007/s00604-017-2582-8
M. Wang, M. Chang, Q. Chen, D. Wang, C. Li et al., Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 252, 120093 (2020). https://doi.org/10.1016/j.Biomaterials2020.120093
C.-X. Zhang, Y.-C. Gao, H.-W. Li, Y. Wu, Gold–platinum bimetallic nanoclusters for oxidase-like catalysis. ACS Appl. Nano Mater. 3(9), 9318–9328 (2020). https://doi.org/10.1021/acsanm.0c01965
K. Shah, S. Bhagat, D. Varade, S. Singh, Novel synthesis of polyoxyethylene cholesteryl ether coated Fe–Pt nanoalloys: a multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids Surf. A-Physicochem. Eng. Asp. 553, 50–57 (2018). https://doi.org/10.1016/j.colsurfa.2018.05.034
J. Ge, J.-H. Yu, H. Yang, D. Yang, R. Cai, Human serum albumin templated MnO2 nanosheets as an efficient biomimetic oxidase for biomolecule sensing. J. Mater. Chem. B 8(48), 11090–11095 (2020). https://doi.org/10.1039/D0TB01766C
J. Wang, H. Tao, T. Lu, Y. Wu, Adsorption enhanced the oxidase-mimicking catalytic activity of octahedral-shape Mn3O4 nanoparticles as a novel colorimetric chemosensor for ultrasensitive and selective detection of arsenic. J. Colloids Interface Sci. 584, 114–124 (2021). https://doi.org/10.1016/j.jcis.2020.09.107
A. Dhall, A. Burns, J. Dowding, S. Das, S. Seal et al., Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. Environ. Sci. Nano 4(8), 1742–1749 (2017). https://doi.org/10.1039/C7EN00394C
L. Huang, W. Zhang, K. Chen, W. Zhu, X. Liu et al., Facet-selective response of trigger molecule to CeO2 110 for up-regulating oxidase-like activity. Chem. Eng. J. 330, 746–752 (2017). https://doi.org/10.1016/j.cej.2017.08.026
X. Liu, L. Yan, H. Ren, Y. Cai, C. Liu et al., Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens. Bioelectron. 165, 112342 (2020). https://doi.org/10.1016/j.bios.2020.112342
D. Wei, X. Zhang, B. Chen, K. Zeng, Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: application for the detection of streptomycin. Anal. Chim. Acta 1126, 106–113 (2020). https://doi.org/10.1016/j.aca.2020.06.009
F. Wei, X. Cui, Z. Wang, C. Dong, J. Li et al., Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 408, 127240 (2021). https://doi.org/10.1016/j.cej.2020.127240
R. Zhang, N. Lu, J. Zhang, R. Yan, J. Li et al., Ultrasensitive aptamer-based protein assays based on one-dimensional core–shell nanozymes. Biosens. Bioelectron. 150, 111881 (2020). https://doi.org/10.1016/j.bios.2019.111881
Y. Wang, H. Li, L. Guo, Q. Jiang, F. Liu, A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy. RSC Adv. 9(33), 18815–18822 (2019). https://doi.org/10.1039/C8RA05487H
S. Bhagat, N.V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti et al., Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloids Interface Sci. 513, 831–842 (2018). https://doi.org/10.1016/j.jcis.2017.11.064
Z. Wang, L. Chen, D. Wang, Z. Ding, X. Zhang et al., High-performance photocathodic bioanalysis based on core–shell structured Cu2O@TiO2 nanowire arrays with air–liquid–solid joint interfaces. CCS Chem. (2021). https://doi.org/10.31635/ccschem.021.202100842
J. Wang, P. Ni, C. Chen, Y. Jiang, C. Zhang et al., Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core–shell nanoparticles. Microchim. Acta 187(2), 115 (2020). https://doi.org/10.1007/s00604-019-4070-9
V.-K. Tran, P.K. Gupta, Y. Park, S.E. Son, W. Hur et al., Functionalized bimetallic IrPt alloy nanoparticles: multi-enzyme mimics for colorimetric and fluorometric detection of hydrogen peroxide and glucose. J. Taiwan Inst. Chem. Eng. 120, 336–343 (2021). https://doi.org/10.1016/j.jtice.2021.03.029
W. Yang, J. Li, M. Wang, X. Sun, Y. Liu et al., A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core–shell Fe3O4/CoFe-LDH hybrid. Colloids Surf. B-Biointerfaces 188, 110742 (2020). https://doi.org/10.1016/j.colsurfb.2019.110742
S.-B. He, L. Yang, X.-L. Lin, L.-M. Chen, H.-P. Peng et al., Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid. Talanta 211, 120707 (2020). https://doi.org/10.1016/j.talanta.2019.120707
L. Liu, J. Du, W.-E. Liu, Y. Guo, G. Wu et al., Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 411(10), 2189–2200 (2019). https://doi.org/10.1007/s00216-019-01655-y
C.H. Tonial, M.F.F. Rodrigues, M.A. Bosse, I.M.O. Sousa, J.D. de Lima et al., Technical and economic evaluation of cultivation and obtaining of Varronia curassavica Jacq. Essent. Oil. Ind. Crop Prod. 154, 12 (2020). https://doi.org/10.1016/j.indcrop.2020.112650
O.M. Ighodaro, O.A. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J. Med. 54(4), 287–293 (2018). https://doi.org/10.1016/j.ajme.2017.09.001
F.M. Wang, E.G. Ju, Y.J. Guan, J.S. Ren, X.G. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 6 (2017). https://doi.org/10.1002/smll.201603051
S. Bhagat, N.V.S. Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti et al., Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloids Interface Sci. 513, 831–842 (2018). https://doi.org/10.1016/j.jcis.2017.11.064
R. Singh, S. Singh, Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf. B-Biointerfaces 175, 625–635 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.042
Y.-C. Ma, Y.-H. Zhu, X.-F. Tang, L.-F. Hang, W. Jiang et al., Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomater. Sci. 7(7), 2740–2748 (2019). https://doi.org/10.1039/C9BM00333A
J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.Biomaterials2015.01.012
I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4), 1411–1420 (2011). https://doi.org/10.1039/C0NR00875C
C. Xu, X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6(3), e90 (2014). https://doi.org/10.1038/am.2013.88
S. Guo, Y. Han, L. Guo, Mechanistic study of catalase- and superoxide dismutation-mimic activities of cobalt oxide nanozyme from first-principles microkinetic modeling. Catal. Surv. Asia 24(1), 70–85 (2020). https://doi.org/10.1007/s10563-019-09290-4
MathSciNet
Z. Wang, X. Shen, X. Gao, Y. Zhao, Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale 11(28), 13289–13299 (2019). https://doi.org/10.1039/c9nr03473k
M.A. Komkova, E.E. Karyakina, A.A. Karyakin, Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 140(36), 11302–11307 (2018). https://doi.org/10.1021/jacs.8b05223
H. Lück, in Peroxidase. ed. by H.-U. Bergmeyer (Academic Press, London, 1965), pp. 895–897
M. Behbahani, H. Mohabatkar, M. Nosrati, Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J. Theor. Biol. 411, 1–5 (2016). https://doi.org/10.1016/j.jtbi.2016.09.001
A.O. Falade, U.U. Nwodo, B.C. Iweriebor, E. Green, L.V. Mabinya et al., Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6(1), e00394 (2017). https://doi.org/10.1002/mbo3.394
M. Khanmohammadi, M.B. Dastjerdi, A. Ai, A. Ahmadi, A. Godarzi et al., Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater. Sci. 6(6), 1286–1298 (2018). https://doi.org/10.1039/C8BM00056E
J. Duarte Baumer, A. Valério, S.M.A.G.U. de Souza, G.S. Erzinger, A. Furigo et al., Toxicity of enzymatically decolored textile dyes solution by horseradish peroxidase. J. Hazard. Mater. 360, 82–88 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.102
R.A. Lawrence, R.F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71(4), 952–958 (1976). https://doi.org/10.1016/0006-291X(76)90747-6
H. Rekik, N. Zaraî Jaouadi, K. Bouacem, B. Zenati, S. Kourdali et al., Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int. J. Biol. Macromol. 125, 514–525 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.053
M. Debnath, M. Dolai, K. Pal, A. Dutta, H.M. Lee et al., Two dinuclear oxidovanadium(V) complexes of N2O2 donor amine-bis(phenolate) ligands with bromo-peroxidase activities: kinetic, catalytic and computational studies. Inorg. Chim. Acta 480, 149–158 (2018). https://doi.org/10.1016/j.ica.2018.04.044
X.Y. Wang, L. Qin, M. Zhou, Z.P. Lou, H. Wei, Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal. Chem. 90(19), 11696–11702 (2018). https://doi.org/10.1021/acs.analchem.8b03374
R. Walther, A.K. Winther, A.S. Fruergaard, W. van den Akker, L. Sorensen et al., Identification and directed development of non-organic catalysts with apparent pan-enzymatic mimicry into nanozymes for efficient prodrug conversion. Angew. Chem. Int. Ed. 58(1), 278–282 (2019). https://doi.org/10.1002/anie.201812668
Z. Yang, C. Wang, X. Lu, Conducting polymer-based peroxidase mimics: synthesis, synergistic enhanced properties and applications. Sci. China Mater. 61(5), 653–670 (2018). https://doi.org/10.1007/s40843-018-9235-3
H.-Q. Zheng, C.-Y. Liu, X.-Y. Zeng, J. Chen, J. Lü et al., MOF-808: a metal–organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 57(15), 9096–9104 (2018). https://doi.org/10.1021/acs.inorgchem.8b01097
B. Garg, T. Bisht, Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21(12), 16 (2016). https://doi.org/10.3390/molecules21121653
X. Zhang, G. Li, G. Chen, D. Wu, X. Zhou et al., Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020). https://doi.org/10.1016/j.ccr.2020.213376
N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin et al., Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem. 17(3), 526–533 (2010). https://doi.org/10.1016/j.ultsonch.2009.11.001
M.A. Voinov, J.O.S. Pagán, E. Morrison, T.I. Smirnova, A.I. Smirnov, Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J. Am. Chem. Soc. 133(1), 35–41 (2011). https://doi.org/10.1021/ja104683w
R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze et al., V2O5 Nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21(3), 501–509 (2011). https://doi.org/10.1002/adfm.201001302
Y. Ding, B. Yang, H. Liu, Z. Liu, X. Zhang et al., FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensor. Actuators B-Chem. 259, 775–783 (2018). https://doi.org/10.1016/j.snb.2017.12.115
J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012). https://doi.org/10.1039/C2CC17013B
Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021). https://doi.org/10.1016/j.nantod.2021.101076
A.L. Hu, H.H. Deng, X.Q. Zheng, Y.Y. Wu, X.L. Lin et al., Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosens. Bioelectron. 97, 21–25 (2017). https://doi.org/10.1016/j.bios.2017.05.037
A.A. Vernekar, T. Das, S. Ghosh, G. Mugesh, A remarkably efficient MnFe2O4-based oxidase nanozyme. Chemistry 11(1), 72–76 (2016). https://doi.org/10.1002/asia.201500942
X. Xu, S. Wu, D. Guo, X. Niu, Construction of a recyclable oxidase-mimicking Fe3O4@MnOx-based colorimetric sensor array for quantifying and identifying chlorophenols. Anal. Chim. Acta 1107, 203–212 (2020). https://doi.org/10.1016/j.aca.2020.02.024
X. Zhang, Y. Huang, Evaluation of the antioxidant activity of phenols and tannic acid determination with Mn3O4 nano-octahedrons as an oxidase mimic. Anal. Methods 7(20), 8640–8646 (2015). https://doi.org/10.1039/C5AY01732G
H. Cheng, S. Lin, F. Muhammad, Y.-W. Lin, H. Wei, Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 1(11), 1336–1343 (2016). https://doi.org/10.1021/acssensors.6b00500
R. Ragg, F. Natalio, M.N. Tahir, H. Janssen, A. Kashyap et al., Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014). https://doi.org/10.1021/nn501235j
M. Comotti, C. Della-Pina, E. Falletta, M. Rossi, Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 348(3), 313–316 (2006). https://doi.org/10.1002/adsc.200505389
H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 11(1), 49–52 (2012). https://doi.org/10.1038/nmat3143
X. Zhang, X. Jiang, T.R. Croley, M.D. Boudreau, W. He et al., Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. J. Environ. Sci. Health Pt. C 37(2), 99–115 (2019). https://doi.org/10.1080/10590501.2019.1602991
Y. Liu, H. Wu, Y. Chong, W.G. Wamer, Q. Xia et al., Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 7(35), 19709–19717 (2015). https://doi.org/10.1021/acsami.5b05180
J. Liu, X. Jiang, L. Wang, Z. Hu, T. Wen et al., Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 8(12), 4024–4037 (2015). https://doi.org/10.1007/s12274-015-0904-x
M. Chen, Z. Wang, J. Shu, X. Jiang, W. Wang et al., Mimicking a natural enzyme system: cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg. Chem. 56(16), 9400–9403 (2017). https://doi.org/10.1021/acs.inorgchem.7b01393
Y. Zhang, Y. Jin, H. Cui, X. Yan, K. Fan, Nanozyme-based catalytic Theranostics. RSC Adv. 10(1), 10–20 (2020). https://doi.org/10.1039/C9RA09021E
H. Bayr, Reactive oxygen species. Crit. Care Med. 33(12), S498–S501 (2005). https://doi.org/10.1097/01.CCM.0000186787.64500.12
G. Wu, V. Berka, P.J. Derry, K. Mendoza, E. Kakadiaris et al., Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 13(10), 11203–11213 (2019). https://doi.org/10.1021/acsnano.9b04229
N. Singh, M. Geethika, S.M. Eswarappa, G. Mugesh, Manganese-based nanozymes: multienzyme redox activity and effect on the nitric oxide produced by endothelial nitric oxide synthase. Chem.-Eur. J. 24(33), 8393–8403 (2018). https://doi.org/10.1002/chem.201800770
Y.Y. Huang, Z. Liu, C.Q. Liu, E.G. Ju, Y. Zhang et al., Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55(23), 6646–6650 (2016). https://doi.org/10.1002/anie.201600868
C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/B615134E
J.-D. Cafun, K.O. Kvashnina, E. Casals, V.F. Puntes, P. Glatzel, Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles. ACS Nano 7(12), 10726–10732 (2013). https://doi.org/10.1021/nn403542p
S. Guo, L. Guo, Unraveling the multi-enzyme-like activities of iron oxide nanozyme via a first-principles microkinetic study. J. Phys. Chem. C 123(50), 30318–30334 (2019). https://doi.org/10.1021/acs.jpcc.9b07802
L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, C. Frigeri, Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chem. Commun. 22, 2253–2254 (2000). https://doi.org/10.1039/B005244M
R. Bonomi, F. Selvestrel, V. Lombardo, C. Sissi, S. Polizzi et al., Phosphate diester and DNA hydrolysis by a multivalent, nanoparticle-based catalyst. J. Am. Chem. Soc. 130(47), 15744–15745 (2008). https://doi.org/10.1021/ja801794t
P. Pengo, S. Polizzi, L. Pasquato, P. Scrimin, Carboxylate−imidazole cooperativity in dipeptide-functionalized gold nanoparticles with esterase-like activity. J. Am. Chem. Soc. 127(6), 1616–1617 (2005). https://doi.org/10.1021/ja043547c
D. Kisailus, M. Najarian, J.C. Weaver, D.E. Morse, Functionalized gold nanoparticles mimic catalytic activity of a polysiloxane-synthesizing enzyme. Adv. Mater. 17(10), 1234–1239 (2005). https://doi.org/10.1002/adma.200401109
Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: hidden talents. Adv. Mater. 26(25), 4200–4217 (2014). https://doi.org/10.1002/adma.201400238
M.H. Kuchma, C.B. Komanski, J. Colon, A. Teblum, A.E. Masunov et al., Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed.-Nanotechnol. Biol. Med. 6(6), 738–744 (2010). https://doi.org/10.1016/j.nano.2010.05.004
G. Cheng, J.-L. Zhang, Y.-L. Liu, D.-H. Sun, J.-Z. Ni, Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem. Commun. 47(20), 5732–5734 (2011). https://doi.org/10.1039/C1CC10533G
C. Xu, Z. Liu, L. Wu, J. Ren, X. Qu, Nucleoside Triphosphates as promoters to enhance nanoceria enzyme-like activity and for single-nucleotide polymorphism typing. Adv. Funct. Mater. 24(11), 1624–1630 (2014). https://doi.org/10.1002/adfm.201301649
R. Tian, J. Sun, Y. Qi, B. Zhang, S. Guo et al., Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose. Nanomaterials 7(11), 347 (2017). https://doi.org/10.3390/nano7110347
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 129(45), 14455–14459 (2017). https://doi.org/10.1002/anie.201708573
S. Liu, F. Lu, R. Xing, J.-J. Zhu, Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem. Eur. J. 17(2), 620–625 (2011). https://doi.org/10.1002/chem.201001789
J. Mu, L. Zhang, M. Zhao, Y. Wang, Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interfaces 6(10), 7090–7098 (2014). https://doi.org/10.1021/am406033q
G. Fang, W. Li, X. Shen, J.M. Perez-Aguilar, Y. Chong et al., Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 9(1), 129 (2018). https://doi.org/10.1038/s41467-017-02502-3
K.N. Han, J.-S. Choi, J. Kwon, Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-02948-x
V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018). https://doi.org/10.1039/C8NR00325D
Y. Liu, Y. Xiang, D. Ding, R. Guo, Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv. 6(113), 112435–112444 (2016). https://doi.org/10.1039/C6RA23773H
T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/B922024K
E.G. Heckert, A.S. Karakoti, S. Seal, W.T. Self, The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18), 2705–2709 (2008). https://doi.org/10.1016/j.Biomaterials2008.03.014
X. Wang, W. Cao, L. Qin, T. Lin, W. Chen et al., Boosting the peroxidase-like activity of nanostructured nickel by inducing its 3+ oxidation state in lanio(3) perovskite and its application for biomedical assays. Theranostics 7(8), 2277–2286 (2017). https://doi.org/10.7150/thno.19257
J. Xi, G. Wei, L. An, Z. Xu, Z. Xu et al., Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 19(11), 7645–7654 (2019). https://doi.org/10.1021/acs.nanolett.9b02242
X. Fan, B. Cai, R. Du, R. Hübner, M. Georgi et al., Ligand-exchange-mediated fabrication of gold aerogels containing different Au(I) content with peroxidase-like behavior. Chem. Mater. 31(24), 10094–10099 (2019). https://doi.org/10.1021/acs.chemmater.9b03121
M. Sun, H. Qian, J. Liu, Y. Li, S. Pang et al., A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv. 7(12), 7073–7078 (2017). https://doi.org/10.1039/C6RA25956A
L. Chen, J.M. Chabu, Y. Liu, Bimetallic AgM (M= Pt, Pd, Au) nanostructures: synthesis and applications for surface-enhanced Raman scattering. RSC Adv. 3(13), 4391–4399 (2013). https://doi.org/10.1039/C3RA23137B
W. He, X. Wu, J. Liu, X. Hu, K. Zhang et al., Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 22(9), 2988–2994 (2010). https://doi.org/10.1021/cm100393v
K. Zhang, X. Hu, J. Liu, J.-J. Yin, S. Hou et al., Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir 27(6), 2796–2803 (2011). https://doi.org/10.1021/la104566e
Y. Wang, H. Zhao, H. Song, J. Dong, J. Xu, Monodispersed gold nanoparticles entrapped in ordered mesoporous carbon/silica nanocomposites as xanthine oxidase mimic for electrochemical sensing of xanthine. Microchim. Acta 187(10), 543 (2020). https://doi.org/10.1007/s00604-020-04494-2
C. Liu, Y. Yan, X. Zhang, Y. Mao, X. Ren et al., Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of Monascus pigments. Nanoscale 12(5), 3068–3075 (2020). https://doi.org/10.1039/C9NR10135G
X. Xia, J. Zhang, N. Lu, M.J. Kim, K. Ghale et al., Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9(10), 9994–10004 (2015). https://doi.org/10.1021/acsnano.5b03525
S. Zeng, W. Zhang, N. Liu, H. Su, Inverse CeO2/CuO catalysts prepared by hydrothermal method for preferential CO oxidation. Catal. Lett. 143(10), 1018–1024 (2013). https://doi.org/10.1007/s10562-013-1065-8
I. Yeriskin, M. Nolan, Effect of La doping on CO adsorption at ceria surfaces. J. Chem. Phys. 131(24), 244702 (2009). https://doi.org/10.1063/1.3271910
J. Qin, J. Lu, M. Cao, C. Hu, Synthesis of porous CuO–CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2(12), 2739–2743 (2010). https://doi.org/10.1039/C0NR00446D
J. Wang, S. Lin, Z. Han, Y. Liu, Glutamine-assisted synthesis of Cu-doped CeO2 nanowires with an improved low-temperature CO oxidation activity. RSC Adv. 5(36), 28619–28623 (2015). https://doi.org/10.1039/C4RA16556J
S. Zhang, Y. Liu, S. Sun, J. Wang, Q. Li et al., Catalytic patch with redox Cr/CeO(2) nanozyme of noninvasive intervention for brain trauma. Theranostics 11(6), 2806–2821 (2021). https://doi.org/10.7150/thno.51912
D. Jampaiah, T. Srinivasa Reddy, A.E. Kandjani, P.R. Selvakannan, Y.M. Sabri et al., Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J. Mater. Chem. B 4(22), 3874–3885 (2016). https://doi.org/10.1039/c6tb00422a
B. Liu, Z. Huang, J. Liu, Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F-detection. Nanoscale 8(28), 13562–13567 (2016). https://doi.org/10.1039/C6NR02730J
J. Lian, P. Liu, C. Jin, Z. Shi, X. Luo et al., Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Microchim. Acta 186(6), 332 (2019). https://doi.org/10.1007/s00604-019-3439-0
M. Parra-Robert, M. Zeng, Y. Shu, G. Fernández-Varo, M. Perramón et al., Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale (2021). https://doi.org/10.1039/D1NR00790D
X. Meng, I. Zare, X. Yan, K. Fan, Protein-protected metal nanoclusters: an emerging ultra-small nanozyme. WIREs Nanomed. Nanobiotechnol. 12(3), e1602 (2020). https://doi.org/10.1002/wnan.1602
R.S. Aparna, J.S.A. Devi, J. Nebu, S.S. Syamchand, S. George, Rapid response of dopamine towards insitu synthesised copper nanocluster in presence of H2O2. J. Photochem. Photobiol. A-Chem. 379, 63–71 (2019). https://doi.org/10.1016/j.jphotochem.2019.04.043
B. Liu, J. Liu, Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 7(33), 13831–13835 (2015). https://doi.org/10.1039/C5NR04176G
J. Huo, J. Hao, J. Mu, Y. Wang, Surface modification of Co3O4 nanoplates as efficient peroxidase nanozymes for biosensing application. ACS Appl. Bio. Mater. 4(4), 3443–3452 (2021). https://doi.org/10.1021/acsabm.1c00017
Y. Yue, H. Wei, J. Guo, Y. Yang, Ceria-based peroxidase-mimicking nanozyme with enhanced activity: a coordination chemistry strategy. Colloid Surf. A-Physicochem. Eng. Asp. 610, 125715 (2021). https://doi.org/10.1016/j.colsurfa.2020.125715
Y. Zhao, Y. Wang, A. Mathur, Y. Wang, V. Maheshwari et al., Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 11(38), 17841–17850 (2019). https://doi.org/10.1039/C9NR05346H
G. Darabdhara, B. Sharma, M.R. Das, R. Boukherroub, S. Szunerits, Cu–Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sensor. Actuators B-Chem. 238, 842–851 (2017). https://doi.org/10.1016/j.snb.2016.07.106
C. Xie, X. Wen, C. Xiao, S. Wei, X. Wu et al., Copper nanoclusters/red globe flower carbon as a fenton-like catalyst for the degradation of amido black 10B. Water Air Soil Pollut. 231(6), 280 (2020). https://doi.org/10.1007/s11270-020-04539-5
H. Su, D.-D. Liu, M. Zhao, W.-L. Hu, S.-S. Xue et al., Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 7(15), 8233–8242 (2015). https://doi.org/10.1021/acsami.5b01271
T. Li, P. Hu, J. Li, P. Huang, W. Tong et al., Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf. A-Physicochem. Eng. Asp. 577, 456–463 (2019). https://doi.org/10.1016/j.colsurfa.2019.06.012
A.P. Nagvenkar, A. Gedanken, Cu0.89Zn0.11O, A new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Inter. 8(34), 22301–22308 (2016). https://doi.org/10.1021/acsami.6b05354
Y. Liu, H. Wu, M. Li, J.-J. Yin, Z. Nie, pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6(20), 11904–11910 (2014). https://doi.org/10.1039/c4nr03848g
W. He, Y.-T. Zhou, W.G. Wamer, M.D. Boudreau, J.-J. Yin, Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33(30), 7547–7555 (2012). https://doi.org/10.1016/j.Biomaterials2012.06.076
B. Unnikrishnan, C.-W. Lien, H.-W. Chu, C.-C. Huang, A review on metal nanozyme-based sensing of heavy metal ions: challenges and future perspectives. J. Hazard. Mater. 401, 123397 (2021). https://doi.org/10.1016/j.jhazmat.2020.123397
Y. Liu, Y. Zheng, D. Ding, R. Guo, Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir 33(48), 13811–13820 (2017). https://doi.org/10.1021/acs.langmuir.7b03430
C.-F. Peng, Y.-Y. Zhang, L.-Y. Wang, Z.-Y. Jin, G. Shao, Colorimetric assay for the simultaneous detection of Hg2+ and Ag+ based on inhibiting the peroxidase-like activity of core–shell Au@Pt nanoparticles. Anal. Methods 9(30), 4363–4370 (2017). https://doi.org/10.1039/C7AY01317E
H. Deng, S. He, X. Lin, L. Yang, Z. Lin et al., Target-triggered inhibiting oxidase-mimicking activity of platinum nanoparticles for ultrasensitive colorimetric detection of silver ion. Chin. Chem. Lett. 30(9), 1659–1662 (2019). https://doi.org/10.1016/j.cclet.2019.05.032
Z.-J. Xie, M.-R. Shi, L.-Y. Wang, C.-F. Peng, X.-L. Wei, Colorimetric determination of Pb2+ ions based on surface leaching of Au@Pt nanoparticles as peroxidase mimic. Microchim. Acta 187(4), 255 (2020). https://doi.org/10.1007/s00604-020-04234-6
W. Zhang, X. Niu, S. Meng, X. Li, Y. He et al., Histidine-mediated tunable peroxidase-like activity of nanosized Pd for photometric sensing of Ag+. Sens. Actuators B-Chem. 273, 400–407 (2018). https://doi.org/10.1016/j.snb.2018.06.071
Y. Liu, D. Ding, Y. Zhen, R. Guo, Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 92, 140–146 (2017). https://doi.org/10.1016/j.bios.2017.01.036
L. Han, H. Zhang, F. Li, Bioinspired nanozymes with pH-independent and metal ions-controllable activity: field-programmable logic conversion of sole logic gate system. Part. Part. Syst. Charact. 35(9), 1800207 (2018)
C. Wang, H. Wang, B. Xu, H. Liu, Photo-responsive nanozymes: mechanism, activity regulation, and biomedical applications. VIEW 2(1), 20200045 (2021). https://doi.org/10.1002/VIW.20200045
H. Wang, W. Yang, X. Wang, L. Huang, Y. Zhang et al., A CeO2@MnO2 core–shell hollow heterojunction as glucose oxidase-like photoenzyme for photoelectrochemical sensing of glucose. Sens. Actuat. B-Chem. 304, 127389 (2020). https://doi.org/10.1016/j.snb.2019.127389
H. Yang, B. Xu, S. Li, Q. Wu, M. Lu et al., A photoresponsive nanozyme for synergistic catalytic therapy and dual phototherapy. Small 17(10), 2007090 (2021). https://doi.org/10.1002/smll.202007090
Q. Zhang, S. Chen, H. Wang, A surface plasmon-enhanced nanozyme-based fenton process for visible-light-driven aqueous ammonia oxidation. Green Chem. 20(17), 4067–4074 (2018). https://doi.org/10.1039/C8GC01317A
M. Zhu, Y. Dai, Y. Wu, K. Liu, X. Qi et al., Bandgap control of α-Fe2O3 nanozymes and their superior visible light promoted peroxidase-like catalytic activity. Nanotechnology 29(46), 465704 (2018). https://doi.org/10.1088/1361-6528/aaddc2
F. Wang, E. Ju, Y. Guan, J. Ren, X. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 1603051 (2017). https://doi.org/10.1002/smll.201603051
N.V.S. Vallabani, A.S. Karakoti, S.