Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing
Corresponding Author: Feng Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 119
Abstract
User-interactive electronic skin (e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing devices have the disadvantages such as complex integration procedure and lack of the intuitive signal display function. Here, we present a bioinspired user-interactive e-skin, which is simple in structure and can synchronously achieve digital electrical response and optical visualization upon external mechanical stimulus. The e-skin comprises a conductive layer with a carbon nanotubes/cellulose nanofibers/MXene nanohybrid network featuring remarkable electromechanical behaviors, and a stretchable elastomer layer, which is composed of silicone rubber and thermochromic pigments. Furthermore, the conductive nanohybrid network with outstanding Joule heating performance can generate controllable thermal energy under voltage input and then achieve the dynamic coloration of silicone-based elastomer. Especially, such an innovative fusion strategy of digital data and visual images enables the e-skin to monitor human activities with evermore intuition and accuracy. The simple design philosophy and reliable operation of the demonstrated e-skin are expected to provide an ideal platform for next-generation flexible electronics.
Highlights:
1 A bioinspired MXene-based user-interactive electronic skin (e-skin) for digital and visual dual-signal sensing was designed and fabricated.
2 The MXene-based e-skin exhibited an excellent electromechanical sensing performance and realized the real-time monitoring of human activities, such as handwriting, drinking, walking, and speaking.
3 Benefiting from the outstanding Joule-heating performance of MXene-based film, the e-skin with thermochromic pigments could realize a wider range and dynamic coloration for passive displays and visual recognition of various human motions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
- G. Gu, N. Zhang, H. Xu, S. Lin, Y. Yu et al., A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. (2021). https://doi.org/10.1038/s41551-021-00767-0
- J.W. Kwak, M. Han, Z. Xie, H.U. Chung, J.Y. Lee et al., Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 12(574), eabc4327 (2020). https://doi.org/10.1126/scitranslmed.abc4327
- C.G. Nunez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27(18), 1606287 (2017). https://doi.org/10.1002/adfm.201606287
- Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
- X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- Y. Zhao, S. Zhang, T. Yu, Y. Zhang, G. Ye et al., Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 12, 4880 (2021). https://doi.org/10.1038/s41467-021-25152-y
- X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
- S. Chen, L. Sun, X. Zhou, Y. Guo, J. Song et al., Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020). https://doi.org/10.1038/s41467-020-14446-2
- J. Song, S. Chen, L. Sun, Y. Guo, L. Zhang et al., Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 32(8), 1906994 (2020). https://doi.org/10.1002/adma.201906994
- K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
- W.W. Lee, Y.J. Tan, H. Yao, S. Li, H.H. See et al., A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 4(32), eaax2198 (2019). https://doi.org/10.1126/scirobotics.aax2198
- I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961–965 (2020). https://doi.org/10.1126/science.aba5132
- L. Zhang, J. Liang, C. Jiang, Z. Liu, L. Sun et al., Peptidoglycan-inspired autonomous ultrafast self-healing bio-friendly elastomers for bio-integrated electronics. Natl. Sci. Rev. 8(5), nwaa154 (2021). https://doi.org/10.1093/nsr/nwaa154
- L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4, 98–107 (2021). https://doi.org/10.1007/s42765-021-00086-8
- X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
- L. Zhao, L. Wang, Y. Zheng, S. Zhao, W. Wei et al., Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 84, 105921 (2021). https://doi.org/10.1016/j.nanoen.2021.105921
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15(6), 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee et al., Hetero-dimensional 2D Ti3C2Tx MXene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15(6), 10347–10356 (2021). https://doi.org/10.1021/acsnano.1c02567
- Y. Cai, J. Shen, C.W. Yang, Y. Wan, H.L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
- M. Vatankhah-Varnosfaderani, A.N. Keith, Y. Cong, H. Liang, M. Rosenthal et al., Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359(6383), 1509–1513 (2018). https://doi.org/10.1126/science.aar5308
- P. Wu, J. Wang, L. Jiang, Bio-inspired photonic crystal patterns. Mater. Horiz. 7(2), 338–365 (2020). https://doi.org/10.1039/c9mh01389j
- R.T. Hanlon, C.C. Chiao, L.M. Maethger, A. Barbosa, K.C. Buresch et al., Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philos. Trans. R. Soc. B: Biol. Sci. 364, 429–437 (2009). https://doi.org/10.1098/rstb.2008.0270
- C. Xu, M.C. Escobar, A.A. Gorodetsky, Stretchable cephalopod-inspired multimodal camouflage systems. Adv. Mater. 32(16), 1905717 (2020). https://doi.org/10.1002/adma.201905717
- D.J. Wilson, L.F. Deravi, Artificial cephalopod organs for bio-inspired display: progress in emulating nature. Matter 4(8), 2639–2642 (2021). https://doi.org/10.1016/j.matt.2021.06.011
- L.M. Maethger, S.L. Senft, M. Gao, S. Karaveli, G.R.R. Bell et al., Bright white scattering from protein spheres in color changing, flexible cuttlefish skin. Adv. Funct. Mater. 23(32), 3980–3989 (2013). https://doi.org/10.1002/adfm.201203705
- H. Kim, J. Choi, K.K. Kim, P. Won, S. Hong et al., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021). https://doi.org/10.1038/s41467-021-24916-w
- D.J. Wilson, Z. Lin, D.Q. Bower, L.F. Deravi, Engineering color, pattern, and texture: from nature to materials. Matter 4(7), 2163–2171 (2021). https://doi.org/10.1016/j.matt.2021.05.021
- S. Zeng, Y. Liu, S. Li, K. Shen, Z. Hou et al., Smart laser-writable micropatterns with multiscale photo/moisture reconstructible structure. Adv. Funct. Mater. 31(10), 2009481 (2021). https://doi.org/10.1002/adfm.202009481
- C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
- C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu et al., High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7, 752–758 (2013). https://doi.org/10.1038/nphoton.2013.191
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- Y. Chen, Z. Yu, Y. Ye, Y. Zhang, G. Li et al., Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing. ACS Nano 15(1), 1869–1879 (2021). https://doi.org/10.1021/acsnano.0c10577
- W. Luo, J. Hayden, S.H. Jang, Y. Wang, Y. Zhang et al., Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 8(9), 1702615 (2018). https://doi.org/10.1002/aenm.201702615
- W. Tian, A. VahidMohammadi, Z. Wang, L. Ouyang, M. Beidaghi et al., Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun. 10, 2558 (2019). https://doi.org/10.1038/s41467-019-10631-0
- H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3), eaaq0118 (2018). https://doi.org/10.1126/sciadv.aaq0118
- W.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019). https://doi.org/10.1002/adfm.201905898
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- M.M. Hamedi, A. Hajian, A.B. Fall, K. Hakansson, M. Salajkova et al., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3), 2467–2476 (2014). https://doi.org/10.1021/nn4060368
- Y. Li, H. Zhu, Y. Wang, U. Ray, S. Zhu et al., Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network. Small Methods 1(10), 1700222 (2017). https://doi.org/10.1002/smtd.201700222
- Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanop-nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
- X. Zhao, L.Y. Wang, C.Y. Tang, X.J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
- M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15(7), 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
- D. Jiao, F. Lossada, J. Guo, O. Skarsetz, D. Hoenders et al., Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat. Commun. 12, 1312 (2021). https://doi.org/10.1038/s41467-021-21599-1
- T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13(6), 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
- D. Liu, Y. Gao, Y. Song, H. Zhu, L. Zhang et al., Highly sensitive multifunctional electronic skin based on nanocellulose/MXene composite films with good electromagnetic shielding biocompatible antibacterial properties. Biomacromol 23(1), 182–195 (2022). https://doi.org/10.1021/acs.biomac.1c01203
- D.J. Yao, Z. Tang, L. Zhang, Z.G. Liu, Q.J. Sun et al., A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. J. Mater. Chem. C 9(37), 12642–12649 (2021). https://doi.org/10.1039/d1tc02458b
- L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti(3)C(2)T(x) MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8(38), 20030–20036 (2020). https://doi.org/10.1039/d0ta07044k
- J. Guo, Y. Yu, H. Zhang, L. Sun, Y. Zhao, Elastic MXene hydrogel microfiber-derived electronic skin for joint monitoring. ACS Appl. Mater. Interfaces 13(40), 47800–47806 (2021). https://doi.org/10.1021/acsami.1c10311
- J. Guo, Y. Yu, D. Zhang, H. Zhang, Y. Zhao, Morphological hydrogel microfibers with MXene encapsulation for electronic skin. Research 2021, 7065907 (2021). https://doi.org/10.34133/2021/7065907
- J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5(7), 1900285 (2019). https://doi.org/10.1002/aelm.201900285
- Z. Cao, Y. Yang, Y. Zheng, W. Wu, F. Xu et al., Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J. Mater. Chem. A 7(44), 25314–25323 (2019). https://doi.org/10.1039/c9ta09225k
References
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
G. Gu, N. Zhang, H. Xu, S. Lin, Y. Yu et al., A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. (2021). https://doi.org/10.1038/s41551-021-00767-0
J.W. Kwak, M. Han, Z. Xie, H.U. Chung, J.Y. Lee et al., Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 12(574), eabc4327 (2020). https://doi.org/10.1126/scitranslmed.abc4327
C.G. Nunez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27(18), 1606287 (2017). https://doi.org/10.1002/adfm.201606287
Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
Y. Zhao, S. Zhang, T. Yu, Y. Zhang, G. Ye et al., Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 12, 4880 (2021). https://doi.org/10.1038/s41467-021-25152-y
X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
S. Chen, L. Sun, X. Zhou, Y. Guo, J. Song et al., Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020). https://doi.org/10.1038/s41467-020-14446-2
J. Song, S. Chen, L. Sun, Y. Guo, L. Zhang et al., Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 32(8), 1906994 (2020). https://doi.org/10.1002/adma.201906994
K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
W.W. Lee, Y.J. Tan, H. Yao, S. Li, H.H. See et al., A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 4(32), eaax2198 (2019). https://doi.org/10.1126/scirobotics.aax2198
I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961–965 (2020). https://doi.org/10.1126/science.aba5132
L. Zhang, J. Liang, C. Jiang, Z. Liu, L. Sun et al., Peptidoglycan-inspired autonomous ultrafast self-healing bio-friendly elastomers for bio-integrated electronics. Natl. Sci. Rev. 8(5), nwaa154 (2021). https://doi.org/10.1093/nsr/nwaa154
L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4, 98–107 (2021). https://doi.org/10.1007/s42765-021-00086-8
X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
L. Zhao, L. Wang, Y. Zheng, S. Zhao, W. Wei et al., Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 84, 105921 (2021). https://doi.org/10.1016/j.nanoen.2021.105921
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15(6), 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee et al., Hetero-dimensional 2D Ti3C2Tx MXene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15(6), 10347–10356 (2021). https://doi.org/10.1021/acsnano.1c02567
Y. Cai, J. Shen, C.W. Yang, Y. Wan, H.L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
M. Vatankhah-Varnosfaderani, A.N. Keith, Y. Cong, H. Liang, M. Rosenthal et al., Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359(6383), 1509–1513 (2018). https://doi.org/10.1126/science.aar5308
P. Wu, J. Wang, L. Jiang, Bio-inspired photonic crystal patterns. Mater. Horiz. 7(2), 338–365 (2020). https://doi.org/10.1039/c9mh01389j
R.T. Hanlon, C.C. Chiao, L.M. Maethger, A. Barbosa, K.C. Buresch et al., Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philos. Trans. R. Soc. B: Biol. Sci. 364, 429–437 (2009). https://doi.org/10.1098/rstb.2008.0270
C. Xu, M.C. Escobar, A.A. Gorodetsky, Stretchable cephalopod-inspired multimodal camouflage systems. Adv. Mater. 32(16), 1905717 (2020). https://doi.org/10.1002/adma.201905717
D.J. Wilson, L.F. Deravi, Artificial cephalopod organs for bio-inspired display: progress in emulating nature. Matter 4(8), 2639–2642 (2021). https://doi.org/10.1016/j.matt.2021.06.011
L.M. Maethger, S.L. Senft, M. Gao, S. Karaveli, G.R.R. Bell et al., Bright white scattering from protein spheres in color changing, flexible cuttlefish skin. Adv. Funct. Mater. 23(32), 3980–3989 (2013). https://doi.org/10.1002/adfm.201203705
H. Kim, J. Choi, K.K. Kim, P. Won, S. Hong et al., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021). https://doi.org/10.1038/s41467-021-24916-w
D.J. Wilson, Z. Lin, D.Q. Bower, L.F. Deravi, Engineering color, pattern, and texture: from nature to materials. Matter 4(7), 2163–2171 (2021). https://doi.org/10.1016/j.matt.2021.05.021
S. Zeng, Y. Liu, S. Li, K. Shen, Z. Hou et al., Smart laser-writable micropatterns with multiscale photo/moisture reconstructible structure. Adv. Funct. Mater. 31(10), 2009481 (2021). https://doi.org/10.1002/adfm.202009481
C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu et al., High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7, 752–758 (2013). https://doi.org/10.1038/nphoton.2013.191
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
Y. Chen, Z. Yu, Y. Ye, Y. Zhang, G. Li et al., Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing. ACS Nano 15(1), 1869–1879 (2021). https://doi.org/10.1021/acsnano.0c10577
W. Luo, J. Hayden, S.H. Jang, Y. Wang, Y. Zhang et al., Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 8(9), 1702615 (2018). https://doi.org/10.1002/aenm.201702615
W. Tian, A. VahidMohammadi, Z. Wang, L. Ouyang, M. Beidaghi et al., Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun. 10, 2558 (2019). https://doi.org/10.1038/s41467-019-10631-0
H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3), eaaq0118 (2018). https://doi.org/10.1126/sciadv.aaq0118
W.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019). https://doi.org/10.1002/adfm.201905898
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
M.M. Hamedi, A. Hajian, A.B. Fall, K. Hakansson, M. Salajkova et al., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3), 2467–2476 (2014). https://doi.org/10.1021/nn4060368
Y. Li, H. Zhu, Y. Wang, U. Ray, S. Zhu et al., Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network. Small Methods 1(10), 1700222 (2017). https://doi.org/10.1002/smtd.201700222
Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanop-nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
X. Zhao, L.Y. Wang, C.Y. Tang, X.J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15(7), 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
D. Jiao, F. Lossada, J. Guo, O. Skarsetz, D. Hoenders et al., Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat. Commun. 12, 1312 (2021). https://doi.org/10.1038/s41467-021-21599-1
T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13(6), 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
D. Liu, Y. Gao, Y. Song, H. Zhu, L. Zhang et al., Highly sensitive multifunctional electronic skin based on nanocellulose/MXene composite films with good electromagnetic shielding biocompatible antibacterial properties. Biomacromol 23(1), 182–195 (2022). https://doi.org/10.1021/acs.biomac.1c01203
D.J. Yao, Z. Tang, L. Zhang, Z.G. Liu, Q.J. Sun et al., A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. J. Mater. Chem. C 9(37), 12642–12649 (2021). https://doi.org/10.1039/d1tc02458b
L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti(3)C(2)T(x) MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8(38), 20030–20036 (2020). https://doi.org/10.1039/d0ta07044k
J. Guo, Y. Yu, H. Zhang, L. Sun, Y. Zhao, Elastic MXene hydrogel microfiber-derived electronic skin for joint monitoring. ACS Appl. Mater. Interfaces 13(40), 47800–47806 (2021). https://doi.org/10.1021/acsami.1c10311
J. Guo, Y. Yu, D. Zhang, H. Zhang, Y. Zhao, Morphological hydrogel microfibers with MXene encapsulation for electronic skin. Research 2021, 7065907 (2021). https://doi.org/10.34133/2021/7065907
J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5(7), 1900285 (2019). https://doi.org/10.1002/aelm.201900285
Z. Cao, Y. Yang, Y. Zheng, W. Wu, F. Xu et al., Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J. Mater. Chem. A 7(44), 25314–25323 (2019). https://doi.org/10.1039/c9ta09225k