Nitrogen-Doped TiO2–C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries
Corresponding Author: Li Liu
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 71
Abstract
Nitrogen-doped TiO2–C composite nanofibers (TiO2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO2/N–C NFs exhibit a large specific surface area (213.04 m2 g−1) and a suitable nitrogen content (5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions (DNa+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g−1 at 0.05 A g−1 and an outstanding long cycling performance even at a high current density (118.1 mAh g−1) with almost no capacity decay at 5 A g−1 over 2000 cycles. Therefore, this work sheds light on the application of TiO2-based materials in sodium-ion batteries.
Highlights:
1 Nitrogen-doped TiO2–C composite nanofibers (TiO2/N–C NFs) are fabricated using green, inexpensive urea as a nitrogen source and pore-forming agent.
2 X-ray photoelectron spectroscopy results reveal changes in the content of different nitrogen species in detail.
3 The TiO2/N–C NFs anode exhibits excellent sodium storage performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), 170 (2010). https://doi.org/10.1002/adma.201000717
- M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
- J. Liang, H. Hu, H. Park, C. Xiao, S. Ding, U. Paik, X.W. Lou, Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 8(6), 1707–1711 (2015). https://doi.org/10.1039/C5EE01125F
- J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10(1), 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
- M.B. Vazquez-Santos, P. Tartaj, E. Morales, J.M. Amarilla, TiO2 nanostructures as anode materials for Li/Na-ion batteries. Chem. Rec. 18(7–8), 1178–1191 (2018). https://doi.org/10.1002/tcr.201700103
- H. He, Q. Gan, H. Wang, G.L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
- Z. Yan, L. Liu, H. Shu, X. Yang, H. Wang, J. Tan, Q. Zhou, Z. Huang, X. Wang, A tightly integrated sodium titanate–carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 274, 8–14 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.045
- Z. Yan, L. Liu, J. Tan, Q. Zhou, Z. Huang, D. Xia, H. Shu, X. Yang, X. Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries. J. Power Sources 269(269), 37–45 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.150
- Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2016). https://doi.org/10.1002/adma.201503015
- S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W. Lou, Free-standing nitrogen-soped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6(7), 1502217 (2016). https://doi.org/10.1002/aenm.201502217
- Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok et al., Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26(24), 4139–4144 (2014). https://doi.org/10.1002/adma.201305638
- J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48(56), 7070–7072 (2012). https://doi.org/10.1039/c2cc32730a
- K. Zhang, M. Park, L. Zhou, G.-H. Lee, J. Shin, Z. Hu, S.-L. Chou, J. Chen, Y.-M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
- N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5, 1401123 (2015). https://doi.org/10.1002/aenm.201401123
- F. Xie, L. Zhang, D. Su, M. Jaroniec, S.Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
- S.M. Oh, J.Y. Hwang, C.S. Yoon, J. Lu, K. Amine, I. Belharouak, Y.K. Sun, High electrochemical performances of microsphere C–TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 6(14), 11295–11301 (2014). https://doi.org/10.1021/am501772a
- Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, X. Yang, Q. Chen, C.E. Banks, Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3, 5648 (2015). https://doi.org/10.1039/C4TA05611F
- Y. Yang, W. Shi, S. Liao, R. Zhang, S. Leng, Black defect-engineered TiO2 nanocrystals fabricated through square-wave alternating voltage as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 746, 619–625 (2018). https://doi.org/10.1016/j.jallcom.2018.02.309
- Q. Zhang, H. He, X. Huang, J. Yan, Y. Tang, H. Wang, TiO2@C nanosheets with highly exposed (0 0 1) facets as a high-capacity anode for Na-ion batteries. Chem. Eng. J. 332, 57 (2018). https://doi.org/10.1016/j.cej.2017.09.044
- Y. Liu, F. Zhao, J. Li, Y. Li, J.A. McLeod, L. Liu, Influence of crystal phase on TiO2 nanowire anodes in sodium ion batteries. J. Mater. Chem. A 5, 20005–20013 (2017). https://doi.org/10.1039/C7TA05852G
- H.A. Cha, H.M. Jeong, J.K. Kang, Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J. Mater. Chem. A 2(15), 5182–5186 (2014). https://doi.org/10.1039/C4TA00041B
- H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
- Y. Lai, W. Liu, J. Li, K. Zhang, F. Qin, M. Wang, J. Fang, High performance sodium storage of Fe-doped mesoporous anatase TiO2/amorphous carbon composite. J. Alloys Compd. 666, 254–261 (2016). https://doi.org/10.1016/j.jallcom.2016.01.101
- J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 28(11), 2259–2265 (2016). https://doi.org/10.1002/adma.201504412
- H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces 7(12), 6567–6573 (2015). https://doi.org/10.1021/am508670z
- Y. Yang, S. Liao, W. Shi, Y. Wu, R. Zhang, S. Leng, Nitrogen-doped TiO2(B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Adv. 7(18), 10885–10890 (2017). https://doi.org/10.1039/C7RA00469A
- H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
- P. Zhu, J. Song, D. Lv, D. Wang, C. Jaye, D.A. Fischer, T. Wu, Y. Chen, Mechanism of enhanced carbon cathode performance by nitrogen doping in lithium-sulfur battery: an X-ray absorption spectroscopic study. J. Phys. Chem. C 118(15), 7765–7771 (2014). https://doi.org/10.1021/jp4123634
- Z. Wang, Q. Long, L. Yuan, W. Zhang, X. Hu, Y. Huang, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55(2), 328–334 (2013). https://doi.org/10.1016/j.carbon.2012.12.072
- D. Li, H. Chen, G. Liu, M. Wei, L.X. Ding, S. Wang, H. Wang, Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015). https://doi.org/10.1016/j.carbon.2015.07.067
- Y. He, P. Xu, B. Zhang, Y. Du, B. Song, X. Han, H. Peng, Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 9(44), 38401 (2017). https://doi.org/10.1021/acsami.7b09559
- T. Guo, H. Liao, P. Ge, Y. Zhang, Y. Tian, W. Hong, Z. Shi, Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C–O–Fe oxygen-bridge bonds for enhanced sodium storages. Mater. Chem. Phys. 216, 58 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.054
- Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal-organic framework. J. Mater. Chem. A 4(15), 5428–5435 (2016). https://doi.org/10.1039/C6TA00236F
- Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7, 1600173 (2017). https://doi.org/10.1002/aenm.201600173
- J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. (in press) (2018). https://doi.org/10.1016/j.ensm.2018.08.005
- T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017). https://doi.org/10.1002/aenm.201700087
- B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, D.N. He, Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem. Commun. 23(8), 5–8 (2012). https://doi.org/10.1016/j.elecom.2012.07.003
- T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
- Y. Zhong, M. Yang, X. Zhou, Y. Luo, J. Wei, Z. Zhou, Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCo3/large-area graphene composites. Adv. Mater. 27(5), 806–812 (2015). https://doi.org/10.1002/adma.201404611
- L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20(2), 564–574 (2014). https://doi.org/10.1002/chem.201303345
- C.N. Schmidt, G. Cao, Properties of mesoporous carbon modified carbon felt for anode of all-vanadium redox flow battery. Sci. China Mater. 59(12), 1037–1050 (2016). https://doi.org/10.1007/s40843-016-5114-8
- J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556 (2015). https://doi.org/10.1021/nn506394r
- S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang, F. Wu, Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 9(13), 11669–11677 (2017). https://doi.org/10.1021/acsami.7b01519
- D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6(6), 1501929 (2016). https://doi.org/10.1002/aenm.201501929
- Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion Batteries. Small 12(26), 3474 (2016). https://doi.org/10.1002/smll.201670126
- S. Liu, Z. Cai, J. Zhou, A. Pan, S. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278 (2016). https://doi.org/10.1039/C6TA08472A
- X. Shi, Z. Zhang, K. Du, Y. Lai, J. Fang, J. Li, Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. J. Power Sources 330, 1–6 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.132
- L. Ling, Y. Bai, Z. Wang, Q. Ni, G. Chen, Z. Zhou, C. Wu, Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl. Mater. Interfaces 10(6), 5560 (2018). https://doi.org/10.1021/acsami.7b17659
- R. Zhang, Y. Wang, H. Zhou, J. Lang, J. Xu, Mesoporous TiO2 nanosheets anchored on graphene for ultra-long life Na-ion batteries. Nanotechnology 29(22), 225401 (2018). https://doi.org/10.1088/1361-6528/aab562
- J. Wang, G. Liu, K. Fan, D. Zhao, B. Liu, J. Jiang, D. Qian, C. Yang, J. Li, N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes. J. Colloid Interface Sci. 517, 134–143 (2018). https://doi.org/10.1016/j.jcis.2018.02.001
- J. Chen, Y. Zhang, G. Zou, Z. Huang, S. Li, H. Liao, J. Wang, H. Hou, X. Ji, Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small 12(40), 5554–5563 (2016). https://doi.org/10.1002/smll.201601938
- L. Shao, S. Quan, Y. Liu, Z. Guo, Z. Wang, A novel “gel–sol” strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307–310 (2013). https://doi.org/10.1016/j.matlet.2013.06.050
- Y.L. Huang, S.M. Yuen, C.C.M. Ma, C.Y. Chuang, K.C. Yu et al., Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly methyl methacrylate (PMMA) composites. Compos. Sci. Technol. 69(11), 1991–1996 (2009). https://doi.org/10.1016/j.compscitech.2009.05.006
- H. Wang, Q. Wu, D. Cao, X. Lu, J. Wang, M.K.H. Leung, S. Cheng, L. Lu, C. Niu, Synthesis of SnSb-embedded carbon–silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater. Today Energy 1–2, 24–32 (2016). https://doi.org/10.1016/j.mtener.2016.11.003
- X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
- Y. Xu, E. Memarzadeh Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, D. Mitlin, Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49(79), 8973–8975 (2013). https://doi.org/10.1039/c3cc45254a
- H. Liu, M. Jia, N. Sun, B. Cao, R. Chen, Q. Zhu, F. Wu, N. Qiao, B. Xu, Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7(49), 27124 (2015). https://doi.org/10.1021/acsami.5b06898
- C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13(29), 1700834 (2017). https://doi.org/10.1002/smll.201700834
- F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91, 88–95 (2015). https://doi.org/10.1016/j.carbon.2015.04.049
- J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015). https://doi.org/10.1016/j.carbon.2015.06.076
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- F. Wen, H. Shu, Y. Zhang, J. Wan, W. Huang, X. Yang, R. Yu, L. Liu, X. Wang, Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries. Electrochim. Acta 214, 85–93 (2016). https://doi.org/10.1016/j.electacta.2016.08.042
- J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 6(11), 1502568 (2016). https://doi.org/10.1002/aenm.201502568
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
- D. Kaufman, K.L. Hudson, R. Mcclamrock, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- L. Yi, L. Liu, G. Guo, X. Chen, Y. Zhang, S. Yu, X. Wang, Expanded graphite@SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 240, 63 (2017). https://doi.org/10.1016/j.electacta.2017.04.012
- L.-L. Zhang, S. Duan, X.-L. Yang, G. Peng, G. Liang, Y.-H. Huang, Y. Jiang, S.-B. Ni, M. Li, Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5(23), 12304–12309 (2013). https://doi.org/10.1021/am402434n
- J. Lin, D. Ma, Y. Li, P. Zhang, H. Mi, L. Deng, L. Sun, X. Ren, In situ nitrogen doping of TiO2 by plasma enhanced atomic layer deposition for enhanced sodium storage performance. Dalton Trans. 46(38), 13101 (2017). https://doi.org/10.1039/C7DT03303F
References
M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), 170 (2010). https://doi.org/10.1002/adma.201000717
M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
J. Liang, H. Hu, H. Park, C. Xiao, S. Ding, U. Paik, X.W. Lou, Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 8(6), 1707–1711 (2015). https://doi.org/10.1039/C5EE01125F
J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10(1), 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
M.B. Vazquez-Santos, P. Tartaj, E. Morales, J.M. Amarilla, TiO2 nanostructures as anode materials for Li/Na-ion batteries. Chem. Rec. 18(7–8), 1178–1191 (2018). https://doi.org/10.1002/tcr.201700103
H. He, Q. Gan, H. Wang, G.L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
Z. Yan, L. Liu, H. Shu, X. Yang, H. Wang, J. Tan, Q. Zhou, Z. Huang, X. Wang, A tightly integrated sodium titanate–carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 274, 8–14 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.045
Z. Yan, L. Liu, J. Tan, Q. Zhou, Z. Huang, D. Xia, H. Shu, X. Yang, X. Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries. J. Power Sources 269(269), 37–45 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.150
Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2016). https://doi.org/10.1002/adma.201503015
S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W. Lou, Free-standing nitrogen-soped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6(7), 1502217 (2016). https://doi.org/10.1002/aenm.201502217
Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok et al., Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26(24), 4139–4144 (2014). https://doi.org/10.1002/adma.201305638
J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48(56), 7070–7072 (2012). https://doi.org/10.1039/c2cc32730a
K. Zhang, M. Park, L. Zhou, G.-H. Lee, J. Shin, Z. Hu, S.-L. Chou, J. Chen, Y.-M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5, 1401123 (2015). https://doi.org/10.1002/aenm.201401123
F. Xie, L. Zhang, D. Su, M. Jaroniec, S.Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
S.M. Oh, J.Y. Hwang, C.S. Yoon, J. Lu, K. Amine, I. Belharouak, Y.K. Sun, High electrochemical performances of microsphere C–TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 6(14), 11295–11301 (2014). https://doi.org/10.1021/am501772a
Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, X. Yang, Q. Chen, C.E. Banks, Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3, 5648 (2015). https://doi.org/10.1039/C4TA05611F
Y. Yang, W. Shi, S. Liao, R. Zhang, S. Leng, Black defect-engineered TiO2 nanocrystals fabricated through square-wave alternating voltage as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 746, 619–625 (2018). https://doi.org/10.1016/j.jallcom.2018.02.309
Q. Zhang, H. He, X. Huang, J. Yan, Y. Tang, H. Wang, TiO2@C nanosheets with highly exposed (0 0 1) facets as a high-capacity anode for Na-ion batteries. Chem. Eng. J. 332, 57 (2018). https://doi.org/10.1016/j.cej.2017.09.044
Y. Liu, F. Zhao, J. Li, Y. Li, J.A. McLeod, L. Liu, Influence of crystal phase on TiO2 nanowire anodes in sodium ion batteries. J. Mater. Chem. A 5, 20005–20013 (2017). https://doi.org/10.1039/C7TA05852G
H.A. Cha, H.M. Jeong, J.K. Kang, Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J. Mater. Chem. A 2(15), 5182–5186 (2014). https://doi.org/10.1039/C4TA00041B
H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
Y. Lai, W. Liu, J. Li, K. Zhang, F. Qin, M. Wang, J. Fang, High performance sodium storage of Fe-doped mesoporous anatase TiO2/amorphous carbon composite. J. Alloys Compd. 666, 254–261 (2016). https://doi.org/10.1016/j.jallcom.2016.01.101
J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 28(11), 2259–2265 (2016). https://doi.org/10.1002/adma.201504412
H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces 7(12), 6567–6573 (2015). https://doi.org/10.1021/am508670z
Y. Yang, S. Liao, W. Shi, Y. Wu, R. Zhang, S. Leng, Nitrogen-doped TiO2(B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Adv. 7(18), 10885–10890 (2017). https://doi.org/10.1039/C7RA00469A
H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
P. Zhu, J. Song, D. Lv, D. Wang, C. Jaye, D.A. Fischer, T. Wu, Y. Chen, Mechanism of enhanced carbon cathode performance by nitrogen doping in lithium-sulfur battery: an X-ray absorption spectroscopic study. J. Phys. Chem. C 118(15), 7765–7771 (2014). https://doi.org/10.1021/jp4123634
Z. Wang, Q. Long, L. Yuan, W. Zhang, X. Hu, Y. Huang, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55(2), 328–334 (2013). https://doi.org/10.1016/j.carbon.2012.12.072
D. Li, H. Chen, G. Liu, M. Wei, L.X. Ding, S. Wang, H. Wang, Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015). https://doi.org/10.1016/j.carbon.2015.07.067
Y. He, P. Xu, B. Zhang, Y. Du, B. Song, X. Han, H. Peng, Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 9(44), 38401 (2017). https://doi.org/10.1021/acsami.7b09559
T. Guo, H. Liao, P. Ge, Y. Zhang, Y. Tian, W. Hong, Z. Shi, Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C–O–Fe oxygen-bridge bonds for enhanced sodium storages. Mater. Chem. Phys. 216, 58 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.054
Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal-organic framework. J. Mater. Chem. A 4(15), 5428–5435 (2016). https://doi.org/10.1039/C6TA00236F
Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7, 1600173 (2017). https://doi.org/10.1002/aenm.201600173
J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. (in press) (2018). https://doi.org/10.1016/j.ensm.2018.08.005
T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017). https://doi.org/10.1002/aenm.201700087
B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, D.N. He, Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem. Commun. 23(8), 5–8 (2012). https://doi.org/10.1016/j.elecom.2012.07.003
T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
Y. Zhong, M. Yang, X. Zhou, Y. Luo, J. Wei, Z. Zhou, Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCo3/large-area graphene composites. Adv. Mater. 27(5), 806–812 (2015). https://doi.org/10.1002/adma.201404611
L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20(2), 564–574 (2014). https://doi.org/10.1002/chem.201303345
C.N. Schmidt, G. Cao, Properties of mesoporous carbon modified carbon felt for anode of all-vanadium redox flow battery. Sci. China Mater. 59(12), 1037–1050 (2016). https://doi.org/10.1007/s40843-016-5114-8
J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556 (2015). https://doi.org/10.1021/nn506394r
S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang, F. Wu, Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 9(13), 11669–11677 (2017). https://doi.org/10.1021/acsami.7b01519
D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6(6), 1501929 (2016). https://doi.org/10.1002/aenm.201501929
Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion Batteries. Small 12(26), 3474 (2016). https://doi.org/10.1002/smll.201670126
S. Liu, Z. Cai, J. Zhou, A. Pan, S. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278 (2016). https://doi.org/10.1039/C6TA08472A
X. Shi, Z. Zhang, K. Du, Y. Lai, J. Fang, J. Li, Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. J. Power Sources 330, 1–6 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.132
L. Ling, Y. Bai, Z. Wang, Q. Ni, G. Chen, Z. Zhou, C. Wu, Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl. Mater. Interfaces 10(6), 5560 (2018). https://doi.org/10.1021/acsami.7b17659
R. Zhang, Y. Wang, H. Zhou, J. Lang, J. Xu, Mesoporous TiO2 nanosheets anchored on graphene for ultra-long life Na-ion batteries. Nanotechnology 29(22), 225401 (2018). https://doi.org/10.1088/1361-6528/aab562
J. Wang, G. Liu, K. Fan, D. Zhao, B. Liu, J. Jiang, D. Qian, C. Yang, J. Li, N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes. J. Colloid Interface Sci. 517, 134–143 (2018). https://doi.org/10.1016/j.jcis.2018.02.001
J. Chen, Y. Zhang, G. Zou, Z. Huang, S. Li, H. Liao, J. Wang, H. Hou, X. Ji, Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small 12(40), 5554–5563 (2016). https://doi.org/10.1002/smll.201601938
L. Shao, S. Quan, Y. Liu, Z. Guo, Z. Wang, A novel “gel–sol” strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307–310 (2013). https://doi.org/10.1016/j.matlet.2013.06.050
Y.L. Huang, S.M. Yuen, C.C.M. Ma, C.Y. Chuang, K.C. Yu et al., Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly methyl methacrylate (PMMA) composites. Compos. Sci. Technol. 69(11), 1991–1996 (2009). https://doi.org/10.1016/j.compscitech.2009.05.006
H. Wang, Q. Wu, D. Cao, X. Lu, J. Wang, M.K.H. Leung, S. Cheng, L. Lu, C. Niu, Synthesis of SnSb-embedded carbon–silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater. Today Energy 1–2, 24–32 (2016). https://doi.org/10.1016/j.mtener.2016.11.003
X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
Y. Xu, E. Memarzadeh Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, D. Mitlin, Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49(79), 8973–8975 (2013). https://doi.org/10.1039/c3cc45254a
H. Liu, M. Jia, N. Sun, B. Cao, R. Chen, Q. Zhu, F. Wu, N. Qiao, B. Xu, Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7(49), 27124 (2015). https://doi.org/10.1021/acsami.5b06898
C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13(29), 1700834 (2017). https://doi.org/10.1002/smll.201700834
F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91, 88–95 (2015). https://doi.org/10.1016/j.carbon.2015.04.049
J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015). https://doi.org/10.1016/j.carbon.2015.06.076
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
F. Wen, H. Shu, Y. Zhang, J. Wan, W. Huang, X. Yang, R. Yu, L. Liu, X. Wang, Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries. Electrochim. Acta 214, 85–93 (2016). https://doi.org/10.1016/j.electacta.2016.08.042
J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 6(11), 1502568 (2016). https://doi.org/10.1002/aenm.201502568
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
D. Kaufman, K.L. Hudson, R. Mcclamrock, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
L. Yi, L. Liu, G. Guo, X. Chen, Y. Zhang, S. Yu, X. Wang, Expanded graphite@SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 240, 63 (2017). https://doi.org/10.1016/j.electacta.2017.04.012
L.-L. Zhang, S. Duan, X.-L. Yang, G. Peng, G. Liang, Y.-H. Huang, Y. Jiang, S.-B. Ni, M. Li, Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5(23), 12304–12309 (2013). https://doi.org/10.1021/am402434n
J. Lin, D. Ma, Y. Li, P. Zhang, H. Mi, L. Deng, L. Sun, X. Ren, In situ nitrogen doping of TiO2 by plasma enhanced atomic layer deposition for enhanced sodium storage performance. Dalton Trans. 46(38), 13101 (2017). https://doi.org/10.1039/C7DT03303F