Wire-in-Wire TiO2/C Nanofibers Free-Standing Anodes for Li-Ion and K-Ion Batteries with Long Cycling Stability and High Capacity
Corresponding Author: Guozhong Cao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 107
Abstract
Wearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire-in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ultimately, TiO2 ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g−1 at 5 A g−1 after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO2 has a large diffusion barrier of K+, TiO2 ww/CN film demonstrates excellent performance (259 mAh g−1 at 0.05 A g−1 after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO2 ww/CN film anode and LiFePO4/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.
Highlights:
1 The unique wire-in-wire structure endows TiO2/C nanofibers film with superior mechanical flexibility.
2 The wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film shows outstanding electrochemical performances as free-standing anodes for Li/K-ion batteries and full cells.
3 The TiO2 ww/CN film shows an extremely high pseudocapacitance contribution ratio in K-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi et al., Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 10, 2001161 (2020). https://doi.org/10.1002/aenm.202001161
- Y. Zhang, Y. Ouyang, L. Liu, J. Xia, S. Nie et al., Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries. J. Cent. South Univ. 26, 1510–1520 (2019). https://doi.org/10.1007/s11771-019-4107-6
- R. Guo, X. Liu, B. Wen, F. Liu, J. Meng et al., Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency. Nano-Micro Lett. 12, 148 (2020). https://doi.org/10.1007/s40820-020-00481-7
- J. Wang, L. Fan, Z. Liu, S. Chen, Q. Zhang et al., In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13, 3703–3713 (2019). https://doi.org/10.1021/acsnano.9b00634
- L. Fan, R. Ma, J. Wang, H. Yang, B. Lu, An ultrafast and highly stable potassium-organic battery. Adv. Mater. 30, 1805486 (2018). https://doi.org/10.1021/acsnano.9b00634
- J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2019). https://doi.org/10.1016/j.ensm.2018.08.005
- L. Wang, G. Yang, J. Wang, S. Wang, C. Wang et al., In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small 15, 1901584 (2019). https://doi.org/10.1002/smll.201901584
- W.-C. Chang, J.-H. Wu, K.-T. Chen, H.-Y. Tuan, Red phosphorus potassium-ion battery anodes. Adv. Sci. 6, 1801354 (2019). https://doi.org/10.1002/advs.201801354
- I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5, 23506–23512 (2017). https://doi.org/10.1039/c7ta02483e
- H. Luo, M. Chen, J. Cao, M. Zhang, S. Tan et al., Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 12, 113 (2020). https://doi.org/10.1007/s40820-020-00454-w
- S. Nie, L. Liu, J. Liu, J. Xie, Y. Zhang et al., Nitrogen-doped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10, 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
- S. Rehman, J. Liu, Z. Fang, J. Wang, R. Ahmed et al., Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl. Nano Mater. 2, 4451–4461 (2019). https://doi.org/10.1021/acsanm.9b00841
- S. Nie, L. Liu, J. Liu, J. Xia, Y. Zhang et al., TiO2-Sn/C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium ion batteries. J. Alloys Compd. 772, 314–323 (2019). https://doi.org/10.1016/j.jallcom.2018.09.044
- S. Huang, L. Zhang, X. Lu, L. Liu, X. Liu et al., Tunable pseudocapacitance in 3D TiO2−δ nanomembranes enabling superior lithium storage performance. ACS Nano 11, 821–830 (2017). https://doi.org/10.1021/acsnano.6b07274
- S. Chu, Y. Zhong, R. Cai, Z. Zhang, S. Wei et al., Mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free-standing electrodes for lithium-ion batteries. Small 12, 6724–6734 (2016). https://doi.org/10.1002/smll.201602179
- G. Ren, M. Hoque, J. Liu, J. Warzywoda, Z. Fan, Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21, 162–171 (2016). https://doi.org/10.1016/j.nanoen.2016.01.010
- Y. Shi, D. Yang, R. Yu, Y. Liu, J. Qu et al., Efficient photocatalytic reduction approach for synthesizing chemically bonded N-doped TiO2/reduced graphene oxide hybrid as a freestanding electrode for high-performance Lithium storage. ACS Appl. Energy Mater. 1, 4186–4195 (2018). https://doi.org/10.1021/acsaem.8b00836
- Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
- K.G. Reeves, J. Ma, M. Fukunishi, M. Salanne, S. Komaba et al., Insights into Li+, Na+, and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Appl. Energy Mater. 1, 2078–2086 (2018). https://doi.org/10.1021/acsaem.8b00170
- Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7, 5363–5372 (2019). https://doi.org/10.1039/c8ta12069b
- G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993). https://doi.org/10.1103/PhysRevB.48.13115
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- L. Shao, S. Quan, Y. Liu, Z. Guo, Z. Wang, A novel “gel–sol” strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307–310 (2013). https://doi.org/10.1016/j.matlet.2013.06.050
- Y.-L. Huang, S.-M. Yuen, C.-C.M. Ma, C.-Y. Chuang, K.-C. Yu et al., Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly methyl methacrylate (PMMA) composites. Compos. Sci. Technol. 69, 1991–1996 (2009). https://doi.org/10.1016/j.compscitech.2009.05.006
- H. Wang, Q. Wu, D. Cao, X. Lu, J. Wang et al., Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater. Today Energy 1, 24–32 (2016). https://doi.org/10.1016/j.compscitech.2009.05.006
- X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao et al., Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
- D. Su, L. Liu, Z. Liu, J. Dai, J. Wen et al., Electrospun Ta-doped TiO2/C nanofibers as high-capacity and long-cycling anode materials for Li-ion and K-ion batteries. J. Mater. Chem. A 8, 20666–20676 (2020). https://doi.org/10.1039/D0TA06327D
- H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang et al., 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@ C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 10, 48–55 (2018). https://doi.org/10.1016/j.ensm.2017.08.006
- H. Lin, M. Li, X. Yang, D. Yu, Y. Zeng et al., Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 9, 1900323 (2019). https://doi.org/10.1002/aenm.201900323
- D. Su, J. Liu, Y. Pei, L. Liu, S. Nie et al., Electrospun Na doped Li2TiSiO5/C nanofibers with outstanding lithium-storage performance. Appl. Surf. Sci. 541, 148388 (2021). https://doi.org/10.1016/j.apsusc.2020.148388
- L. Su, J. Hei, X. Wu, L. Wang, Z. Zhou, Ultrathin layered hydroxide cobalt acetate nanoplates face-to-face anchored to graphene nanosheets for high-efficiency lithium storage. Adv. Funct. Mater. 27, 1605544 (2017). https://doi.org/10.1002/adfm.201605544
- J. Liu, D. Su, L. Liu, Z. Liu, S. Nie et al., Boosting the charge transfer of Li2TiSiO5 using nitrogen-doped carbon nanofibers: towards high-rate, long-life lithium-ion batteries. Nanoscale 12, 19702–19710 (2020). https://doi.org/10.1039/d0nr04618c
- D. Ying, R. Ding, Y. Huang, W. Shi, Q. Xu et al., An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J. Mater. Chem. A 7, 18257–18266 (2019). https://doi.org/10.1039/C9TA06438A
- Q. Xu, R. Ding, W. Shi, D. Ying, Y. Huang et al., Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J. Mater. Chem. A 7, 8315–8326 (2019). https://doi.org/10.1039/C9TA00493A
- H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu et al., An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48, 448–455 (2018). https://doi.org/10.1016/j.nanoen.2018.04.006
- J. Ni, W. Wang, C. Wu, H. Liang, J. Maier et al., Energy storage: highly reversible and durable Na sorage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 29, 1605607 (2017). https://doi.org/10.1002/adma.201770063
- X. Yan, Y. Li, M. Li, Y. Jin, F. Du et al., Ultrafast lithium storage in TiO2–bronze nanowires/N-doped graphene nanocomposites. J. Mater. Chem. A 3, 4180–4187 (2015). https://doi.org/10.1039/C4TA06361A
- Y. Jiang, S. Chen, D. Mu, Z. Zhao, C. Li et al., Flexible TiO2/SiO2/C film anodes for lithium-ion batteries. Chemsuschem 11, 2040–2044 (2018). https://doi.org/10.1002/cssc.201800560
- Y. Yue, D. Juarez-Robles, Y. Chen, L. Ma, W.C. Kuo et al., Hierarchical structured Cu/Ni/TiO2 nanocomposites as electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 28695–28703 (2017). https://doi.org/10.1021/acsami.7b10158
- C. Zhang, S. Liu, Y. Qi, F. Cui, X. Yang, Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries. Chem. Eng. J. 351, 825–831 (2018). https://doi.org/10.1016/j.cej.2018.06.125
- S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu et al., Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 11669–11677 (2017). https://doi.org/10.1021/acsami.7b01519
- D. Xu, C. Chen, J. Xie, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016). https://doi.org/10.1002/aenm.201501929
- E. Liu, J. Wang, C. Shi, N. Zhao, C. He et al., Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. ACS Appl. Mater. Interfaces 6, 18147–18151 (2014). https://doi.org/10.1021/am5050423
- Z. Bi, M.P. Paranthaman, B. Guo, R.R. Unocic, H.M. Meyer III. et al., High performance Cr, N-codoped mesoporous TiO2 microspheres for lithium-ion batteries. J. Mater. Chem. A 2, 1818–1824 (2014). https://doi.org/10.1039/c3ta14535b
- Y. Li, Y. Huang, Y. Zheng, R. Huang, J. Yao, Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J. Power Sources 416, 62–71 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.080
- J. Sun, L. Guo, X. Sun, J. Zhang, L. Hou et al., One-dimensional nanostructured pseudocapacitive materials: design, synthesis and applications in supercapacitors. Batteries Supercaps 2, 820–841 (2019). https://doi.org/10.1002/batt.201900021
- C. Wang, J. Zhang, X. Wang, C. Lin, X. Zhao, Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv. Funct. Mater. 30, 2002629 (2020). https://doi.org/10.1002/adfm.202002629
- C. Wang, X. Wang, C. Lin, X. Zhao, Lithium titanate cuboid arrays grown on carbon fiber cloth for high-rate fexible Lithium-ion batteries. Small 15, 1902183 (2019). https://doi.org/10.1002/smll.201902183
- C. Wang, X. Wang, C. Lin, S. Xiu, Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries. Chem. Eng. J. 15, 123981 (2020). https://doi.org/10.1016/j.cej.2019.123981
- Z. Wang, J. Sha, E. Liu, C. He, C. Shi et al., A large ultrathin anatase TiO2 nanosheet/reduced graphene oxide composite with enhanced lithium storage capability. J. Mater. Chem. A 2, 8893–8901 (2014). https://doi.org/10.1039/c4ta00574k
- Y. Yuan, F. Chen, S. Yin, L. Wang, M. Zhu et al., Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries. J. Power Sources 420, 38–45 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.094
- N.Ž Knežević, E. Ruiz-Hernández, W.E. Hennink, M. Vallet-Regí, Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 3, 9584–9593 (2013). https://doi.org/10.1039/c3ra23127e
- A. Auer, E. Portenkirchner, T. Götsch, C. Valero-Vidal, S. Penne et al., Preferentially oriented TiO2 nanotubes as anode material for Li-ion batteries: insight into Li-ion storage and Lithiation kinetics. ACS Appl. Mater. Interfaces 9, 36828–36836 (2017). https://doi.org/10.1021/acsami.7b11388
- K. Zhu, Y. Luo, F. Zhao, J. Hou, X. Wang et al., Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustain. Chem. Eng. 6, 3426–3433 (2018). https://doi.org/10.1021/acssuschemeng.7b03671
References
C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi et al., Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 10, 2001161 (2020). https://doi.org/10.1002/aenm.202001161
Y. Zhang, Y. Ouyang, L. Liu, J. Xia, S. Nie et al., Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries. J. Cent. South Univ. 26, 1510–1520 (2019). https://doi.org/10.1007/s11771-019-4107-6
R. Guo, X. Liu, B. Wen, F. Liu, J. Meng et al., Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency. Nano-Micro Lett. 12, 148 (2020). https://doi.org/10.1007/s40820-020-00481-7
J. Wang, L. Fan, Z. Liu, S. Chen, Q. Zhang et al., In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13, 3703–3713 (2019). https://doi.org/10.1021/acsnano.9b00634
L. Fan, R. Ma, J. Wang, H. Yang, B. Lu, An ultrafast and highly stable potassium-organic battery. Adv. Mater. 30, 1805486 (2018). https://doi.org/10.1021/acsnano.9b00634
J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2019). https://doi.org/10.1016/j.ensm.2018.08.005
L. Wang, G. Yang, J. Wang, S. Wang, C. Wang et al., In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small 15, 1901584 (2019). https://doi.org/10.1002/smll.201901584
W.-C. Chang, J.-H. Wu, K.-T. Chen, H.-Y. Tuan, Red phosphorus potassium-ion battery anodes. Adv. Sci. 6, 1801354 (2019). https://doi.org/10.1002/advs.201801354
I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5, 23506–23512 (2017). https://doi.org/10.1039/c7ta02483e
H. Luo, M. Chen, J. Cao, M. Zhang, S. Tan et al., Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 12, 113 (2020). https://doi.org/10.1007/s40820-020-00454-w
S. Nie, L. Liu, J. Liu, J. Xie, Y. Zhang et al., Nitrogen-doped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10, 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
S. Rehman, J. Liu, Z. Fang, J. Wang, R. Ahmed et al., Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl. Nano Mater. 2, 4451–4461 (2019). https://doi.org/10.1021/acsanm.9b00841
S. Nie, L. Liu, J. Liu, J. Xia, Y. Zhang et al., TiO2-Sn/C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium ion batteries. J. Alloys Compd. 772, 314–323 (2019). https://doi.org/10.1016/j.jallcom.2018.09.044
S. Huang, L. Zhang, X. Lu, L. Liu, X. Liu et al., Tunable pseudocapacitance in 3D TiO2−δ nanomembranes enabling superior lithium storage performance. ACS Nano 11, 821–830 (2017). https://doi.org/10.1021/acsnano.6b07274
S. Chu, Y. Zhong, R. Cai, Z. Zhang, S. Wei et al., Mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free-standing electrodes for lithium-ion batteries. Small 12, 6724–6734 (2016). https://doi.org/10.1002/smll.201602179
G. Ren, M. Hoque, J. Liu, J. Warzywoda, Z. Fan, Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21, 162–171 (2016). https://doi.org/10.1016/j.nanoen.2016.01.010
Y. Shi, D. Yang, R. Yu, Y. Liu, J. Qu et al., Efficient photocatalytic reduction approach for synthesizing chemically bonded N-doped TiO2/reduced graphene oxide hybrid as a freestanding electrode for high-performance Lithium storage. ACS Appl. Energy Mater. 1, 4186–4195 (2018). https://doi.org/10.1021/acsaem.8b00836
Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
K.G. Reeves, J. Ma, M. Fukunishi, M. Salanne, S. Komaba et al., Insights into Li+, Na+, and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Appl. Energy Mater. 1, 2078–2086 (2018). https://doi.org/10.1021/acsaem.8b00170
Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7, 5363–5372 (2019). https://doi.org/10.1039/c8ta12069b
G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993). https://doi.org/10.1103/PhysRevB.48.13115
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
L. Shao, S. Quan, Y. Liu, Z. Guo, Z. Wang, A novel “gel–sol” strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307–310 (2013). https://doi.org/10.1016/j.matlet.2013.06.050
Y.-L. Huang, S.-M. Yuen, C.-C.M. Ma, C.-Y. Chuang, K.-C. Yu et al., Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly methyl methacrylate (PMMA) composites. Compos. Sci. Technol. 69, 1991–1996 (2009). https://doi.org/10.1016/j.compscitech.2009.05.006
H. Wang, Q. Wu, D. Cao, X. Lu, J. Wang et al., Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater. Today Energy 1, 24–32 (2016). https://doi.org/10.1016/j.compscitech.2009.05.006
X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao et al., Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
D. Su, L. Liu, Z. Liu, J. Dai, J. Wen et al., Electrospun Ta-doped TiO2/C nanofibers as high-capacity and long-cycling anode materials for Li-ion and K-ion batteries. J. Mater. Chem. A 8, 20666–20676 (2020). https://doi.org/10.1039/D0TA06327D
H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang et al., 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@ C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 10, 48–55 (2018). https://doi.org/10.1016/j.ensm.2017.08.006
H. Lin, M. Li, X. Yang, D. Yu, Y. Zeng et al., Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 9, 1900323 (2019). https://doi.org/10.1002/aenm.201900323
D. Su, J. Liu, Y. Pei, L. Liu, S. Nie et al., Electrospun Na doped Li2TiSiO5/C nanofibers with outstanding lithium-storage performance. Appl. Surf. Sci. 541, 148388 (2021). https://doi.org/10.1016/j.apsusc.2020.148388
L. Su, J. Hei, X. Wu, L. Wang, Z. Zhou, Ultrathin layered hydroxide cobalt acetate nanoplates face-to-face anchored to graphene nanosheets for high-efficiency lithium storage. Adv. Funct. Mater. 27, 1605544 (2017). https://doi.org/10.1002/adfm.201605544
J. Liu, D. Su, L. Liu, Z. Liu, S. Nie et al., Boosting the charge transfer of Li2TiSiO5 using nitrogen-doped carbon nanofibers: towards high-rate, long-life lithium-ion batteries. Nanoscale 12, 19702–19710 (2020). https://doi.org/10.1039/d0nr04618c
D. Ying, R. Ding, Y. Huang, W. Shi, Q. Xu et al., An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J. Mater. Chem. A 7, 18257–18266 (2019). https://doi.org/10.1039/C9TA06438A
Q. Xu, R. Ding, W. Shi, D. Ying, Y. Huang et al., Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J. Mater. Chem. A 7, 8315–8326 (2019). https://doi.org/10.1039/C9TA00493A
H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu et al., An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48, 448–455 (2018). https://doi.org/10.1016/j.nanoen.2018.04.006
J. Ni, W. Wang, C. Wu, H. Liang, J. Maier et al., Energy storage: highly reversible and durable Na sorage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 29, 1605607 (2017). https://doi.org/10.1002/adma.201770063
X. Yan, Y. Li, M. Li, Y. Jin, F. Du et al., Ultrafast lithium storage in TiO2–bronze nanowires/N-doped graphene nanocomposites. J. Mater. Chem. A 3, 4180–4187 (2015). https://doi.org/10.1039/C4TA06361A
Y. Jiang, S. Chen, D. Mu, Z. Zhao, C. Li et al., Flexible TiO2/SiO2/C film anodes for lithium-ion batteries. Chemsuschem 11, 2040–2044 (2018). https://doi.org/10.1002/cssc.201800560
Y. Yue, D. Juarez-Robles, Y. Chen, L. Ma, W.C. Kuo et al., Hierarchical structured Cu/Ni/TiO2 nanocomposites as electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 28695–28703 (2017). https://doi.org/10.1021/acsami.7b10158
C. Zhang, S. Liu, Y. Qi, F. Cui, X. Yang, Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries. Chem. Eng. J. 351, 825–831 (2018). https://doi.org/10.1016/j.cej.2018.06.125
S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu et al., Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 11669–11677 (2017). https://doi.org/10.1021/acsami.7b01519
D. Xu, C. Chen, J. Xie, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016). https://doi.org/10.1002/aenm.201501929
E. Liu, J. Wang, C. Shi, N. Zhao, C. He et al., Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. ACS Appl. Mater. Interfaces 6, 18147–18151 (2014). https://doi.org/10.1021/am5050423
Z. Bi, M.P. Paranthaman, B. Guo, R.R. Unocic, H.M. Meyer III. et al., High performance Cr, N-codoped mesoporous TiO2 microspheres for lithium-ion batteries. J. Mater. Chem. A 2, 1818–1824 (2014). https://doi.org/10.1039/c3ta14535b
Y. Li, Y. Huang, Y. Zheng, R. Huang, J. Yao, Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J. Power Sources 416, 62–71 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.080
J. Sun, L. Guo, X. Sun, J. Zhang, L. Hou et al., One-dimensional nanostructured pseudocapacitive materials: design, synthesis and applications in supercapacitors. Batteries Supercaps 2, 820–841 (2019). https://doi.org/10.1002/batt.201900021
C. Wang, J. Zhang, X. Wang, C. Lin, X. Zhao, Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv. Funct. Mater. 30, 2002629 (2020). https://doi.org/10.1002/adfm.202002629
C. Wang, X. Wang, C. Lin, X. Zhao, Lithium titanate cuboid arrays grown on carbon fiber cloth for high-rate fexible Lithium-ion batteries. Small 15, 1902183 (2019). https://doi.org/10.1002/smll.201902183
C. Wang, X. Wang, C. Lin, S. Xiu, Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries. Chem. Eng. J. 15, 123981 (2020). https://doi.org/10.1016/j.cej.2019.123981
Z. Wang, J. Sha, E. Liu, C. He, C. Shi et al., A large ultrathin anatase TiO2 nanosheet/reduced graphene oxide composite with enhanced lithium storage capability. J. Mater. Chem. A 2, 8893–8901 (2014). https://doi.org/10.1039/c4ta00574k
Y. Yuan, F. Chen, S. Yin, L. Wang, M. Zhu et al., Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries. J. Power Sources 420, 38–45 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.094
N.Ž Knežević, E. Ruiz-Hernández, W.E. Hennink, M. Vallet-Regí, Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 3, 9584–9593 (2013). https://doi.org/10.1039/c3ra23127e
A. Auer, E. Portenkirchner, T. Götsch, C. Valero-Vidal, S. Penne et al., Preferentially oriented TiO2 nanotubes as anode material for Li-ion batteries: insight into Li-ion storage and Lithiation kinetics. ACS Appl. Mater. Interfaces 9, 36828–36836 (2017). https://doi.org/10.1021/acsami.7b11388
K. Zhu, Y. Luo, F. Zhao, J. Hou, X. Wang et al., Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustain. Chem. Eng. 6, 3426–3433 (2018). https://doi.org/10.1021/acssuschemeng.7b03671