Three-Dimensional Self-assembled Hairball-Like VS4 as High-Capacity Anodes for Sodium-Ion Batteries
Corresponding Author: Ming Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 39
Abstract
Sodium-ion batteries (SIBs) are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance. However, there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+ and can exhibit excellent electrochemical performance. Herein, the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity (660 and 589 mAh g−1 at 1 and 3 A g−1, respectively) and excellent rate property (about 100% retention at 10 and 20 A g−1 after 1000 cycles) at room temperature. Moreover, the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0 °C. An unlike traditional mechanism of VS4 for Na+ storage was proposed according to the dates of ex situ characterization, cyclic voltammetry, and electrochemical kinetic analysis. The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S, which were considered the reaction mechanisms of Na–S batteries. This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries, semiconductor devices, and catalysts.
Highlights:
1 The unique hairball-like VS4 composed of spiral nanowires was successively constructed through a one-step hydrothermal method.
2 The prepared hairball-like VS4 exhibits high capacity and long cycle stability for Na+ storage at room temperature, and it can tolerate drastic temperature changes.
3 The ex situ characterization and electrochemical kinetic analysis reveal that the storage mechanisms of VS4 changed with the increase in the number of cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
- Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power Sour. 100(1–2), 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
- X. Guo, Y.-Z. Zhang, F. Zhang, Q. Li, D.H. Anjum et al., A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 7, 15969–15974 (2019). https://doi.org/10.1039/C9TA04062E
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- J. Zhao, Y.Z. Zhang, F. Zhang, H. Liang, F. Ming, H.N. Alshareef, Z. Gao, Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries. Adv. Energy Mater. 9(7), 1803215 (2019). https://doi.org/10.1002/aenm.201803215
- X. Hou, G. Zhu, X. Niu, Z. Dai, Z. Yin, Q. Dong, Y. Zhang, X. Dong, Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloys Compd. 729, 518–525 (2017). https://doi.org/10.1016/j.jallcom.2017.09.203
- T. Yang, Y. Liu, M. Zhang, Improving the electrochemical properties of Cr–SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ion. 308, 1–7 (2017). https://doi.org/10.1016/j.ssi.2017.05.011
- H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/C3EE40847G
- Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2-carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11, 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
- Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S.X. Dou, W. Sun, Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317 (2017). https://doi.org/10.1002/adfm.201702317
- Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. Science 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
- C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu, K. Huang, V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ. Sci. 10(1), 107–113 (2017). https://doi.org/10.1039/c6ee03173k
- S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
- Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55, 328–334 (2013). https://doi.org/10.1016/j.carbon.2012.12.072
- Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
- Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324, 267–275 (2018). https://doi.org/10.1016/j.ssi.2018.07.019
- B. Farbod, K. Cui, W.P. Kalisvaart, M. Kupsta, B. Zahiri et al., Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5), 4415–4429 (2014). https://doi.org/10.1021/nn4063598
- Y. Jiang, M. Peng, J. Lan, Y. Zhao, Y.-R. Lu, T.-S. Chan, J. Liu, Y. Tan, A self-reconstructed (oxy) hydroxide@ nanoporous metal phosphide electrode for high-performance rechargeable zinc batteries. J. Mater. Chem. A 7(37), 21069–21078 (2019). https://doi.org/10.1039/C9TA07910F
- M. Gu, A. Kushima, Y. Shao, J.-G. Zhang, J. Liu, N.D. Browning, J. Li, C. Wang, Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 13(11), 5203–5211 (2013). https://doi.org/10.1021/nl402633n
- H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
- Q. Shen, P. Jiang, H. He, C. Chen, Y. Liu, M. Zhang, Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 11, 13511 (2019). https://doi.org/10.1039/C9NR03480C
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- Z. Ren, J. Wen, W. Liu, X. Jiang, Y. Dong et al., Rational design of layered SnS2 on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 11(1), 66 (2019). https://doi.org/10.1007/s40820-019-0297-6
- Q. Pan, F. Zheng, Y. Liu, Y. Li, W. Zhong et al., Fe1−xS@S-doped carbon core–shell heterostructured hollow spheres as highly reversible anode materials for sodium ion batteries. J. Mater. Chem. A 7(35), 20229–20238 (2019). https://doi.org/10.1039/C9TA07302G
- J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen et al., Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 29(35), 1702061 (2017). https://doi.org/10.1002/adma.201702061
- C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 15, 1804740 (2019). https://doi.org/10.1002/smll.201804740
- S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11(1), 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
- D. Wang, Y. Liu, X. Meng, Y. Wei, Y. Zhao, Q. Pang, G. Chen, Two-dimensional VS2 monolayers as potential anode materials for lithium-ion batteries and beyond: first-principles calculations. J. Mater. Chem. A 5(40), 21370–21377 (2017). https://doi.org/10.1039/C7TA06944H
- R. Sun, Q. Wei, J. Sheng, C. Shi, Q. An, S. Liu, L. Mai, Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35, 396–404 (2017). https://doi.org/10.1016/j.nanoen.2017.03.036
- G. Yang, B. Zhang, J. Feng, H. Wang, M. Ma et al., High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage. ACS Appl. Mater. Interfaces 10(17), 14727–14734 (2018). https://doi.org/10.1021/acsami.8b01876
- L. Zhang, Q. Wei, D. Sun, N. Li, H. Ju et al., Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: reversible or not reversible? Nano Energy 51, 391–399 (2018). https://doi.org/10.1016/j.nanoen.2018.06.076
- T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett. 13(9), 4532–4538 (2013). https://doi.org/10.1021/nl402513x
- W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 8(10), 2916–2921 (2015). https://doi.org/10.1039/C5EE01985K
- W. Hillebrand, The vanadium sulphide, patronite, and its mineral associates from Minasragra, Peru. J. Am. Chem. Soc. 29(7), 1019–1029 (1907). https://doi.org/10.2475/ajs.s4-24.140.141
- R. Allmann, I. Baumann, A. Kutoglu, H. Rösch, E. Hellner, Die Kristallstruktur des Patronits V(S2)2. Naturwissenschaften 51(11), 263–264 (1964). https://doi.org/10.1007/BF00638454
- Q. Pang, Y. Zhao, Y. Yu, X. Bian, X. Wang, Y. Wei, Y. Gao, G. Chen, Ultrafine VS4 nanoparticles anchored on graphene sheets as a high-rate and stable electrode material for sodium ion batteries. Chemsuschem 11(4), 735–742 (2018). https://doi.org/10.1002/cssc.201702031
- W. Li, J. Huang, L. Feng, L. Cao, Y. Liu, L. Pan, VS4 microspheres winded by (110)-oriented nanotubes with high rate capacities as sodium-ion battery anode. Mater. Lett. 230, 105–108 (2018). https://doi.org/10.1016/j.matlet.2018.07.101
- X. Zhang, S. Wang, J. Tu, G. Zhang, S. Li, D. Tian, S. Jiao, Flower-like vanadium suflide/reduced graphene oxide composite: an energy storage material for aluminum-ion batteries. Chemsuschem 11(4), 709–715 (2018). https://doi.org/10.1002/cssc.201702270
- Y. Zhou, J. Tian, H. Xu, J. Yang, Y. Qian, VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater. 6, 149–156 (2017). https://doi.org/10.1016/j.ensm.2016.10.010
- W. Weng, J. Lin, Y. Du, X. Ge, X. Zhou, J. Bao, Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. J. Mater. Chem. A 6(22), 10168–10175 (2018). https://doi.org/10.1039/C8TA03161D
- C.S. Rout, B.-H. Kim, X. Xu, J. Yang, H.Y. Jeong et al., Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 135(23), 8720–8725 (2013). https://doi.org/10.1021/ja403232d
- S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao et al., Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 4(3), 755–762 (2019). https://doi.org/10.1021/acsenergylett.9b00076
- S. Wang, F. Gong, S. Yang, J. Liao, M. Wu et al., Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018). https://doi.org/10.1002/adfm.201801806
- W. Li, J. Huang, L. Feng, L. Cao, Y. Feng, H. Wang, J. Li, C. Yao, Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance. J. Mater. Chem. A 5(38), 20217–20227 (2017). https://doi.org/10.1039/C7TA05205G
- W. Li, J. Huang, L. Cao, L. Feng, C. Yao, Controlled construction of 3D self-assembled VS4 nanoarchitectures as high-performance anodes for sodium-ion batteries. Electrochim. Acta 274, 334–342 (2018). https://doi.org/10.1016/j.electacta.2018.04.106
- Y. Wang, Z. Liu, C. Wang, X. Yi, R. Chen et al., Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv. Mater. 30(32), 1802563 (2018). https://doi.org/10.1002/adma.201802563
- Z. Chen, D. Yin, M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14(17), 1703818 (2018). https://doi.org/10.1002/smll.201703818
- Q. Li, Y. Chen, J. He, F. Fu, J. Lin, W. Zhang, Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries. J. Alloys Compd. 685, 294–299 (2016). https://doi.org/10.1016/j.jallcom.2016.05.293
- M.N. Kozlova, Y.V. Mironov, E.D. Grayfer, A.I. Smolentsev, V.I. Zaikovskii et al., Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4). Chem. Eur. J. 21(12), 4639–4645 (2015). https://doi.org/10.1002/chem.201406428
- G. Yang, H. Wang, B. Zhang, S. Foo, M. Ma et al., Superior Li-ion storage of VS4 nanowires anchored on reduced graphene. Nanoscale 11(19), 9556–9562 (2019). https://doi.org/10.1039/C9NR01953G
- Q. Zhang, H. Wan, G. Liu, Z. Ding, J.P. Mwizerwa, X. Yao, Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 57, 771–782 (2019). https://doi.org/10.1016/j.nanoen.2019.01.004
- Y. Shi, J.-Z. Wang, S.-L. Chou, D. Wexler, H.-J. Li, K. Ozawa, H.-K. Liu, Y.-P. Wu, Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 13(10), 4715–4720 (2013). https://doi.org/10.1021/nl402237u
- S.H. Choi, Y.C. Kang, Polystyrene-templated aerosol synthesis of MoS2–amorphous carbon composite with open macropores as battery electrode. Chemsuschem 8(13), 2260–2267 (2015). https://doi.org/10.1002/cssc.201500063
- Q. Wang, K. Rui, C. Zhang, Z. Ma, J. Xu et al., Interlayer-expanded metal sulfides on graphene triggered by a molecularly self-promoting process for enhanced lithium ion storage. ACS Appl. Mater. Interfaces 9(46), 40317–40323 (2017). https://doi.org/10.1021/acsami.7b13763
- C. Chen, P. Li, T. Wang, S. Wang, M. Zhang, S-doped carbon fibers uniformly embedded with ultrasmall TiO2 for Na +/Li + storage with high capacity and long-time stability. Small 15(38), 1902201 (2019). https://doi.org/10.1002/smll.201902201
- J.B. Cook, H. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6(9), 1501937 (2016). https://doi.org/10.1002/aenm.201501937
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
References
S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power Sour. 100(1–2), 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
X. Guo, Y.-Z. Zhang, F. Zhang, Q. Li, D.H. Anjum et al., A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 7, 15969–15974 (2019). https://doi.org/10.1039/C9TA04062E
M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
J. Zhao, Y.Z. Zhang, F. Zhang, H. Liang, F. Ming, H.N. Alshareef, Z. Gao, Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries. Adv. Energy Mater. 9(7), 1803215 (2019). https://doi.org/10.1002/aenm.201803215
X. Hou, G. Zhu, X. Niu, Z. Dai, Z. Yin, Q. Dong, Y. Zhang, X. Dong, Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloys Compd. 729, 518–525 (2017). https://doi.org/10.1016/j.jallcom.2017.09.203
T. Yang, Y. Liu, M. Zhang, Improving the electrochemical properties of Cr–SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ion. 308, 1–7 (2017). https://doi.org/10.1016/j.ssi.2017.05.011
H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/C3EE40847G
Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2-carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11, 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S.X. Dou, W. Sun, Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317 (2017). https://doi.org/10.1002/adfm.201702317
Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. Science 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu, K. Huang, V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ. Sci. 10(1), 107–113 (2017). https://doi.org/10.1039/c6ee03173k
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55, 328–334 (2013). https://doi.org/10.1016/j.carbon.2012.12.072
Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324, 267–275 (2018). https://doi.org/10.1016/j.ssi.2018.07.019
B. Farbod, K. Cui, W.P. Kalisvaart, M. Kupsta, B. Zahiri et al., Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5), 4415–4429 (2014). https://doi.org/10.1021/nn4063598
Y. Jiang, M. Peng, J. Lan, Y. Zhao, Y.-R. Lu, T.-S. Chan, J. Liu, Y. Tan, A self-reconstructed (oxy) hydroxide@ nanoporous metal phosphide electrode for high-performance rechargeable zinc batteries. J. Mater. Chem. A 7(37), 21069–21078 (2019). https://doi.org/10.1039/C9TA07910F
M. Gu, A. Kushima, Y. Shao, J.-G. Zhang, J. Liu, N.D. Browning, J. Li, C. Wang, Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 13(11), 5203–5211 (2013). https://doi.org/10.1021/nl402633n
H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
Q. Shen, P. Jiang, H. He, C. Chen, Y. Liu, M. Zhang, Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 11, 13511 (2019). https://doi.org/10.1039/C9NR03480C
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
Z. Ren, J. Wen, W. Liu, X. Jiang, Y. Dong et al., Rational design of layered SnS2 on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 11(1), 66 (2019). https://doi.org/10.1007/s40820-019-0297-6
Q. Pan, F. Zheng, Y. Liu, Y. Li, W. Zhong et al., Fe1−xS@S-doped carbon core–shell heterostructured hollow spheres as highly reversible anode materials for sodium ion batteries. J. Mater. Chem. A 7(35), 20229–20238 (2019). https://doi.org/10.1039/C9TA07302G
J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen et al., Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 29(35), 1702061 (2017). https://doi.org/10.1002/adma.201702061
C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 15, 1804740 (2019). https://doi.org/10.1002/smll.201804740
S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11(1), 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
D. Wang, Y. Liu, X. Meng, Y. Wei, Y. Zhao, Q. Pang, G. Chen, Two-dimensional VS2 monolayers as potential anode materials for lithium-ion batteries and beyond: first-principles calculations. J. Mater. Chem. A 5(40), 21370–21377 (2017). https://doi.org/10.1039/C7TA06944H
R. Sun, Q. Wei, J. Sheng, C. Shi, Q. An, S. Liu, L. Mai, Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35, 396–404 (2017). https://doi.org/10.1016/j.nanoen.2017.03.036
G. Yang, B. Zhang, J. Feng, H. Wang, M. Ma et al., High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage. ACS Appl. Mater. Interfaces 10(17), 14727–14734 (2018). https://doi.org/10.1021/acsami.8b01876
L. Zhang, Q. Wei, D. Sun, N. Li, H. Ju et al., Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: reversible or not reversible? Nano Energy 51, 391–399 (2018). https://doi.org/10.1016/j.nanoen.2018.06.076
T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett. 13(9), 4532–4538 (2013). https://doi.org/10.1021/nl402513x
W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 8(10), 2916–2921 (2015). https://doi.org/10.1039/C5EE01985K
W. Hillebrand, The vanadium sulphide, patronite, and its mineral associates from Minasragra, Peru. J. Am. Chem. Soc. 29(7), 1019–1029 (1907). https://doi.org/10.2475/ajs.s4-24.140.141
R. Allmann, I. Baumann, A. Kutoglu, H. Rösch, E. Hellner, Die Kristallstruktur des Patronits V(S2)2. Naturwissenschaften 51(11), 263–264 (1964). https://doi.org/10.1007/BF00638454
Q. Pang, Y. Zhao, Y. Yu, X. Bian, X. Wang, Y. Wei, Y. Gao, G. Chen, Ultrafine VS4 nanoparticles anchored on graphene sheets as a high-rate and stable electrode material for sodium ion batteries. Chemsuschem 11(4), 735–742 (2018). https://doi.org/10.1002/cssc.201702031
W. Li, J. Huang, L. Feng, L. Cao, Y. Liu, L. Pan, VS4 microspheres winded by (110)-oriented nanotubes with high rate capacities as sodium-ion battery anode. Mater. Lett. 230, 105–108 (2018). https://doi.org/10.1016/j.matlet.2018.07.101
X. Zhang, S. Wang, J. Tu, G. Zhang, S. Li, D. Tian, S. Jiao, Flower-like vanadium suflide/reduced graphene oxide composite: an energy storage material for aluminum-ion batteries. Chemsuschem 11(4), 709–715 (2018). https://doi.org/10.1002/cssc.201702270
Y. Zhou, J. Tian, H. Xu, J. Yang, Y. Qian, VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater. 6, 149–156 (2017). https://doi.org/10.1016/j.ensm.2016.10.010
W. Weng, J. Lin, Y. Du, X. Ge, X. Zhou, J. Bao, Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. J. Mater. Chem. A 6(22), 10168–10175 (2018). https://doi.org/10.1039/C8TA03161D
C.S. Rout, B.-H. Kim, X. Xu, J. Yang, H.Y. Jeong et al., Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 135(23), 8720–8725 (2013). https://doi.org/10.1021/ja403232d
S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao et al., Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 4(3), 755–762 (2019). https://doi.org/10.1021/acsenergylett.9b00076
S. Wang, F. Gong, S. Yang, J. Liao, M. Wu et al., Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018). https://doi.org/10.1002/adfm.201801806
W. Li, J. Huang, L. Feng, L. Cao, Y. Feng, H. Wang, J. Li, C. Yao, Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance. J. Mater. Chem. A 5(38), 20217–20227 (2017). https://doi.org/10.1039/C7TA05205G
W. Li, J. Huang, L. Cao, L. Feng, C. Yao, Controlled construction of 3D self-assembled VS4 nanoarchitectures as high-performance anodes for sodium-ion batteries. Electrochim. Acta 274, 334–342 (2018). https://doi.org/10.1016/j.electacta.2018.04.106
Y. Wang, Z. Liu, C. Wang, X. Yi, R. Chen et al., Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv. Mater. 30(32), 1802563 (2018). https://doi.org/10.1002/adma.201802563
Z. Chen, D. Yin, M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14(17), 1703818 (2018). https://doi.org/10.1002/smll.201703818
Q. Li, Y. Chen, J. He, F. Fu, J. Lin, W. Zhang, Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries. J. Alloys Compd. 685, 294–299 (2016). https://doi.org/10.1016/j.jallcom.2016.05.293
M.N. Kozlova, Y.V. Mironov, E.D. Grayfer, A.I. Smolentsev, V.I. Zaikovskii et al., Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4). Chem. Eur. J. 21(12), 4639–4645 (2015). https://doi.org/10.1002/chem.201406428
G. Yang, H. Wang, B. Zhang, S. Foo, M. Ma et al., Superior Li-ion storage of VS4 nanowires anchored on reduced graphene. Nanoscale 11(19), 9556–9562 (2019). https://doi.org/10.1039/C9NR01953G
Q. Zhang, H. Wan, G. Liu, Z. Ding, J.P. Mwizerwa, X. Yao, Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 57, 771–782 (2019). https://doi.org/10.1016/j.nanoen.2019.01.004
Y. Shi, J.-Z. Wang, S.-L. Chou, D. Wexler, H.-J. Li, K. Ozawa, H.-K. Liu, Y.-P. Wu, Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 13(10), 4715–4720 (2013). https://doi.org/10.1021/nl402237u
S.H. Choi, Y.C. Kang, Polystyrene-templated aerosol synthesis of MoS2–amorphous carbon composite with open macropores as battery electrode. Chemsuschem 8(13), 2260–2267 (2015). https://doi.org/10.1002/cssc.201500063
Q. Wang, K. Rui, C. Zhang, Z. Ma, J. Xu et al., Interlayer-expanded metal sulfides on graphene triggered by a molecularly self-promoting process for enhanced lithium ion storage. ACS Appl. Mater. Interfaces 9(46), 40317–40323 (2017). https://doi.org/10.1021/acsami.7b13763
C. Chen, P. Li, T. Wang, S. Wang, M. Zhang, S-doped carbon fibers uniformly embedded with ultrasmall TiO2 for Na +/Li + storage with high capacity and long-time stability. Small 15(38), 1902201 (2019). https://doi.org/10.1002/smll.201902201
J.B. Cook, H. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6(9), 1501937 (2016). https://doi.org/10.1002/aenm.201501937
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612