Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction
Corresponding Author: Anqiang Pan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 93
Abstract
Aqueous zinc metal batteries are noted for their cost-effectiveness, safety and environmental friendliness. However, the water-induced notorious issues such as continuous electrolyte decomposition and uneven Zn electrochemical deposition remarkably restrict the development of the long-life zinc metal batteries. In this study, zwitterionic sulfobetaine is introduced to copolymerize with acrylamide in zinc perchlorate (Zn(ClO4)2) solution. The designed gel framework with hydrophilic and charged groups can firmly anchor water molecules and construct ion migration channels to accelerate ion transport. The in situ generated hybrid interface, which is composed of the organic functionalized outer layer and inorganic Cl− containing inner layer, can synergically lower the mass transfer overpotential, reduce water-related side reactions and lead to uniform Zn deposition. Such a novel electrolyte configuration enables Zn//Zn cells with an ultra-long cycling life of over 3000 h and a low polarization potential (~ 0.03 V) and Zn//Cu cells with high Coulombic efficiency of 99.18% for 1000 cycles. Full cells matched with MnO2 cathodes delivered laudable cycling stability and impressive shelving ability. Besides, the flexible quasi-solid-state batteries which are equipped with the anti-vandalism ability (such as cutting, hammering and soaking) can successfully power the LED simultaneously. Such a safe, processable and durable hydrogel promises significant application potential for long-life flexible electronic devices.
Highlights:
1 A novel hydrogel with high water retention and Zn2+ transference number of 0.604 was constructed by copolymerizing sulfobetaine and acrylamide in Zn(ClO4)2 solution.
2 The designed electrolyte configuration enables in situ generation of the organic–inorganic hybrid interface, which contributes to the electrodeposition uniformity and corrosion resistance of the anode.
3 Zn–Zn and Zn–MnO2 cells based on hydrogel electrolyte exhibit outstanding cycling stability (over 3000 h under 0.5 mA cm−2/0.5 mAh cm−2 after two-time shelving).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Sheng, H. Hu, T. Liu, Z. Ju, G. Lu et al., Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202111026
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
- H. Yuan, J. Nai, Y. Fang, G. Lu, X. Tao et al., Double-shelled C@MoS2 structures preloaded with sulfur: an additive reservoir for stable lithium metal anodes. Angew. Chem. Int. Ed. 59(37), 15839–15843 (2020). https://doi.org/10.1002/anie.202001989
- J. Liu, Y. Cao, J. Zhou, M. Wang, H. Chen et al., Artificial lithium isopropyl-sulfide macromolecules as an ion-selective interface for long-life lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12(49), 54537–54544 (2020). https://doi.org/10.1021/acsami.0c13835
- S. Liu, M. Wang, H. Ji, X. Shen, C. Yan et al., Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. Natl. Sci. Rev. (2020). https://doi.org/10.1093/nsr/nwaa136
- M. Gao, W. Zhou, Y. Mo, T. Sheng, Y. Deng et al., Outstanding long-cycling lithium-sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.09.006
- X. Xu, S. Wang, S. Guo, K.S. Hui, J. Ma et al., Cobalt phosphosulfide nanops encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn-air battery. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.12.003
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- B. Jiang, C. Xu, C. Wu, L. Dong, J. Li et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu et al., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). https://doi.org/10.1038/ncomms7303
- T. Zhang, Y. Tang, G. Fang, C. Zhang, H. Zhang et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 30(30), 2002711 (2020). https://doi.org/10.1002/adfm.202002711
- Z. Liu, L. Qin, X. Chen, X. Xie, B. Zhu et al., Improving stability and reversibility via fluorine doping in aqueous zinc-manganese batteries. Mater. Today Energy 22, 100851 (2021). https://doi.org/10.1016/j.mtener.2021.100851
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- J. Shin, J. Lee, Y. Park, J. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- C. Guan, F. Hu, X. Yu, H. Chen, G. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2022). https://doi.org/10.1007/s12598-021-01778-1
- Z. Liu, X. Luo, L. Qin, G. Fang, S. Liang, Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.10.002
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- F. Shi, C. Mang, H. Liu, Y. Dong, Flexible and high-energy-density Zn/MnO2 batteries enabled by electrochemically exfoliated graphene nanosheets. New J. Chem. 44(3), 653–657 (2020). https://doi.org/10.1039/c9nj05433b
- L. Wang, N. Li, T. Wang, Y. Yin, Y. Guo et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- C. Li, X. Shi, S. Liang, X. Ma, M. Han et al., Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 12248 (2020). https://doi.org/10.1016/j.cej.2019.122248
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- X. Guo, Z. Zhang, J. Li, N. Luo, G. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
- W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
- M. Song, C. Zhong, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 41(2), 356–360 (2022). https://doi.org/10.1007/s12598-021-01858-2
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- J. Cao, D. Zhang, R. Chanajaree, Y. Yue, Z. Zeng et al., Stabilizing zinc anode via a chelation and desolvation electrolyte additive. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.09.007
- J. Zhao, H. Ren, Q.H. Liang, D. Yuan, S.B. Xi et al., High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 62, 94–102 (2019). https://doi.org/10.1016/j.nanoen.2019.05.010
- H. Wang, J. Liu, J. Wang, M. Hu, Y. Feng et al., Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo//Zn battery working from − 20 to 50 °C. ACS Appl. Mater. Interfaces 11(1), 49–55 (2019). https://doi.org/10.1021/acsami.8b18003
- J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew. Chem. Int. Ed. 59(38), 16480–16484 (2020). https://doi.org/10.1002/anie.202007274
- Q. Li, X. Cui, Q. Pan, Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn–MnO2 batteries. ACS Appl. Mater. Interfaces 11(42), 38762–38770 (2019). https://doi.org/10.1021/acsami.9b13553
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
- Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
- W. Xu, C. Liu, Q. Wu, W. Xie, W. Kim et al., A stretchable solid-state zinc ion battery based on a cellulose nanofiber-polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J. Mater. Chem. A 8(35), 18327–18337 (2020). https://doi.org/10.1039/d0ta06467j
- D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small 14(51), e1803978 (2018). https://doi.org/10.1002/smll.201803978
- C. Gu, X. Xie, Y. Liang, J. Li, H. Wang et al., Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 °C. Energy Environ. Sci. 14(8), 4451–4462 (2021). https://doi.org/10.1039/d1ee01134k
- P. Yang, C. Feng, Y. Liu, T. Cheng, X. Yang et al., Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 10(48), 2002898 (2020). https://doi.org/10.1002/aenm.202002898
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/c7ee03232c
- Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang et al., A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6(18), 8549–8557 (2018). https://doi.org/10.1039/c8ta01172a
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang et al., A mechanically durable and device-level tough Zn–MnO2 battery with high flexibility. Energy Storage Mater. 23, 636–645 (2019). https://doi.org/10.1016/j.ensm.2019.03.007
- A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
- S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
- Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
- R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10(16), 2000035 (2020). https://doi.org/10.1002/aenm.202000035
- X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen et al., A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 7, 11782 (2016). https://doi.org/10.1038/ncomms11782
- J. Wei, G. Wei, Y. Shang, J. Zhou, C. Wu et al., Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte. Adv. Mater. 31(30), 1900248 (2019). https://doi.org/10.1002/adma.201900248
- T. Bai, S. Liu, F. Sun, A. Sinclair, L. Zhang et al., Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 35(13), 3926–3933 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.077
- N. Kostina, S. Sharifi, A. Pereira, J. Michalek, D. Grijpma et al., Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-hema) nanocomposite hydrogels with superior mechanical properties. J. Mater. Chem. B 1(41), 5644–5650 (2013). https://doi.org/10.1039/c3tb20704h
- L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019). https://doi.org/10.1021/acsami.9b10905
- G. Cheng, Z. Zhang, S. Chen, J. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29), 4192–4199 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.041
- T. Morisaku, J. Watanabe, T. Konno, M. Takai, K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer 49(21), 4652–4657 (2008). https://doi.org/10.1016/j.polymer.2008.08.025
- C. Tiyapiboonchaiya, J. Pringle, J. Sun, N. Byrne, P. Howlett et al., The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 3, 29–32 (2004). https://doi.org/10.1038/nmat1044
- J. Cong, X. Shen, Z. Wen, X. Wang, L. Peng et al., Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater. 35, 586–594 (2021). https://doi.org/10.1016/j.ensm.2020.11.041
- K. Leng, G. Li, J. Guo, X. Zhang, A. Wang et al., A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 30(23), 2001317 (2020). https://doi.org/10.1002/adfm.202001317
- J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
- X. Lin, G. Zhou, J. Liu, M. Robson, J. Yu et al., Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode. Adv. Funct. Mater. 31(42), 2105717 (2021). https://doi.org/10.1002/adfm.202105717
- Z. Zhao, J. Zhao, Z. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- H. Yang, D. Chen, J. Liu, Z. Yuan, M. Lu et al., The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion battery: Mn-based competitive capacity evolution protocol. Energy Environ. Sci. (2022). https://doi.org/10.1039/d1ee03547a
- M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
- T. Chen, W. Kong, Z. Zhang, L. Wang, Y. Hu et al., Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25 (2018). https://doi.org/10.1016/j.nanoen.2018.09.059
References
O. Sheng, H. Hu, T. Liu, Z. Ju, G. Lu et al., Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202111026
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
H. Yuan, J. Nai, Y. Fang, G. Lu, X. Tao et al., Double-shelled C@MoS2 structures preloaded with sulfur: an additive reservoir for stable lithium metal anodes. Angew. Chem. Int. Ed. 59(37), 15839–15843 (2020). https://doi.org/10.1002/anie.202001989
J. Liu, Y. Cao, J. Zhou, M. Wang, H. Chen et al., Artificial lithium isopropyl-sulfide macromolecules as an ion-selective interface for long-life lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12(49), 54537–54544 (2020). https://doi.org/10.1021/acsami.0c13835
S. Liu, M. Wang, H. Ji, X. Shen, C. Yan et al., Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. Natl. Sci. Rev. (2020). https://doi.org/10.1093/nsr/nwaa136
M. Gao, W. Zhou, Y. Mo, T. Sheng, Y. Deng et al., Outstanding long-cycling lithium-sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.09.006
X. Xu, S. Wang, S. Guo, K.S. Hui, J. Ma et al., Cobalt phosphosulfide nanops encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn-air battery. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.12.003
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
B. Jiang, C. Xu, C. Wu, L. Dong, J. Li et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu et al., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). https://doi.org/10.1038/ncomms7303
T. Zhang, Y. Tang, G. Fang, C. Zhang, H. Zhang et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 30(30), 2002711 (2020). https://doi.org/10.1002/adfm.202002711
Z. Liu, L. Qin, X. Chen, X. Xie, B. Zhu et al., Improving stability and reversibility via fluorine doping in aqueous zinc-manganese batteries. Mater. Today Energy 22, 100851 (2021). https://doi.org/10.1016/j.mtener.2021.100851
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
J. Shin, J. Lee, Y. Park, J. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
C. Guan, F. Hu, X. Yu, H. Chen, G. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2022). https://doi.org/10.1007/s12598-021-01778-1
Z. Liu, X. Luo, L. Qin, G. Fang, S. Liang, Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.10.002
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
F. Shi, C. Mang, H. Liu, Y. Dong, Flexible and high-energy-density Zn/MnO2 batteries enabled by electrochemically exfoliated graphene nanosheets. New J. Chem. 44(3), 653–657 (2020). https://doi.org/10.1039/c9nj05433b
L. Wang, N. Li, T. Wang, Y. Yin, Y. Guo et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
C. Li, X. Shi, S. Liang, X. Ma, M. Han et al., Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 12248 (2020). https://doi.org/10.1016/j.cej.2019.122248
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
X. Guo, Z. Zhang, J. Li, N. Luo, G. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
M. Song, C. Zhong, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 41(2), 356–360 (2022). https://doi.org/10.1007/s12598-021-01858-2
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
J. Cao, D. Zhang, R. Chanajaree, Y. Yue, Z. Zeng et al., Stabilizing zinc anode via a chelation and desolvation electrolyte additive. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.09.007
J. Zhao, H. Ren, Q.H. Liang, D. Yuan, S.B. Xi et al., High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 62, 94–102 (2019). https://doi.org/10.1016/j.nanoen.2019.05.010
H. Wang, J. Liu, J. Wang, M. Hu, Y. Feng et al., Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo//Zn battery working from − 20 to 50 °C. ACS Appl. Mater. Interfaces 11(1), 49–55 (2019). https://doi.org/10.1021/acsami.8b18003
J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew. Chem. Int. Ed. 59(38), 16480–16484 (2020). https://doi.org/10.1002/anie.202007274
Q. Li, X. Cui, Q. Pan, Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn–MnO2 batteries. ACS Appl. Mater. Interfaces 11(42), 38762–38770 (2019). https://doi.org/10.1021/acsami.9b13553
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
W. Xu, C. Liu, Q. Wu, W. Xie, W. Kim et al., A stretchable solid-state zinc ion battery based on a cellulose nanofiber-polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J. Mater. Chem. A 8(35), 18327–18337 (2020). https://doi.org/10.1039/d0ta06467j
D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small 14(51), e1803978 (2018). https://doi.org/10.1002/smll.201803978
C. Gu, X. Xie, Y. Liang, J. Li, H. Wang et al., Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 °C. Energy Environ. Sci. 14(8), 4451–4462 (2021). https://doi.org/10.1039/d1ee01134k
P. Yang, C. Feng, Y. Liu, T. Cheng, X. Yang et al., Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 10(48), 2002898 (2020). https://doi.org/10.1002/aenm.202002898
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/c7ee03232c
Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang et al., A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6(18), 8549–8557 (2018). https://doi.org/10.1039/c8ta01172a
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang et al., A mechanically durable and device-level tough Zn–MnO2 battery with high flexibility. Energy Storage Mater. 23, 636–645 (2019). https://doi.org/10.1016/j.ensm.2019.03.007
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10(16), 2000035 (2020). https://doi.org/10.1002/aenm.202000035
X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen et al., A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 7, 11782 (2016). https://doi.org/10.1038/ncomms11782
J. Wei, G. Wei, Y. Shang, J. Zhou, C. Wu et al., Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte. Adv. Mater. 31(30), 1900248 (2019). https://doi.org/10.1002/adma.201900248
T. Bai, S. Liu, F. Sun, A. Sinclair, L. Zhang et al., Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 35(13), 3926–3933 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.077
N. Kostina, S. Sharifi, A. Pereira, J. Michalek, D. Grijpma et al., Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-hema) nanocomposite hydrogels with superior mechanical properties. J. Mater. Chem. B 1(41), 5644–5650 (2013). https://doi.org/10.1039/c3tb20704h
L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019). https://doi.org/10.1021/acsami.9b10905
G. Cheng, Z. Zhang, S. Chen, J. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29), 4192–4199 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.041
T. Morisaku, J. Watanabe, T. Konno, M. Takai, K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer 49(21), 4652–4657 (2008). https://doi.org/10.1016/j.polymer.2008.08.025
C. Tiyapiboonchaiya, J. Pringle, J. Sun, N. Byrne, P. Howlett et al., The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 3, 29–32 (2004). https://doi.org/10.1038/nmat1044
J. Cong, X. Shen, Z. Wen, X. Wang, L. Peng et al., Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater. 35, 586–594 (2021). https://doi.org/10.1016/j.ensm.2020.11.041
K. Leng, G. Li, J. Guo, X. Zhang, A. Wang et al., A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 30(23), 2001317 (2020). https://doi.org/10.1002/adfm.202001317
J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
X. Lin, G. Zhou, J. Liu, M. Robson, J. Yu et al., Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode. Adv. Funct. Mater. 31(42), 2105717 (2021). https://doi.org/10.1002/adfm.202105717
Z. Zhao, J. Zhao, Z. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
H. Yang, D. Chen, J. Liu, Z. Yuan, M. Lu et al., The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion battery: Mn-based competitive capacity evolution protocol. Energy Environ. Sci. (2022). https://doi.org/10.1039/d1ee03547a
M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
T. Chen, W. Kong, Z. Zhang, L. Wang, Y. Hu et al., Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25 (2018). https://doi.org/10.1016/j.nanoen.2018.09.059