Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery
Corresponding Author: Guozhong Cao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 116
Abstract
Ammonium vanadate with bronze structure (NH4V4O10) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of NH+4 at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial NH+4 ions were pre-removed from NH4V4O10 through heat treatment; NH4V4O10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH4V4O10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 81% over 1000 cycles at 2 A g−1. The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH4V4O10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.
Highlights:
1 The partial removal of ammonium cations from ammonium vanadate results in an expanded interplanar space.
2 The deficient ammonium vanadate exhibits highly reversible redox reaction.
3 Ex situ characterizations suggest the reversible Zn3V2O7(OH)2·2H2O formation/decomposition in deficient ammonium vanadate during charge/discharge processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Liu, L. Kang, J.M. Kim, Y.T. Chun, J. Zhang et al., Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 10(25), 2000477 (2020). https://doi.org/10.1002/aenm.202000477
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- R. Li, H. Zhang, Q. Zheng, X. Li, Porous V2O5 yolk–shell microspheres for zinc ion battery cathodes: Activation responsible for enhanced capacity and rate performance. J. Mater. Chem. A 8(10), 5186–5193 (2020). https://doi.org/10.1039/c9ta11750d
- C. Liu, R. Massé, X. Nan, G. Cao, A promising cathode for li-ion batteries: Li3V2(PO4)3. Energy Storage Mater. 4, 15–58 (2016). https://doi.org/10.1016/j.ensm.2016.02.002
- J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- Z. Li, Y. Peng, C. Liu, X. Zhang, X. Li et al., Oxygen-deficient TiO2 yolk-shell spheres for enhanced lithium storage properties. Energy Environ. Mater. 4(1), 1–7 (2021). https://doi.org/10.1002/eem2.12156
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- J. Lang, C. Jiang, Y. Fang, L. Shi, S. Miao et al., Room-temperature rechargeable Ca-ion based hybrid batteries with high rate capability and long-term cycling life. Adv. Energy Mater. 9(29), 1901099 (2019). https://doi.org/10.1002/aenm.201901099
- X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan et al., Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A 7(17), 10644–10650 (2019). https://doi.org/10.1039/c8ta11236c
- K. Yao, Z. Xu, J. Huang, M. Ma, L. Fu et al., Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: Achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small 15(12), 1805405 (2019). https://doi.org/10.1002/smll.201805405
- J. Li, N. Zhuang, J. Xie, X. Li, W. Zhuo et al., K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 10(5), 1903455 (2019). https://doi.org/10.1002/aenm.201903455
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- J. Wang, J.-G. Wang, H. Liu, C. Wei, F. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7(22), 13727–13735 (2019). https://doi.org/10.1039/c9ta03541a
- Y. Jiang, D. Ba, Y. Li, J. Liu, Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance. Adv. Sci. 7(6), 1902795 (2020). https://doi.org/10.1002/advs.201902795
- Q. Zhang, L. Li, H. Li, L. Tang, B. He et al., Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 60, 267–274 (2019). https://doi.org/10.1016/j.nanoen.2019.03.049
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
- X. Wang, Y. Li, S. Wang, F. Zhou, P. Das et al., 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 10(22), 2000081 (2020). https://doi.org/10.1002/aenm.202000081
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
- Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020). https://doi.org/10.1021/acsnano.9b09963
- B. He, Q. Zhang, P. Man, Z. Zhou, C. Li et al., Self-sacrificed synthesis of conductive vanadium-based metal–organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 64, 103935 (2019). https://doi.org/10.1016/j.nanoen.2019.103935
- L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9(45), 1902446 (2019). https://doi.org/10.1002/aenm.201902446
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- C. Han, T. Zhang, J. Li, B. Li, Z. Lin, Enabling flexible solid-state zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 77, 105165 (2020). https://doi.org/10.1016/j.nanoen.2020.105165
- H. Yao, Q. Li, M. Zhang, Z. Tao, Y. Yang, Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4− to pani via a simple and scalable synthetic method. Chem. Eng. J. 392, 123653 (2020). https://doi.org/10.1016/j.cej.2019.123653
- K. Zhu, T. Wu, S. Sun, W. van den Bergh, M. Stefik et al., Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 29, 60–70 (2020). https://doi.org/10.1016/j.ensm.2020.03.030
- N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu et al., Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv. Funct. Mater. 29(10), 1807331 (2019). https://doi.org/10.1002/adfm.201807331
- S. Chen, Y. Zhang, H. Geng, Y. Yang, X. Rui et al., Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J. Power Sources 441, 227192 (2019). https://doi.org/10.1016/j.jpowsour.2019.227192
- F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(46), 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
- M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 7(23), 1700885 (2017). https://doi.org/10.1002/aenm.201700885
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11(1), 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
- D. Chen, X. Rui, Q. Zhang, H. Geng, L. Gan et al., Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy 60, 171–178 (2019). https://doi.org/10.1016/j.nanoen.2019.03.034
- H. Liu, W. Yang, Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 4(10), 4000–4008 (2011). https://doi.org/10.1039/c1ee01353j
- L. Xing, K. Han, Q. Liu, Z. Liu, J. Chu et al., Hierarchical two-atom-layered WSe2/C ultrathin crumpled nanosheets assemblies: Engineering the interlayer spacing boosts potassium-ion storage. Energy Storage Mater. 36, 309–317 (2021). https://doi.org/10.1016/j.ensm.2021.01.005
- L. Zhang, W. Wang, S. Lu, Y. Xiang, Carbon anode materials: A detailed comparison between na-ion and k-ion batteries. Adv. Energy Mater. 11, 2003640 (2021). https://doi.org/10.1002/aenm.202003640
- W. Wang, H. Huang, B. Wang, C. Qian, P. Li et al., A new dual-ion battery based on amorphous carbon. Sci. Bull. 64(21), 1634–1642 (2019). https://doi.org/10.1016/j.scib.2019.08.021
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- S. Islam, M.H. Alfaruqi, D.Y. Putro, V. Soundharrajan, B. Sambandam et al., K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. J. Mater. Chem. A 7(35), 20335–20347 (2019). https://doi.org/10.1039/c9ta05767f
- Y. Yang, Y. Tang, S. Liang, Z. Wu, G. Fang et al., Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 61, 617–625 (2019). https://doi.org/10.1016/j.nanoen.2019.05.005
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
- S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32(26), 2001113 (2020). https://doi.org/10.1002/adma.202001113
- Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12, 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
- H. Jiang, Y. Zhang, Y. Liu, J. Yang, L. Xu et al., In situ grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 8(30), 15130–15139 (2020). https://doi.org/10.1039/d0ta05065b
- X. Wang, B. Xi, Z. Feng, W. Chen, H. Li et al., Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J. Mater. Chem. A 7(32), 19130–19139 (2019). https://doi.org/10.1039/c9ta05922a
- D. Bin, Y. Liu, B. Yang, J. Huang, X. Dong et al., Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Appl. Mater. Interfaces 11(23), 20796–20803 (2019). https://doi.org/10.1021/acsami.9b03159
- G. Yang, T. Wei, C. Wang, Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl. Mater. Interfaces 10(41), 35079–35089 (2018). https://doi.org/10.1021/acsami.8b10849
- Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl. Energy Mater. 2(11), 7861–7869 (2019). https://doi.org/10.1021/acsaem.9b01299
- B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu et al., Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7(3), 940–945 (2019). https://doi.org/10.1039/c8ta09338e
- E.A. Esparcia, M.S. Chae, J.D. Ocon, S.-T. Hong, Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 30(11), 3690–3696 (2018). https://doi.org/10.1021/acs.chemmater.8b00462
- Y. Xu, H. Dong, M. Zhou, C. Zhang, Y. Wu et al., Ammonium vanadium bronze as a potassium-ion battery cathode with high rate capability and cyclability. Small Methods 3(8), 1800349 (2019). https://doi.org/10.1002/smtd.201800349
- X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 38, 20–25 (2019). https://doi.org/10.1016/j.jechem.2018.12.023
- X. Wu, Y. Tao, L. Dong, J. Hong, Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires. J. Mater. Chem. 14(5), 901–904 (2004). https://doi.org/10.1039/b314775d
- D. Fang, Y. Cao, R. Liu, W. Xu, S. Liu et al., Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery. Appl. Surf. Sci. 360, 658–665 (2016). https://doi.org/10.1016/j.apsusc.2015.11.038
- T.-Z. Ren, Z.-Y. Yuan, X. Zou, Crystal growth of mixed-valence ammonium vanadates. Cryst. Res. Technol. 42(4), 317–320 (2007). https://doi.org/10.1002/crat.200610821
- H. Wang, K. Huang, C. Huang, S. Liu, Y. Ren et al., (NH4)05V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J. Power Sources 196(13), 5645–5650 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.046
- S.H. Lee, J.M. Koo, S.G. Oh, S.S. Im, Facile synthesis of ammonium vanadate nanofibers by using reflux in aqueous V2O5 solution with ammonium persulfate. Mater. Chem. Phys. 194, 313–321 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.053
- A. Sarkar, S. Sarkar, T. Sarkar, P. Kumar, M.D. Bharadwaj et al., Rechargeable sodium-ion battery: High-capacity ammonium vanadate cathode with enhanced stability at high rate. ACS Appl. Mater. Interfaces 7(31), 17044–17053 (2015). https://doi.org/10.1021/acsami.5b03210
- T. Wei, Y. Liu, G. Yang, C. Wang, Aluminum vanadate hollow spheres as zero-strain cathode material for highly reversible and durable aqueous zinc-ion batteries. Energy Storage Mater. 30, 130–137 (2020). https://doi.org/10.1016/j.ensm.2020.04.039
- T. Sarkar, P. Kumar, M.D. Bharadwaj, U. Waghmare, Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: A first-principles study. Phys. Chem. Chem. Phys. 18(14), 9344–9348 (2016). https://doi.org/10.1039/c5cp07782f
- J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang et al., Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/c8cc02250j
- S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song et al., Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(49), 22002–22006 (2020). https://doi.org/10.1002/ange.202010287
- N. Liu, X. Wu, L. Fan, S. Gong, Z. Guo et al., Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. 32(42), 1908420 (2020). https://doi.org/10.1002/adma.201908420
- H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16(4), 454–460 (2017). https://doi.org/10.1038/nmat4810
- W. Xu, C. Sun, N. Wang, X. Liao, K. Zhao et al., Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy 81, 105584 (2021). https://doi.org/10.1016/j.nanoen.2020.105584
- Y. Shi, J.Z. Wang, S.L. Chou, D. Wexler, H.J. Li et al., Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 13(10), 4715–4720 (2013). https://doi.org/10.1021/nl402237u
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16.1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng et al., NH4V3O8·0@5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode. Mater. Chem. Front. 4(5), 1434–1443 (2020). https://doi.org/10.1039/d0qm00051e
- Z. Hou, M. Dong, Y. Xiong, X. Zhang, H. Ao et al., A high-energy and long-life aqueous Zn/Birnessite battery via reversible water and Zn2+ coinsertion. Small 16(26), 2001228 (2020). https://doi.org/10.1002/smll.202001228
- H. Qin, L. Chen, L. Wang, X. Chen, Z. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 306, 307–316 (2019). https://doi.org/10.1016/j.electacta.2019.03.087
- C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang et al., Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl. Mater. Interfaces 12(28), 31564–31574 (2020). https://doi.org/10.1021/acsami.0c10183
- B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- N. Wang, C. Sun, X. Liao, Y. Yuan, H. Cheng et al., Reversible (de)intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv. Energy Mater. 10(41), 2002293 (2020). https://doi.org/10.1002/aenm.202002293
- D. Yu, Z. Wei, X. Zhang, Y. Zeng, C. Wang et al., Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv. Funct. Mater. 31, 2008743 (2020). https://doi.org/10.1002/adfm.202008743
- J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11(6), 2003203 (2020). https://doi.org/10.1002/aenm.202003203
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai et al., V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
- Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 31(3), 2005092 (2020). https://doi.org/10.1002/adfm.202005092
References
S. Liu, L. Kang, J.M. Kim, Y.T. Chun, J. Zhang et al., Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 10(25), 2000477 (2020). https://doi.org/10.1002/aenm.202000477
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
R. Li, H. Zhang, Q. Zheng, X. Li, Porous V2O5 yolk–shell microspheres for zinc ion battery cathodes: Activation responsible for enhanced capacity and rate performance. J. Mater. Chem. A 8(10), 5186–5193 (2020). https://doi.org/10.1039/c9ta11750d
C. Liu, R. Massé, X. Nan, G. Cao, A promising cathode for li-ion batteries: Li3V2(PO4)3. Energy Storage Mater. 4, 15–58 (2016). https://doi.org/10.1016/j.ensm.2016.02.002
J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
Z. Li, Y. Peng, C. Liu, X. Zhang, X. Li et al., Oxygen-deficient TiO2 yolk-shell spheres for enhanced lithium storage properties. Energy Environ. Mater. 4(1), 1–7 (2021). https://doi.org/10.1002/eem2.12156
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
J. Lang, C. Jiang, Y. Fang, L. Shi, S. Miao et al., Room-temperature rechargeable Ca-ion based hybrid batteries with high rate capability and long-term cycling life. Adv. Energy Mater. 9(29), 1901099 (2019). https://doi.org/10.1002/aenm.201901099
X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan et al., Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A 7(17), 10644–10650 (2019). https://doi.org/10.1039/c8ta11236c
K. Yao, Z. Xu, J. Huang, M. Ma, L. Fu et al., Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: Achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small 15(12), 1805405 (2019). https://doi.org/10.1002/smll.201805405
J. Li, N. Zhuang, J. Xie, X. Li, W. Zhuo et al., K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 10(5), 1903455 (2019). https://doi.org/10.1002/aenm.201903455
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
J. Wang, J.-G. Wang, H. Liu, C. Wei, F. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7(22), 13727–13735 (2019). https://doi.org/10.1039/c9ta03541a
Y. Jiang, D. Ba, Y. Li, J. Liu, Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance. Adv. Sci. 7(6), 1902795 (2020). https://doi.org/10.1002/advs.201902795
Q. Zhang, L. Li, H. Li, L. Tang, B. He et al., Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 60, 267–274 (2019). https://doi.org/10.1016/j.nanoen.2019.03.049
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
X. Wang, Y. Li, S. Wang, F. Zhou, P. Das et al., 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 10(22), 2000081 (2020). https://doi.org/10.1002/aenm.202000081
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020). https://doi.org/10.1021/acsnano.9b09963
B. He, Q. Zhang, P. Man, Z. Zhou, C. Li et al., Self-sacrificed synthesis of conductive vanadium-based metal–organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 64, 103935 (2019). https://doi.org/10.1016/j.nanoen.2019.103935
L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9(45), 1902446 (2019). https://doi.org/10.1002/aenm.201902446
P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
C. Han, T. Zhang, J. Li, B. Li, Z. Lin, Enabling flexible solid-state zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 77, 105165 (2020). https://doi.org/10.1016/j.nanoen.2020.105165
H. Yao, Q. Li, M. Zhang, Z. Tao, Y. Yang, Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4− to pani via a simple and scalable synthetic method. Chem. Eng. J. 392, 123653 (2020). https://doi.org/10.1016/j.cej.2019.123653
K. Zhu, T. Wu, S. Sun, W. van den Bergh, M. Stefik et al., Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 29, 60–70 (2020). https://doi.org/10.1016/j.ensm.2020.03.030
N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu et al., Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv. Funct. Mater. 29(10), 1807331 (2019). https://doi.org/10.1002/adfm.201807331
S. Chen, Y. Zhang, H. Geng, Y. Yang, X. Rui et al., Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J. Power Sources 441, 227192 (2019). https://doi.org/10.1016/j.jpowsour.2019.227192
F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(46), 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 7(23), 1700885 (2017). https://doi.org/10.1002/aenm.201700885
Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11(1), 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
D. Chen, X. Rui, Q. Zhang, H. Geng, L. Gan et al., Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy 60, 171–178 (2019). https://doi.org/10.1016/j.nanoen.2019.03.034
H. Liu, W. Yang, Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 4(10), 4000–4008 (2011). https://doi.org/10.1039/c1ee01353j
L. Xing, K. Han, Q. Liu, Z. Liu, J. Chu et al., Hierarchical two-atom-layered WSe2/C ultrathin crumpled nanosheets assemblies: Engineering the interlayer spacing boosts potassium-ion storage. Energy Storage Mater. 36, 309–317 (2021). https://doi.org/10.1016/j.ensm.2021.01.005
L. Zhang, W. Wang, S. Lu, Y. Xiang, Carbon anode materials: A detailed comparison between na-ion and k-ion batteries. Adv. Energy Mater. 11, 2003640 (2021). https://doi.org/10.1002/aenm.202003640
W. Wang, H. Huang, B. Wang, C. Qian, P. Li et al., A new dual-ion battery based on amorphous carbon. Sci. Bull. 64(21), 1634–1642 (2019). https://doi.org/10.1016/j.scib.2019.08.021
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
S. Islam, M.H. Alfaruqi, D.Y. Putro, V. Soundharrajan, B. Sambandam et al., K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. J. Mater. Chem. A 7(35), 20335–20347 (2019). https://doi.org/10.1039/c9ta05767f
Y. Yang, Y. Tang, S. Liang, Z. Wu, G. Fang et al., Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 61, 617–625 (2019). https://doi.org/10.1016/j.nanoen.2019.05.005
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32(26), 2001113 (2020). https://doi.org/10.1002/adma.202001113
Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12, 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
H. Jiang, Y. Zhang, Y. Liu, J. Yang, L. Xu et al., In situ grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 8(30), 15130–15139 (2020). https://doi.org/10.1039/d0ta05065b
X. Wang, B. Xi, Z. Feng, W. Chen, H. Li et al., Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J. Mater. Chem. A 7(32), 19130–19139 (2019). https://doi.org/10.1039/c9ta05922a
D. Bin, Y. Liu, B. Yang, J. Huang, X. Dong et al., Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Appl. Mater. Interfaces 11(23), 20796–20803 (2019). https://doi.org/10.1021/acsami.9b03159
G. Yang, T. Wei, C. Wang, Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl. Mater. Interfaces 10(41), 35079–35089 (2018). https://doi.org/10.1021/acsami.8b10849
Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl. Energy Mater. 2(11), 7861–7869 (2019). https://doi.org/10.1021/acsaem.9b01299
B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu et al., Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7(3), 940–945 (2019). https://doi.org/10.1039/c8ta09338e
E.A. Esparcia, M.S. Chae, J.D. Ocon, S.-T. Hong, Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 30(11), 3690–3696 (2018). https://doi.org/10.1021/acs.chemmater.8b00462
Y. Xu, H. Dong, M. Zhou, C. Zhang, Y. Wu et al., Ammonium vanadium bronze as a potassium-ion battery cathode with high rate capability and cyclability. Small Methods 3(8), 1800349 (2019). https://doi.org/10.1002/smtd.201800349
X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 38, 20–25 (2019). https://doi.org/10.1016/j.jechem.2018.12.023
X. Wu, Y. Tao, L. Dong, J. Hong, Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires. J. Mater. Chem. 14(5), 901–904 (2004). https://doi.org/10.1039/b314775d
D. Fang, Y. Cao, R. Liu, W. Xu, S. Liu et al., Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery. Appl. Surf. Sci. 360, 658–665 (2016). https://doi.org/10.1016/j.apsusc.2015.11.038
T.-Z. Ren, Z.-Y. Yuan, X. Zou, Crystal growth of mixed-valence ammonium vanadates. Cryst. Res. Technol. 42(4), 317–320 (2007). https://doi.org/10.1002/crat.200610821
H. Wang, K. Huang, C. Huang, S. Liu, Y. Ren et al., (NH4)05V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J. Power Sources 196(13), 5645–5650 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.046
S.H. Lee, J.M. Koo, S.G. Oh, S.S. Im, Facile synthesis of ammonium vanadate nanofibers by using reflux in aqueous V2O5 solution with ammonium persulfate. Mater. Chem. Phys. 194, 313–321 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.053
A. Sarkar, S. Sarkar, T. Sarkar, P. Kumar, M.D. Bharadwaj et al., Rechargeable sodium-ion battery: High-capacity ammonium vanadate cathode with enhanced stability at high rate. ACS Appl. Mater. Interfaces 7(31), 17044–17053 (2015). https://doi.org/10.1021/acsami.5b03210
T. Wei, Y. Liu, G. Yang, C. Wang, Aluminum vanadate hollow spheres as zero-strain cathode material for highly reversible and durable aqueous zinc-ion batteries. Energy Storage Mater. 30, 130–137 (2020). https://doi.org/10.1016/j.ensm.2020.04.039
T. Sarkar, P. Kumar, M.D. Bharadwaj, U. Waghmare, Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: A first-principles study. Phys. Chem. Chem. Phys. 18(14), 9344–9348 (2016). https://doi.org/10.1039/c5cp07782f
J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang et al., Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/c8cc02250j
S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song et al., Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(49), 22002–22006 (2020). https://doi.org/10.1002/ange.202010287
N. Liu, X. Wu, L. Fan, S. Gong, Z. Guo et al., Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. 32(42), 1908420 (2020). https://doi.org/10.1002/adma.201908420
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16(4), 454–460 (2017). https://doi.org/10.1038/nmat4810
W. Xu, C. Sun, N. Wang, X. Liao, K. Zhao et al., Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy 81, 105584 (2021). https://doi.org/10.1016/j.nanoen.2020.105584
Y. Shi, J.Z. Wang, S.L. Chou, D. Wexler, H.J. Li et al., Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 13(10), 4715–4720 (2013). https://doi.org/10.1021/nl402237u
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16.1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng et al., NH4V3O8·0@5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode. Mater. Chem. Front. 4(5), 1434–1443 (2020). https://doi.org/10.1039/d0qm00051e
Z. Hou, M. Dong, Y. Xiong, X. Zhang, H. Ao et al., A high-energy and long-life aqueous Zn/Birnessite battery via reversible water and Zn2+ coinsertion. Small 16(26), 2001228 (2020). https://doi.org/10.1002/smll.202001228
H. Qin, L. Chen, L. Wang, X. Chen, Z. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 306, 307–316 (2019). https://doi.org/10.1016/j.electacta.2019.03.087
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang et al., Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl. Mater. Interfaces 12(28), 31564–31574 (2020). https://doi.org/10.1021/acsami.0c10183
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
N. Wang, C. Sun, X. Liao, Y. Yuan, H. Cheng et al., Reversible (de)intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv. Energy Mater. 10(41), 2002293 (2020). https://doi.org/10.1002/aenm.202002293
D. Yu, Z. Wei, X. Zhang, Y. Zeng, C. Wang et al., Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv. Funct. Mater. 31, 2008743 (2020). https://doi.org/10.1002/adfm.202008743
J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11(6), 2003203 (2020). https://doi.org/10.1002/aenm.202003203
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai et al., V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 31(3), 2005092 (2020). https://doi.org/10.1002/adfm.202005092