Observation of Ice-Like Two-Dimensional Flakes on Self-Assembled Protein Monolayer without Nanoconfinement under Ambient Conditions
Corresponding Author: Jian‑Qiang Zhong
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 187
Abstract
Directly correlating the morphology and composition of interfacial water is vital not only for studying water icing under critical conditions but also for understanding the role of protein–water interactions in bio-relevant systems. In this study, we present a model system to study two-dimensional (2D) water layers under ambient conditions by using self-assembled monolayers (SAMs) supporting the physisorption of the Cytochrome C (Cyt C) protein layer. We observed that the 2D island-like water layers were uniformly distributed on the SAMs as characterized by atomic force microscopy, and their composition was confirmed by nano-atomic force microscopy-infrared spectroscopy and Raman spectroscopy. In addition, these 2D flakes could grow under high-humidity conditions or melt upon the introduction of a heat source. The formation of these flakes is attributed to the activation energy for water desorption from the Cyt C being nearly twofold high than that from the SAMs. Our results provide a new and effective method for further understanding the water–protein interactions.
Highlights:
1 A super-hydrophilic electrode was successfully developed by depositing porous NiFe nanoparticles onto annealed TiO2 nanotubes (NiFe/ATNT), facilitating rapid outgassing of nonpolar gases.
2 The NiFe/ATNT electrode demonstrated an overpotential of 235 mV at 10 mA cm−2 for the oxygen evolution reaction in 1.0 M KOH and served as the anode in the anion exchange membrane water electrolyzer (AEMWE), achieving a current density of 1.67 A cm−2 at 1.80 V.
3 The AEMWE utilizing the NiFe/ATNT electrode exhibited remarkable stability, maintaining operation for 1500 h at 0.50 A cm−2 under challenging thermal conditions of 80 ± 3 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Forbes, A. Bissoyi, L. Eickhoff, N. Reicher, T. Hansen et al., Water-organizing motif continuity is critical for potent ice nucleation protein activity. Nat. Commun. 13, 5019 (2022). https://doi.org/10.1038/s41467-022-32469-9
- Y. Qiu, A. Hudait, V. Molinero, How size and aggregation of ice-binding proteins control their ice nucleation efficiency. J. Am. Chem. Soc. 141, 7439–7452 (2019). https://doi.org/10.1021/jacs.9b01854
- M.C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl et al., Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016). https://doi.org/10.1021/acs.chemrev.5b00664
- T.R. Stachowski, M. Vanarotti, J. Seetharaman, K. Lopez, M. Fischer, Water networks repopulate protein-ligand interfaces with temperature. Angew. Chem. Int. Ed. 61, e202112919 (2022). https://doi.org/10.1002/anie.202112919
- T. Koop, B. Luo, A. Tsias, T. Peter, Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000). https://doi.org/10.1038/35020537
- R. Schwidetzky, I. de Almeida Ribeiro, N. Bothen, A.T. Backes, A.L. DeVries et al., Functional aggregation of cell-free proteins enables fungal ice nucleation. Proc. Natl. Acad. Sci. USA 120, e2303243120 (2023). https://doi.org/10.1073/pnas.2303243120
- J.A. Riback, M.A. Bowman, A.M. Zmyslowski, C.R. Knoverek, J.M. Jumper et al., Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358, 238–241 (2017). https://doi.org/10.1126/science.aan5774
- A. Hudait, D.R. Moberg, Y. Qiu, N. Odendahl, F. Paesani et al., Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Proc. Natl. Acad. Sci. U.S.A. 115, 8266–8271 (2018). https://doi.org/10.1073/pnas.1806996115
- T. Sun, F.-H. Lin, R.L. Campbell, J.S. Allingham, P.L. Davies, An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343, 795–798 (2014). https://doi.org/10.1126/science.1247407
- M. Ahmad, W. Gu, T. Geyer, V. Helms, Adhesive water networks facilitate binding of protein interfaces. Nat. Commun. 2, 261 (2011). https://doi.org/10.1038/ncomms1258
- A. Hudait, N. Odendahl, Y. Qiu, F. Paesani, V. Molinero, Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs. J. Am. Chem. Soc. 140, 4905–4912 (2018). https://doi.org/10.1021/jacs.8b01246
- A. Hudait, Y. Qiu, N. Odendahl, V. Molinero, Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice. J. Am. Chem. Soc. 141, 7887–7898 (2019). https://doi.org/10.1021/jacs.9b02248
- C.D. Bostick, S. Mukhopadhyay, I. Pecht, M. Sheves, D. Cahen et al., Protein bioelectronics: a review of what we do and do not know. Rep. Prog. Phys. 81, 026601 (2018). https://doi.org/10.1088/1361-6633/aa85f2
- X. Chen, R. Ferrigno, J. Yang, G.M. Whitesides, Redox properties of cytochrome c adsorbed on self-assembled monolayers: a probe for protein conformation and orientation. Langmuir 18, 7009–7015 (2002). https://doi.org/10.1021/la0204794
- M. Wikström, K. Krab, V. Sharma, Oxygen activation and energy conservation by cytochrome c oxidase. Chem. Rev. 118, 2469–2490 (2018). https://doi.org/10.1021/acs.chemrev.7b00664
- H. Kalkavan, M.J. Chen, J.C. Crawford, G. Quarato, P. Fitzgerald et al., Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356-3374.e22 (2022). https://doi.org/10.1016/j.cell.2022.07.025
- J. Jiang, Y. Gao, W. Zhu, Y. Liu, C. Zhu et al., First-principles molecular dynamics simulations of the spontaneous freezing transition of 2D water in a nanoslit. J. Am. Chem. Soc. 143, 8177–8183 (2021). https://doi.org/10.1021/jacs.1c03243
- X. Zhang, J.-Y. Xu, Y.-B. Tu, K. Sun, M.-L. Tao et al., Hexagonal monolayer ice without shared edges. Phys. Rev. Lett. 121, 256001 (2018). https://doi.org/10.1103/PhysRevLett.121.256001
- B. Lin, J. Jiang, X.C. Zeng, L. Li, Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field. Nat. Commun. 14, 4110 (2023). https://doi.org/10.1038/s41467-023-39829-z
- A. Verdaguer, G.M. Sacha, H. Bluhm, M. Salmeron, Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006). https://doi.org/10.1021/cr040376l
- P. Yang, H. Liu, Q. Jin, Y. Lai, Y. Zeng et al., Visualizing the promoting role of interfacial water in the deprotonation of formic acid on Cu(111). J. Am. Chem. Soc. 146, 210–217 (2024). https://doi.org/10.1021/jacs.3c07726
- J. Hong, Y. Tian, T. Liang, X. Liu, Y. Song et al., Imaging surface structure and premelting of ice Ih with atomic resolution. Nature 630, 375–380 (2024). https://doi.org/10.1038/s41586-024-07427-8
- P. Yang, C. Zhang, W. Sun, J. Dong, D. Cao et al., Robustness of bilayer hexagonal ice against surface symmetry and corrugation. Phys. Rev. Lett. 129, 046001 (2022). https://doi.org/10.1103/PhysRevLett.129.046001
- G.A. Kimmel, J. Matthiesen, M. Baer, C.J. Mundy, N.G. Petrik et al., No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 12838–12844 (2009). https://doi.org/10.1021/ja904708f
- V. Kapil, C. Schran, A. Zen, J. Chen, C.J. Pickard et al., The first-principles phase diagram of monolayer nanoconfined water. Nature 609, 512–516 (2022). https://doi.org/10.1038/s41586-022-05036-x
- J. Chen, G. Schusteritsch, C.J. Pickard, C.G. Salzmann, A. Michaelides, Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016). https://doi.org/10.1103/PhysRevLett.116.025501
- G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser et al., Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015). https://doi.org/10.1038/nature14295
- M. Millot, S. Hamel, J.R. Rygg, P.M. Celliers, G.W. Collins et al., Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018). https://doi.org/10.1038/s41567-017-0017-4
- Y. Hong, D. Zhang, Z. Gao, Y. Zhang, Q. Li et al., Constructing two-dimensional interfacial ice-like water at room temperature for nanotribology. Nano Res. 16, 9977–9982 (2023). https://doi.org/10.1007/s12274-023-5485-5
- X. Qin, M. Dong, Q. Li, Insight into the hydration friction of lipid bilayers. Nanoscale 16, 2402–2408 (2024). https://doi.org/10.1039/d3nr05517e
- B.S. Kim, S.C. Park, D.H. Kim, G.H. Moon, J.G. Oh et al., Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting. Small 16, e2002641 (2020). https://doi.org/10.1002/smll.202002641
- L. Chen, L. Qian, Role of interfacial water in adhesion, friction, and wear: a critical review. Friction 9, 425 (2021). https://doi.org/10.1007/s40544-020-0425-4
- K. Meister, S. Strazdaite, A.L. DeVries, S. Lotze, L.L.C. Olijve et al., Observation of ice-like water layers at an aqueous protein surface. Proc. Natl. Acad. Sci. U.S.A. 111, 17732–17736 (2014). https://doi.org/10.1073/pnas.1414188111
- S. Mahatabuddin, D. Fukami, T. Arai, Y. Nishimiya, R. Shimizu et al., Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. Proc. Natl. Acad. Sci. U.S.A. 115, 5456–5461 (2018). https://doi.org/10.1073/pnas.1800635115
- C. Zhu, Y. Gao, W. Zhu, J. Jiang, J. Liu et al., Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proc. Natl. Acad. Sci. U.S.A. 116, 16723–16728 (2019). https://doi.org/10.1073/pnas.1905917116
- M. Mrksich, A surface chemistry approach to studying cell adhesion. Chem. Soc. Rev. 29, 267–273 (2000). https://doi.org/10.1039/a705397e
- J. Carrasco, A. Hodgson, A. Michaelides, A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012). https://doi.org/10.1038/nmat3354
- J. Peng, J. Guo, P. Hapala, D. Cao, R. Ma et al., Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9, 122 (2018). https://doi.org/10.1038/s41467-017-02635-5
- S. Dalla Bernardina, E. Paineau, J.B. Brubach, P. Judeinstein, S. Rouzière et al., Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy. J. Am. Chem. Soc. 138, 10437–10443 (2016). https://doi.org/10.1021/jacs.6b02635
- W. Peng, Z. Cao, N. Chen, Y. Xie, Y. Li, Dependence of thermoelectric effects in molecular junctions on the topography of the bottom electrodes. J. Mater. Chem. A 10, 23304–23313 (2022). https://doi.org/10.1039/D2TA05642A
- J.-L. Lin, Z. Cao, X. Bai, N. Chen, C. Li et al., Molecular diodes with tunable threshold voltage based on π-extended tetrathiafulvalene. Adv. Mater. Interfaces 9, 2201238 (2022). https://doi.org/10.1002/admi.202201238
- X. Bai, P. Li, W. Peng, N. Chen, J.-L. Lin et al., Ionogel-electrode for the study of protein tunnel junctions under physiologically relevant conditions. Adv. Mater. 35, e2300663 (2023). https://doi.org/10.1002/adma.202300663
- P. Yi, Y. Jiang, Y. Cao, F. Liu, Y. Zhu et al., Intact water adsorption on Co(0001) at 100 K: transition from ordered bilayer to amorphous ice structures. Phys. Chem. Chem. Phys. 26, 29724–29731 (2024). https://doi.org/10.1039/d4cp03816a
- J. Christopher Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005). https://doi.org/10.1021/cr0300789
- A. Vilan, D. Aswal, D. Cahen, Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 117, 4248–4286 (2017). https://doi.org/10.1021/acs.chemrev.6b00595
- Y. Li, D. Wang, W. Peng, L. Jiang, X. Yu et al., Large cooperative effects in tunneling rates across van der Waals coupled binary self-assembled monolayers. Nano Today 44, 101497 (2022). https://doi.org/10.1016/j.nantod.2022.101497
- L. Yuan, L. Wang, A.R. Garrigues, L. Jiang, H.V. Annadata et al., Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating. Nat. Nanotechnol. 13, 322–329 (2018). https://doi.org/10.1038/s41565-018-0068-4
- A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996). https://doi.org/10.1021/cr9502357
- J. Guo, Y. Jiang, Submolecular insights into interfacial water by hydrogen-sensitive scanning probe microscopy. Acc. Chem. Res. 55, 1680–1692 (2022). https://doi.org/10.1021/acs.accounts.2c00111
- S.Y. Kim, D. Khanal, P. Tharkar, B. Kalionis, W. Chrzanowski, None of us is the same as all of us: resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz. 3, 430–438 (2018). https://doi.org/10.1039/c8nh00048d
- J.J. Schwartz, D.S. Jakob, A. Centrone, A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem. Soc. Rev. 51, 5248–5267 (2022). https://doi.org/10.1039/d2cs00095d
- A. Dazzi, C.B. Prater, AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
- L. Shi, J.L. Skinner, T.L.C. Jansen, Two-dimensional infrared spectroscopy of neat ice Ih. Phys. Chem. Chem. Phys. 18, 3772–3779 (2016). https://doi.org/10.1039/c5cp07264f
- M. Darvas, J. Lasne, C. Laffon, P. Parent, S. Picaud et al., Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements. Langmuir 28, 4198–4207 (2012). https://doi.org/10.1021/la204472k
- V. Emmanuel, B. Odile, R. Céline, FTIR spectroscopy of woods: a new approach to study the weathering of the carving face of a sculpture. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 1255–1259 (2015). https://doi.org/10.1016/j.saa.2014.10.011
- K. Meister, A. Paananen, H.J. Bakker, Identification of the response of protein N-H vibrations in vibrational sum-frequency generation spectroscopy of aqueous protein films. Phys. Chem. Chem. Phys. 19, 10804–10807 (2017). https://doi.org/10.1039/C6CP08325K
- Z. Movasaghi, S. Rehman, I.U. Rehman, Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007). https://doi.org/10.1080/05704920701551530
- E. Maggiore, M. Tortora, B. Rossi, M. Tommasini, P.M. Ossi, UV resonance Raman spectroscopy of weakly hydrogen-bonded water in the liquid phase and on ice and snow surfaces. Phys. Chem. Chem. Phys. 24, 10499–10505 (2022). https://doi.org/10.1039/D2CP01072K
- X. Xue, Z.-Z. He, J. Liu, Detection of water–ice phase transition based on Raman spectrum. J. Raman Spectrosc. 44, 1045–1048 (2013). https://doi.org/10.1002/jrs.4310
- K. Sotthewes, P. Bampoulis, H.J.W. Zandvliet, D. Lohse, B. Poelsema, Pressure-induced melting of confined ice. ACS Nano 11, 12723–12731 (2017). https://doi.org/10.1021/acsnano.7b07472
- S.F. Parker, L. Zhong, Vibrational spectroscopy of metal methanesulfonates: M = Na, Cs, Cu, Ag. Cd. R. Soc. Open Sci. 5, 171574 (2018). https://doi.org/10.1098/rsos.171574
- W.W. Wright, M. Laberge, J.M. Vanderkooi, Surface of cytochromec: infrared spectroscopy of carboxyl groups. Biochemistry 36, 14724–14732 (1997). https://doi.org/10.1021/bi971559n
- D. Stacchiola, J.B. Park, P. Liu, S. Ma, F. Yang et al., Water nucleation on gold: existence of a unique double bilayer. J. Phys. Chem. C 113, 15102–15105 (2009). https://doi.org/10.1021/jp904875h
- A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009). https://doi.org/10.1016/j.surfrep.2009.07.001
- R. Scott Smith, J. Matthiesen, J. Knox, B.D. Kay, Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water. J. Phys. Chem. A 115, 5908–5917 (2011). https://doi.org/10.1021/jp110297q
- D.A. King, Thermal desorption from metal surfaces: a review. Surf. Sci. 47, 384–402 (1975). https://doi.org/10.1016/0039-6028(75)90302-7
- Z. He, W.J. Xie, Z. Liu, G. Liu, Z. Wang et al., Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2, e1600345 (2016). https://doi.org/10.1126/sciadv.1600345
References
J. Forbes, A. Bissoyi, L. Eickhoff, N. Reicher, T. Hansen et al., Water-organizing motif continuity is critical for potent ice nucleation protein activity. Nat. Commun. 13, 5019 (2022). https://doi.org/10.1038/s41467-022-32469-9
Y. Qiu, A. Hudait, V. Molinero, How size and aggregation of ice-binding proteins control their ice nucleation efficiency. J. Am. Chem. Soc. 141, 7439–7452 (2019). https://doi.org/10.1021/jacs.9b01854
M.C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl et al., Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016). https://doi.org/10.1021/acs.chemrev.5b00664
T.R. Stachowski, M. Vanarotti, J. Seetharaman, K. Lopez, M. Fischer, Water networks repopulate protein-ligand interfaces with temperature. Angew. Chem. Int. Ed. 61, e202112919 (2022). https://doi.org/10.1002/anie.202112919
T. Koop, B. Luo, A. Tsias, T. Peter, Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000). https://doi.org/10.1038/35020537
R. Schwidetzky, I. de Almeida Ribeiro, N. Bothen, A.T. Backes, A.L. DeVries et al., Functional aggregation of cell-free proteins enables fungal ice nucleation. Proc. Natl. Acad. Sci. USA 120, e2303243120 (2023). https://doi.org/10.1073/pnas.2303243120
J.A. Riback, M.A. Bowman, A.M. Zmyslowski, C.R. Knoverek, J.M. Jumper et al., Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358, 238–241 (2017). https://doi.org/10.1126/science.aan5774
A. Hudait, D.R. Moberg, Y. Qiu, N. Odendahl, F. Paesani et al., Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Proc. Natl. Acad. Sci. U.S.A. 115, 8266–8271 (2018). https://doi.org/10.1073/pnas.1806996115
T. Sun, F.-H. Lin, R.L. Campbell, J.S. Allingham, P.L. Davies, An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343, 795–798 (2014). https://doi.org/10.1126/science.1247407
M. Ahmad, W. Gu, T. Geyer, V. Helms, Adhesive water networks facilitate binding of protein interfaces. Nat. Commun. 2, 261 (2011). https://doi.org/10.1038/ncomms1258
A. Hudait, N. Odendahl, Y. Qiu, F. Paesani, V. Molinero, Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs. J. Am. Chem. Soc. 140, 4905–4912 (2018). https://doi.org/10.1021/jacs.8b01246
A. Hudait, Y. Qiu, N. Odendahl, V. Molinero, Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice. J. Am. Chem. Soc. 141, 7887–7898 (2019). https://doi.org/10.1021/jacs.9b02248
C.D. Bostick, S. Mukhopadhyay, I. Pecht, M. Sheves, D. Cahen et al., Protein bioelectronics: a review of what we do and do not know. Rep. Prog. Phys. 81, 026601 (2018). https://doi.org/10.1088/1361-6633/aa85f2
X. Chen, R. Ferrigno, J. Yang, G.M. Whitesides, Redox properties of cytochrome c adsorbed on self-assembled monolayers: a probe for protein conformation and orientation. Langmuir 18, 7009–7015 (2002). https://doi.org/10.1021/la0204794
M. Wikström, K. Krab, V. Sharma, Oxygen activation and energy conservation by cytochrome c oxidase. Chem. Rev. 118, 2469–2490 (2018). https://doi.org/10.1021/acs.chemrev.7b00664
H. Kalkavan, M.J. Chen, J.C. Crawford, G. Quarato, P. Fitzgerald et al., Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356-3374.e22 (2022). https://doi.org/10.1016/j.cell.2022.07.025
J. Jiang, Y. Gao, W. Zhu, Y. Liu, C. Zhu et al., First-principles molecular dynamics simulations of the spontaneous freezing transition of 2D water in a nanoslit. J. Am. Chem. Soc. 143, 8177–8183 (2021). https://doi.org/10.1021/jacs.1c03243
X. Zhang, J.-Y. Xu, Y.-B. Tu, K. Sun, M.-L. Tao et al., Hexagonal monolayer ice without shared edges. Phys. Rev. Lett. 121, 256001 (2018). https://doi.org/10.1103/PhysRevLett.121.256001
B. Lin, J. Jiang, X.C. Zeng, L. Li, Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field. Nat. Commun. 14, 4110 (2023). https://doi.org/10.1038/s41467-023-39829-z
A. Verdaguer, G.M. Sacha, H. Bluhm, M. Salmeron, Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006). https://doi.org/10.1021/cr040376l
P. Yang, H. Liu, Q. Jin, Y. Lai, Y. Zeng et al., Visualizing the promoting role of interfacial water in the deprotonation of formic acid on Cu(111). J. Am. Chem. Soc. 146, 210–217 (2024). https://doi.org/10.1021/jacs.3c07726
J. Hong, Y. Tian, T. Liang, X. Liu, Y. Song et al., Imaging surface structure and premelting of ice Ih with atomic resolution. Nature 630, 375–380 (2024). https://doi.org/10.1038/s41586-024-07427-8
P. Yang, C. Zhang, W. Sun, J. Dong, D. Cao et al., Robustness of bilayer hexagonal ice against surface symmetry and corrugation. Phys. Rev. Lett. 129, 046001 (2022). https://doi.org/10.1103/PhysRevLett.129.046001
G.A. Kimmel, J. Matthiesen, M. Baer, C.J. Mundy, N.G. Petrik et al., No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 12838–12844 (2009). https://doi.org/10.1021/ja904708f
V. Kapil, C. Schran, A. Zen, J. Chen, C.J. Pickard et al., The first-principles phase diagram of monolayer nanoconfined water. Nature 609, 512–516 (2022). https://doi.org/10.1038/s41586-022-05036-x
J. Chen, G. Schusteritsch, C.J. Pickard, C.G. Salzmann, A. Michaelides, Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016). https://doi.org/10.1103/PhysRevLett.116.025501
G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser et al., Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015). https://doi.org/10.1038/nature14295
M. Millot, S. Hamel, J.R. Rygg, P.M. Celliers, G.W. Collins et al., Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018). https://doi.org/10.1038/s41567-017-0017-4
Y. Hong, D. Zhang, Z. Gao, Y. Zhang, Q. Li et al., Constructing two-dimensional interfacial ice-like water at room temperature for nanotribology. Nano Res. 16, 9977–9982 (2023). https://doi.org/10.1007/s12274-023-5485-5
X. Qin, M. Dong, Q. Li, Insight into the hydration friction of lipid bilayers. Nanoscale 16, 2402–2408 (2024). https://doi.org/10.1039/d3nr05517e
B.S. Kim, S.C. Park, D.H. Kim, G.H. Moon, J.G. Oh et al., Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting. Small 16, e2002641 (2020). https://doi.org/10.1002/smll.202002641
L. Chen, L. Qian, Role of interfacial water in adhesion, friction, and wear: a critical review. Friction 9, 425 (2021). https://doi.org/10.1007/s40544-020-0425-4
K. Meister, S. Strazdaite, A.L. DeVries, S. Lotze, L.L.C. Olijve et al., Observation of ice-like water layers at an aqueous protein surface. Proc. Natl. Acad. Sci. U.S.A. 111, 17732–17736 (2014). https://doi.org/10.1073/pnas.1414188111
S. Mahatabuddin, D. Fukami, T. Arai, Y. Nishimiya, R. Shimizu et al., Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. Proc. Natl. Acad. Sci. U.S.A. 115, 5456–5461 (2018). https://doi.org/10.1073/pnas.1800635115
C. Zhu, Y. Gao, W. Zhu, J. Jiang, J. Liu et al., Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proc. Natl. Acad. Sci. U.S.A. 116, 16723–16728 (2019). https://doi.org/10.1073/pnas.1905917116
M. Mrksich, A surface chemistry approach to studying cell adhesion. Chem. Soc. Rev. 29, 267–273 (2000). https://doi.org/10.1039/a705397e
J. Carrasco, A. Hodgson, A. Michaelides, A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012). https://doi.org/10.1038/nmat3354
J. Peng, J. Guo, P. Hapala, D. Cao, R. Ma et al., Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9, 122 (2018). https://doi.org/10.1038/s41467-017-02635-5
S. Dalla Bernardina, E. Paineau, J.B. Brubach, P. Judeinstein, S. Rouzière et al., Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy. J. Am. Chem. Soc. 138, 10437–10443 (2016). https://doi.org/10.1021/jacs.6b02635
W. Peng, Z. Cao, N. Chen, Y. Xie, Y. Li, Dependence of thermoelectric effects in molecular junctions on the topography of the bottom electrodes. J. Mater. Chem. A 10, 23304–23313 (2022). https://doi.org/10.1039/D2TA05642A
J.-L. Lin, Z. Cao, X. Bai, N. Chen, C. Li et al., Molecular diodes with tunable threshold voltage based on π-extended tetrathiafulvalene. Adv. Mater. Interfaces 9, 2201238 (2022). https://doi.org/10.1002/admi.202201238
X. Bai, P. Li, W. Peng, N. Chen, J.-L. Lin et al., Ionogel-electrode for the study of protein tunnel junctions under physiologically relevant conditions. Adv. Mater. 35, e2300663 (2023). https://doi.org/10.1002/adma.202300663
P. Yi, Y. Jiang, Y. Cao, F. Liu, Y. Zhu et al., Intact water adsorption on Co(0001) at 100 K: transition from ordered bilayer to amorphous ice structures. Phys. Chem. Chem. Phys. 26, 29724–29731 (2024). https://doi.org/10.1039/d4cp03816a
J. Christopher Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005). https://doi.org/10.1021/cr0300789
A. Vilan, D. Aswal, D. Cahen, Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 117, 4248–4286 (2017). https://doi.org/10.1021/acs.chemrev.6b00595
Y. Li, D. Wang, W. Peng, L. Jiang, X. Yu et al., Large cooperative effects in tunneling rates across van der Waals coupled binary self-assembled monolayers. Nano Today 44, 101497 (2022). https://doi.org/10.1016/j.nantod.2022.101497
L. Yuan, L. Wang, A.R. Garrigues, L. Jiang, H.V. Annadata et al., Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating. Nat. Nanotechnol. 13, 322–329 (2018). https://doi.org/10.1038/s41565-018-0068-4
A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996). https://doi.org/10.1021/cr9502357
J. Guo, Y. Jiang, Submolecular insights into interfacial water by hydrogen-sensitive scanning probe microscopy. Acc. Chem. Res. 55, 1680–1692 (2022). https://doi.org/10.1021/acs.accounts.2c00111
S.Y. Kim, D. Khanal, P. Tharkar, B. Kalionis, W. Chrzanowski, None of us is the same as all of us: resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz. 3, 430–438 (2018). https://doi.org/10.1039/c8nh00048d
J.J. Schwartz, D.S. Jakob, A. Centrone, A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem. Soc. Rev. 51, 5248–5267 (2022). https://doi.org/10.1039/d2cs00095d
A. Dazzi, C.B. Prater, AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
L. Shi, J.L. Skinner, T.L.C. Jansen, Two-dimensional infrared spectroscopy of neat ice Ih. Phys. Chem. Chem. Phys. 18, 3772–3779 (2016). https://doi.org/10.1039/c5cp07264f
M. Darvas, J. Lasne, C. Laffon, P. Parent, S. Picaud et al., Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements. Langmuir 28, 4198–4207 (2012). https://doi.org/10.1021/la204472k
V. Emmanuel, B. Odile, R. Céline, FTIR spectroscopy of woods: a new approach to study the weathering of the carving face of a sculpture. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 1255–1259 (2015). https://doi.org/10.1016/j.saa.2014.10.011
K. Meister, A. Paananen, H.J. Bakker, Identification of the response of protein N-H vibrations in vibrational sum-frequency generation spectroscopy of aqueous protein films. Phys. Chem. Chem. Phys. 19, 10804–10807 (2017). https://doi.org/10.1039/C6CP08325K
Z. Movasaghi, S. Rehman, I.U. Rehman, Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007). https://doi.org/10.1080/05704920701551530
E. Maggiore, M. Tortora, B. Rossi, M. Tommasini, P.M. Ossi, UV resonance Raman spectroscopy of weakly hydrogen-bonded water in the liquid phase and on ice and snow surfaces. Phys. Chem. Chem. Phys. 24, 10499–10505 (2022). https://doi.org/10.1039/D2CP01072K
X. Xue, Z.-Z. He, J. Liu, Detection of water–ice phase transition based on Raman spectrum. J. Raman Spectrosc. 44, 1045–1048 (2013). https://doi.org/10.1002/jrs.4310
K. Sotthewes, P. Bampoulis, H.J.W. Zandvliet, D. Lohse, B. Poelsema, Pressure-induced melting of confined ice. ACS Nano 11, 12723–12731 (2017). https://doi.org/10.1021/acsnano.7b07472
S.F. Parker, L. Zhong, Vibrational spectroscopy of metal methanesulfonates: M = Na, Cs, Cu, Ag. Cd. R. Soc. Open Sci. 5, 171574 (2018). https://doi.org/10.1098/rsos.171574
W.W. Wright, M. Laberge, J.M. Vanderkooi, Surface of cytochromec: infrared spectroscopy of carboxyl groups. Biochemistry 36, 14724–14732 (1997). https://doi.org/10.1021/bi971559n
D. Stacchiola, J.B. Park, P. Liu, S. Ma, F. Yang et al., Water nucleation on gold: existence of a unique double bilayer. J. Phys. Chem. C 113, 15102–15105 (2009). https://doi.org/10.1021/jp904875h
A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009). https://doi.org/10.1016/j.surfrep.2009.07.001
R. Scott Smith, J. Matthiesen, J. Knox, B.D. Kay, Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water. J. Phys. Chem. A 115, 5908–5917 (2011). https://doi.org/10.1021/jp110297q
D.A. King, Thermal desorption from metal surfaces: a review. Surf. Sci. 47, 384–402 (1975). https://doi.org/10.1016/0039-6028(75)90302-7
Z. He, W.J. Xie, Z. Liu, G. Liu, Z. Wang et al., Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2, e1600345 (2016). https://doi.org/10.1126/sciadv.1600345