A Universal Atomic Substitution Conversion Strategy Towards Synthesis of Large-Size Ultrathin Nonlayered Two-Dimensional Materials
Corresponding Author: Tianyou Zhai
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 165
Abstract
Nonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.
Highlights:
1 A general layered 2D materials-derived atomic substitution conversion strategy is proposed to achieve the synthesis of large-size ultrathin nonlayered 2D materials.
2 Using low-melting-point CdI2 flakes via a simple hot plate assisted vertical vapor deposition method as precursor, large-size ultrathin CdS flakes were successfully converted from layered to nonlayered nanostructures through a facile low-temperature chemical sulfurization process.
3 The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018). https://doi.org/10.1038/s41565-017-0035-5
- A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419 (2013). https://doi.org/10.1038/nature12385
- R. Kempt, A. Kuc, T. Heine, Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 59, 9242 (2020). https://doi.org/10.1002/anie.201914886
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355 (2018). https://doi.org/10.1038/s41586-018-0008-3
- Y.-L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma et al., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369, 670 (2020). https://doi.org/10.1126/science.abb7023
- S. Kim, H. Wang, Y.M. Lee, 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew. Chem. Int. Ed. 58, 17512 (2019). https://doi.org/10.1002/anie.201814349
- A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 183 (2017). https://doi.org/10.1038/s41570-016-0014
- F. Wang, Z. Wang, L. Yin, R. Cheng, J. Wang et al., 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47, 6296 (2018). https://doi.org/10.1039/c8cs00255j
- F. Wang, Z. Wang, T.A. Shifa, Y. Wen, F. Wang et al., Two-dimensional non-layered materials: synthesis, properties and applications. Adv. Funct. Mater. 27, 1603254 (2017). https://doi.org/10.1002/adfm.201603254
- Y. Wang, Z. Zhang, Y. Mao, X. Wang, Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 13, 3993 (2020). https://doi.org/10.1039/D0EE01714K
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 1057 (2012). https://doi.org/10.1038/ncomms2066
- R. Liu, F. Wang, L. Liu, X. He, J. Chen et al., Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct. 2, 2000136 (2021). https://doi.org/10.1002/sstr.202000136
- K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao et al., Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274 (2016). https://doi.org/10.1126/science.aad8609
- G. Song, W. Gong, S. Cong, Z. Zhao, Ultrathin two-dimensional nanostructures: surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem. Int. Ed. 60, 5505 (2021). https://doi.org/10.1002/anie.202015306
- Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei et al., Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 140, 16392 (2018). https://doi.org/10.1021/jacs.8b08351
- H. Duan, N. Yan, R. Yu, C.-R. Chang, G. Zhou et al., Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014). https://doi.org/10.1038/ncomms4093
- S. Yang, G. Chen, A.G. Ricciardulli, P. Zhang, Z. Zhang et al., Topochemical synthesis of two-dimensional transition-metal phosphides using phosphorene templates. Angew. Chem. Int. Ed. 59, 465 (2020). https://doi.org/10.1002/anie.201911428
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78 (2014). https://doi.org/10.1038/nature13970
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013). https://doi.org/10.1126/science.1241488
- Y. Guo, J. Peng, W. Qin, J. Zeng, J. Zhao et al., Freestanding cubic ZrN single-crystalline films with two-dimensional superconductivity. J. Am. Chem. Soc. 141, 10183 (2019). https://doi.org/10.1021/jacs.9b05114
- T. Tallinen, J.A. Aström, P. Kekäläinen, J. Timonen, Mechanical and thermal stability of adhesive membranes with nonzero bending rigidity. Phys. Rev. Lett. 105, 26103 (2010). https://doi.org/10.1103/PhysRevLett.105.026103
- A.R. Smith, K.-J. Chao, Q. Niu, C.-K. Shih, Formation of atomically flat silver films on GaAs with a “silver mean” quasi periodicity. Science 273, 226 (1996). https://doi.org/10.1126/science.273.5272.226
- C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
- Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li et al., Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28, 1705833 (2018). https://doi.org/10.1002/adfm.201705833
- R. Cheng, Y. Wen, L. Yin, F. Wang, F. Wang et al., Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 29, 1703122 (2017). https://doi.org/10.1002/adma.201703122
- Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang et al., Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 28, 8051 (2016). https://doi.org/10.1002/adma.201602481
- Q. Wang, K. Xu, Z. Wang, F. Wang, Y. Huang et al., Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 15, 1183 (2015). https://doi.org/10.1021/nl504258m
- Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8, 7497 (2014). https://doi.org/10.1021/nn5028104
- B. Jin, P. Huang, Q. Zhang, X. Zhou, X. Zhang et al., Self-limited epitaxial growth of ultrathin nonlayered CdS flakes for high-performance photodetectors. Adv. Funct. Mater. 28, 1800181 (2018). https://doi.org/10.1002/adfm.201800181
- X. Hu, P. Huang, B. Jin, X. Zhang, H. Li et al., Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J. Am. Chem. Soc. 140, 12909 (2018). https://doi.org/10.1021/jacs.8b07383
- B. Jin, F. Liang, Z.-Y. Hu, P. Wei, K. Liu et al., Nonlayered CdSe flakes homojunctions. Adv. Funct. Mater. 30, 1908902 (2020). https://doi.org/10.1002/adfm.201908902
- B. Peng, K. Cao, A.H.Y. Lau, M. Chen, Y. Lu et al., Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv. Mater. 32, 2002281 (2020). https://doi.org/10.1002/adma.202002281
- K. Pei, F. Wang, W. Han, S. Yang, K. Liu et al., Suppression of persistent photoconductivity of rubrene crystals using gate-tunable rubrene/Bi2Se3 diodes with photoinduced negative differential resistance. Small 16, 2002312 (2020). https://doi.org/10.1002/smll.202002312
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- X. Ye, Y. Liu, Q. Han, C. Ge, S. Cui et al., Microspacing in-air sublimation growth of organic crystals. Chem. Mater. 30, 412 (2018). https://doi.org/10.1021/acs.chemmater.7b04170
- Y. Wang, M. Yasar, Z. Luo, S. Zhou, Y. Yu et al., Temperature difference triggering controlled growth of all-inorganic perovskite nanowire arrays in air. Small 14, 1803010 (2018). https://doi.org/10.1002/smll.201803010
- X. Ye, Y. Liu, Q. Guo, Q. Han, C. Ge et al., 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat. Commun. 10, 761 (2019). https://doi.org/10.1038/s41467-019-08712-1
- R. Wang, Y. Muhammad, X. Xu, M. Ran, Q. Zhang et al., Facilitating all-inorganic halide perovskites fabrication in confined-space deposition. Small Methods 4, 2000102 (2020). https://doi.org/10.1002/smtd.202000102
- X. Feng, Z. Sun, K. Pei, W. Han, F. Wang et al., 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Adv. Mater. 32, 2003146 (2020). https://doi.org/10.1002/adma.202003146
- R. Ai, X. Guan, J. Li, K. Yao, P. Chen et al., Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano 11, 3413 (2017). https://doi.org/10.1021/acsnano.7b01507
- Z. Yan, K. Yin, Z. Yu, X. Li, M. Li et al., Pressure-induced band-gap closure and metallization in two-dimensional transition metal halide CdI2. Appl. Mater. Today 18, 100532 (2020). https://doi.org/10.1016/j.apmt.2019.100532
- N. Zhou, L. Gan, R. Yang, F. Wang, L. Li et al., Nonlayered two-dimensional defective semiconductor γ-Ga2S3 toward broadband photodetection. ACS Nano 13, 6297 (2019). https://doi.org/10.1021/acsnano.9b00276
- W. Zheng, W. Feng, X. Zhang, X. Chen, G. Liu et al., Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26, 2648 (2016). https://doi.org/10.1002/adfm.201504775
- L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362 (2018). https://doi.org/10.1039/C7EE03640J
- X.-J. Wu, J. Chen, C. Tan, Y. Zhu, Y. Han et al., Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8, 470 (2016). https://doi.org/10.1038/nchem.2473
- J. Chen, X.-J. Wu, L. Yin, B. Li, X. Hong et al., One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 127, 1226 (2015). https://doi.org/10.1002/ange.201410172
- T. Gao, T. Wang, Two-dimensional single crystal CdS nanosheets: synthesis and properties. Cryst. Growth Des. 10, 4995 (2010). https://doi.org/10.1021/cg1010852
- S.-I. Nakashima, H. Yoshida, T. Fukumoto, A. Mitsuishi, Raman spectra of CdCl2, CdBr 2 and CdI2. J. Phys. Soc. Jpn. 31, 1847 (1971). https://doi.org/10.1143/JPSJ.31.1847
- D.J. Lockwood, Lattice vibrations of CdCl2, CdBr 2, MnCl2, and CoCl2: infrared and Raman spectra. J. Opt. Soc. Am. 63, 374 (1973). https://doi.org/10.1364/JOSA.63.000374
- D.-D. Zhu, J. Xia, L. Wang, X.-Z. Li, L.-F. Tian et al., Van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale 8, 11375 (2016). https://doi.org/10.1039/c6nr02779b
- C. Gong, J. Chu, C. Yin, C. Yan, X. Hu et al., Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes. Adv. Mater. 31, 1903580 (2019). https://doi.org/10.1002/adma.201903580
References
N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018). https://doi.org/10.1038/s41565-017-0035-5
A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419 (2013). https://doi.org/10.1038/nature12385
R. Kempt, A. Kuc, T. Heine, Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 59, 9242 (2020). https://doi.org/10.1002/anie.201914886
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355 (2018). https://doi.org/10.1038/s41586-018-0008-3
Y.-L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma et al., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369, 670 (2020). https://doi.org/10.1126/science.abb7023
S. Kim, H. Wang, Y.M. Lee, 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew. Chem. Int. Ed. 58, 17512 (2019). https://doi.org/10.1002/anie.201814349
A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 183 (2017). https://doi.org/10.1038/s41570-016-0014
F. Wang, Z. Wang, L. Yin, R. Cheng, J. Wang et al., 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47, 6296 (2018). https://doi.org/10.1039/c8cs00255j
F. Wang, Z. Wang, T.A. Shifa, Y. Wen, F. Wang et al., Two-dimensional non-layered materials: synthesis, properties and applications. Adv. Funct. Mater. 27, 1603254 (2017). https://doi.org/10.1002/adfm.201603254
Y. Wang, Z. Zhang, Y. Mao, X. Wang, Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 13, 3993 (2020). https://doi.org/10.1039/D0EE01714K
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 1057 (2012). https://doi.org/10.1038/ncomms2066
R. Liu, F. Wang, L. Liu, X. He, J. Chen et al., Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct. 2, 2000136 (2021). https://doi.org/10.1002/sstr.202000136
K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao et al., Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274 (2016). https://doi.org/10.1126/science.aad8609
G. Song, W. Gong, S. Cong, Z. Zhao, Ultrathin two-dimensional nanostructures: surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem. Int. Ed. 60, 5505 (2021). https://doi.org/10.1002/anie.202015306
Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei et al., Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 140, 16392 (2018). https://doi.org/10.1021/jacs.8b08351
H. Duan, N. Yan, R. Yu, C.-R. Chang, G. Zhou et al., Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014). https://doi.org/10.1038/ncomms4093
S. Yang, G. Chen, A.G. Ricciardulli, P. Zhang, Z. Zhang et al., Topochemical synthesis of two-dimensional transition-metal phosphides using phosphorene templates. Angew. Chem. Int. Ed. 59, 465 (2020). https://doi.org/10.1002/anie.201911428
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78 (2014). https://doi.org/10.1038/nature13970
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013). https://doi.org/10.1126/science.1241488
Y. Guo, J. Peng, W. Qin, J. Zeng, J. Zhao et al., Freestanding cubic ZrN single-crystalline films with two-dimensional superconductivity. J. Am. Chem. Soc. 141, 10183 (2019). https://doi.org/10.1021/jacs.9b05114
T. Tallinen, J.A. Aström, P. Kekäläinen, J. Timonen, Mechanical and thermal stability of adhesive membranes with nonzero bending rigidity. Phys. Rev. Lett. 105, 26103 (2010). https://doi.org/10.1103/PhysRevLett.105.026103
A.R. Smith, K.-J. Chao, Q. Niu, C.-K. Shih, Formation of atomically flat silver films on GaAs with a “silver mean” quasi periodicity. Science 273, 226 (1996). https://doi.org/10.1126/science.273.5272.226
C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li et al., Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28, 1705833 (2018). https://doi.org/10.1002/adfm.201705833
R. Cheng, Y. Wen, L. Yin, F. Wang, F. Wang et al., Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 29, 1703122 (2017). https://doi.org/10.1002/adma.201703122
Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang et al., Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 28, 8051 (2016). https://doi.org/10.1002/adma.201602481
Q. Wang, K. Xu, Z. Wang, F. Wang, Y. Huang et al., Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 15, 1183 (2015). https://doi.org/10.1021/nl504258m
Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8, 7497 (2014). https://doi.org/10.1021/nn5028104
B. Jin, P. Huang, Q. Zhang, X. Zhou, X. Zhang et al., Self-limited epitaxial growth of ultrathin nonlayered CdS flakes for high-performance photodetectors. Adv. Funct. Mater. 28, 1800181 (2018). https://doi.org/10.1002/adfm.201800181
X. Hu, P. Huang, B. Jin, X. Zhang, H. Li et al., Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J. Am. Chem. Soc. 140, 12909 (2018). https://doi.org/10.1021/jacs.8b07383
B. Jin, F. Liang, Z.-Y. Hu, P. Wei, K. Liu et al., Nonlayered CdSe flakes homojunctions. Adv. Funct. Mater. 30, 1908902 (2020). https://doi.org/10.1002/adfm.201908902
B. Peng, K. Cao, A.H.Y. Lau, M. Chen, Y. Lu et al., Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv. Mater. 32, 2002281 (2020). https://doi.org/10.1002/adma.202002281
K. Pei, F. Wang, W. Han, S. Yang, K. Liu et al., Suppression of persistent photoconductivity of rubrene crystals using gate-tunable rubrene/Bi2Se3 diodes with photoinduced negative differential resistance. Small 16, 2002312 (2020). https://doi.org/10.1002/smll.202002312
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
X. Ye, Y. Liu, Q. Han, C. Ge, S. Cui et al., Microspacing in-air sublimation growth of organic crystals. Chem. Mater. 30, 412 (2018). https://doi.org/10.1021/acs.chemmater.7b04170
Y. Wang, M. Yasar, Z. Luo, S. Zhou, Y. Yu et al., Temperature difference triggering controlled growth of all-inorganic perovskite nanowire arrays in air. Small 14, 1803010 (2018). https://doi.org/10.1002/smll.201803010
X. Ye, Y. Liu, Q. Guo, Q. Han, C. Ge et al., 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat. Commun. 10, 761 (2019). https://doi.org/10.1038/s41467-019-08712-1
R. Wang, Y. Muhammad, X. Xu, M. Ran, Q. Zhang et al., Facilitating all-inorganic halide perovskites fabrication in confined-space deposition. Small Methods 4, 2000102 (2020). https://doi.org/10.1002/smtd.202000102
X. Feng, Z. Sun, K. Pei, W. Han, F. Wang et al., 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Adv. Mater. 32, 2003146 (2020). https://doi.org/10.1002/adma.202003146
R. Ai, X. Guan, J. Li, K. Yao, P. Chen et al., Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano 11, 3413 (2017). https://doi.org/10.1021/acsnano.7b01507
Z. Yan, K. Yin, Z. Yu, X. Li, M. Li et al., Pressure-induced band-gap closure and metallization in two-dimensional transition metal halide CdI2. Appl. Mater. Today 18, 100532 (2020). https://doi.org/10.1016/j.apmt.2019.100532
N. Zhou, L. Gan, R. Yang, F. Wang, L. Li et al., Nonlayered two-dimensional defective semiconductor γ-Ga2S3 toward broadband photodetection. ACS Nano 13, 6297 (2019). https://doi.org/10.1021/acsnano.9b00276
W. Zheng, W. Feng, X. Zhang, X. Chen, G. Liu et al., Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26, 2648 (2016). https://doi.org/10.1002/adfm.201504775
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362 (2018). https://doi.org/10.1039/C7EE03640J
X.-J. Wu, J. Chen, C. Tan, Y. Zhu, Y. Han et al., Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8, 470 (2016). https://doi.org/10.1038/nchem.2473
J. Chen, X.-J. Wu, L. Yin, B. Li, X. Hong et al., One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 127, 1226 (2015). https://doi.org/10.1002/ange.201410172
T. Gao, T. Wang, Two-dimensional single crystal CdS nanosheets: synthesis and properties. Cryst. Growth Des. 10, 4995 (2010). https://doi.org/10.1021/cg1010852
S.-I. Nakashima, H. Yoshida, T. Fukumoto, A. Mitsuishi, Raman spectra of CdCl2, CdBr 2 and CdI2. J. Phys. Soc. Jpn. 31, 1847 (1971). https://doi.org/10.1143/JPSJ.31.1847
D.J. Lockwood, Lattice vibrations of CdCl2, CdBr 2, MnCl2, and CoCl2: infrared and Raman spectra. J. Opt. Soc. Am. 63, 374 (1973). https://doi.org/10.1364/JOSA.63.000374
D.-D. Zhu, J. Xia, L. Wang, X.-Z. Li, L.-F. Tian et al., Van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale 8, 11375 (2016). https://doi.org/10.1039/c6nr02779b
C. Gong, J. Chu, C. Yin, C. Yan, X. Hu et al., Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes. Adv. Mater. 31, 1903580 (2019). https://doi.org/10.1002/adma.201903580