Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure
Corresponding Author: Peijiang Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 173
Abstract
Realizing ultra-wideband absorption, desirable attenuation capability at high temperature and mechanical requirements for real-life applications remains a great challenge for microwave absorbing materials. Herein, we have constructed a porous carbon fiber/polymethacrylimide (CP) structure for acquiring promising microwave absorption performance and withstanding both elevated temperature and high strength in a low density. Given the ability of porous structure to induce desirable impedance matching and multiple reflection, the absorption bandwidth of CP composite can reach ultra-wideband absorption of 14 GHz at room temperature and even cover the whole X-band at 473 K. Additionally, the presence of imide ring group in polymethacrylimide and hard bubble wall endows the composite with excellent heat and compressive behaviors. Besides, the lightweight of the CP composite with a density of only 110 mg cm−3 coupled with high compressive strength of 1.05 MPa even at 453 K also satisfies the requirements in engineering applications. Compared with soft and compressible aerogel materials, we envision that the rigid porous foam absorbing material is particularly suitable for environmental extremes.
Highlights:
1 Constructing a porous carbon fiber/polymethacrylimide (CP) structure for acquiring promising electromagnetic absorption performance and withstanding both elevated temperature and high strength in a low density.
2 The absorption bandwidth of CP composite can reach ultra-wideband absorption of 14 GHz at room temperature and even cover the whole X-band at 473 K.
3 The lightweight of the CP composite with a density of only 110 mg cm−3 coupled with high compressive strength of 1.05 MPa even at 453 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang et al., Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6(17), 4586–4602 (2018). https://doi.org/10.1039/c7tc05869a
- Z. Gao, D. Lan, L. Zhang, H. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 31(50), 2106677 (2021). https://doi.org/10.1002/adfm.202106677
- S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
- B. Dong, C. Zhang, G. Guo, X. Zhang, Y. Wang et al., BST-silicon hybrid terahertz meta-modulator for dual-stimuli-triggered opposite transmission amplitude control. Nanophotonics 11(9), 2075–2083 (2022). https://doi.org/10.1515/nanoph-2022-0018
- T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079
- Z. Jiao, W. Huyan, J. Yao, Z. Yao, J. Zhou et al., Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling. J. Mater. Sci. Tech. 113, 166–174 (2022). https://doi.org/10.1016/j.jmst.2021.09.024
- J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
- Z. Mo, R. Yang, D. Lu, L. Yang, Q. Hu et al., Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019). https://doi.org/10.1016/j.carbon.2018.12.064
- H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30(4), 1907251 (2020). https://doi.org/10.1002/adfm.201907251
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- J. Gao, J. Luo, L. Wang, X. Huang, H. Wang et al., Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190
- S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668
- S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in x-band. Carbon 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002
- J. Shu, W. Cao, M. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
- R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 12(4), 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134
- P. Liu, S. Gao, Y. Wang, Y. Huang, F. Zhou et al., Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021). https://doi.org/10.1016/j.carbon.2020.11.043
- P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- W. Tian, X. Zhang, Y. Guo, C. Mu, P. Zhou et al., Hybrid silica-carbon bilayers anchoring on fesial surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 173, 185–193 (2021). https://doi.org/10.1016/j.carbon.2020.11.002
- H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15(18), 1900900 (2019). https://doi.org/10.1002/smll.201900900
- M. Wang, X. Tang, J. Cai, H. Wu, J.B. Shen et al., Fabrication, mechanisms and perspectives of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047
- X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
- D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Part B Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
- C. Hao, B. Wang, F. Wen, C. Mu, J. Xiang et al., Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel. Nanotechnology 29(23), 235604 (2018). https://doi.org/10.1088/1361-6528/aab83a
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- P. Liu, S. Gao, C. Chen, F. Zhou, Z. Meng et al., Organic polymer aerogel derived N-doped carbon aerogel with vacancies for ultrahigh microwave absorption. Carbon 169, 276–287 (2020). https://doi.org/10.1016/j.carbon.2020.07.063
- Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- W.W. Liu, H. Li, Q.P. Zeng, H.N. Duan, Y.P. Guo et al., Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 3(7), 3739–3747 (2015). https://doi.org/10.1039/c4ta06091a
- Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2022). https://doi.org/10.1007/s40820-021-00776-3
- Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
- G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
- Z. Zhang, M. Xu, B. Li, Research on rapid preparation and performance of polymethacrylimide foams. J. Appl. Polym. Sci. 134(24), 44959 (2017). https://doi.org/10.1002/app.44959
- S. Cheon, S. Yu, K.Y. Kim, D.Y. Lim, J.C. Lee, Improvement of interfacial bonding force between PMI foam and CFRP in PMI foam-cored CFRP sandwich composites. Fibers Polym. 22(8), 2281–2284 (2021). https://doi.org/10.1007/s12221-021-0792-5
- R. Zhao, L. Yin, L. Pan, Application of polymethacrylimide (PMI) foam cored sandwich structure in aerospace industry. Aero. Mater. Tech. 41(2), 13–16 (2011). https://doi.org/10.1080/17415993.2010.547197
- Y. Zheng, M. Gu, S. Cheng, H. Nie, G. Zhou. Research and application progress of polymethacrylimide foam. New Chem. Mater. 48(4), 24–28 (2020). https://www.hgxx.org/EN/Y2020/V48/I4/24
- L. Pu, S. Li, Y. Zhang, H. Zhu, W. Fan et al., Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J. Mater. Chem. C 9(6), 2086–2094 (2021). https://doi.org/10.1039/d0tc04951d
- Y.Y. Wang, W.J. Sun, K. Dai, D.X. Yan, Z.M. Li, Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos. Sci. Technol. 212, 108848 (2021). https://doi.org/10.1016/j.compscitech.2021.108848
- H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, Excellent electromagnetic absorption capability of ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8(2), 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
- Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
- Y. Gao, C. Wang, J. Li, S. Guo, Adjustment of dielectric permittivity and loss of graphene/thermoplastic polyurethane flexible foam: towards high microwave absorbing performance. Compos. Part A Appl. Sci. Manuf. 117, 65–75 (2019). https://doi.org/10.1016/j.compositesa.2018.10.036
- C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- C.Z. Wang, J. Li, S.Y. Guo, High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure. Compos. Part A Appl. Sci. Manuf. 125, 105522 (2019). https://doi.org/10.1016/j.compositesa.2019.105522
- B. Zhang, J. Wang, J. Wang, H. Duan, S. Huo et al., Coprecipitation synthesis of hollow poly(acrylonitrile) microspheres@CoFe2O4 with graphene as lightweight microwave absorber. J. Mater. Sci. Mater. Electron. 28(4), 3337–3348 (2017). https://doi.org/10.1007/s10854-016-5927-x
- X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
- B. Zhao, Y. Li, Q. Zeng, B. Fan, L. Wang et al., Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Tech. 107, 100–110 (2022). https://doi.org/10.1016/j.jmst.2021.07.044
- D. Fan, R. Tan, B. Wei, P. Chen, J. Zhou, Broadband microwave absorption performance and theoretical dielectric properties model of hollow porous carbon spheres/expanded polypropylene composite foams. Polymer 234, 124262 (2021). https://doi.org/10.1016/j.polymer.2021.124262
- Q. Li, X. Zhao, Z. Zhang, X. Xun, B. Zhao et al., Architecture design and interface engineering of self-assembly vs4/rgo heterostructures for ultrathin absorbent. Nano-Micro Lett. 14, 67 (2022). https://doi.org/10.1007/s40820-022-00809-5
- Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2022). https://doi.org/10.1007/s40820-021-00750-z
- Y. Liu, X. Liu, E. Xinyu, B. Wang, Z. Jia et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Tech. 103, 157–164 (2022). https://doi.org/10.1016/j.jmst.2021.06.034
- T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from mxene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
References
M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang et al., Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6(17), 4586–4602 (2018). https://doi.org/10.1039/c7tc05869a
Z. Gao, D. Lan, L. Zhang, H. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 31(50), 2106677 (2021). https://doi.org/10.1002/adfm.202106677
S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
B. Dong, C. Zhang, G. Guo, X. Zhang, Y. Wang et al., BST-silicon hybrid terahertz meta-modulator for dual-stimuli-triggered opposite transmission amplitude control. Nanophotonics 11(9), 2075–2083 (2022). https://doi.org/10.1515/nanoph-2022-0018
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079
Z. Jiao, W. Huyan, J. Yao, Z. Yao, J. Zhou et al., Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling. J. Mater. Sci. Tech. 113, 166–174 (2022). https://doi.org/10.1016/j.jmst.2021.09.024
J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
Z. Mo, R. Yang, D. Lu, L. Yang, Q. Hu et al., Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019). https://doi.org/10.1016/j.carbon.2018.12.064
H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30(4), 1907251 (2020). https://doi.org/10.1002/adfm.201907251
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
J. Gao, J. Luo, L. Wang, X. Huang, H. Wang et al., Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190
S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668
S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in x-band. Carbon 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002
J. Shu, W. Cao, M. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 12(4), 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134
P. Liu, S. Gao, Y. Wang, Y. Huang, F. Zhou et al., Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021). https://doi.org/10.1016/j.carbon.2020.11.043
P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
W. Tian, X. Zhang, Y. Guo, C. Mu, P. Zhou et al., Hybrid silica-carbon bilayers anchoring on fesial surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 173, 185–193 (2021). https://doi.org/10.1016/j.carbon.2020.11.002
H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15(18), 1900900 (2019). https://doi.org/10.1002/smll.201900900
M. Wang, X. Tang, J. Cai, H. Wu, J.B. Shen et al., Fabrication, mechanisms and perspectives of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047
X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Part B Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
C. Hao, B. Wang, F. Wen, C. Mu, J. Xiang et al., Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel. Nanotechnology 29(23), 235604 (2018). https://doi.org/10.1088/1361-6528/aab83a
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
P. Liu, S. Gao, C. Chen, F. Zhou, Z. Meng et al., Organic polymer aerogel derived N-doped carbon aerogel with vacancies for ultrahigh microwave absorption. Carbon 169, 276–287 (2020). https://doi.org/10.1016/j.carbon.2020.07.063
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
W.W. Liu, H. Li, Q.P. Zeng, H.N. Duan, Y.P. Guo et al., Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 3(7), 3739–3747 (2015). https://doi.org/10.1039/c4ta06091a
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2022). https://doi.org/10.1007/s40820-021-00776-3
Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
Z. Zhang, M. Xu, B. Li, Research on rapid preparation and performance of polymethacrylimide foams. J. Appl. Polym. Sci. 134(24), 44959 (2017). https://doi.org/10.1002/app.44959
S. Cheon, S. Yu, K.Y. Kim, D.Y. Lim, J.C. Lee, Improvement of interfacial bonding force between PMI foam and CFRP in PMI foam-cored CFRP sandwich composites. Fibers Polym. 22(8), 2281–2284 (2021). https://doi.org/10.1007/s12221-021-0792-5
R. Zhao, L. Yin, L. Pan, Application of polymethacrylimide (PMI) foam cored sandwich structure in aerospace industry. Aero. Mater. Tech. 41(2), 13–16 (2011). https://doi.org/10.1080/17415993.2010.547197
Y. Zheng, M. Gu, S. Cheng, H. Nie, G. Zhou. Research and application progress of polymethacrylimide foam. New Chem. Mater. 48(4), 24–28 (2020). https://www.hgxx.org/EN/Y2020/V48/I4/24
L. Pu, S. Li, Y. Zhang, H. Zhu, W. Fan et al., Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J. Mater. Chem. C 9(6), 2086–2094 (2021). https://doi.org/10.1039/d0tc04951d
Y.Y. Wang, W.J. Sun, K. Dai, D.X. Yan, Z.M. Li, Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos. Sci. Technol. 212, 108848 (2021). https://doi.org/10.1016/j.compscitech.2021.108848
H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, Excellent electromagnetic absorption capability of ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8(2), 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
Y. Gao, C. Wang, J. Li, S. Guo, Adjustment of dielectric permittivity and loss of graphene/thermoplastic polyurethane flexible foam: towards high microwave absorbing performance. Compos. Part A Appl. Sci. Manuf. 117, 65–75 (2019). https://doi.org/10.1016/j.compositesa.2018.10.036
C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
C.Z. Wang, J. Li, S.Y. Guo, High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure. Compos. Part A Appl. Sci. Manuf. 125, 105522 (2019). https://doi.org/10.1016/j.compositesa.2019.105522
B. Zhang, J. Wang, J. Wang, H. Duan, S. Huo et al., Coprecipitation synthesis of hollow poly(acrylonitrile) microspheres@CoFe2O4 with graphene as lightweight microwave absorber. J. Mater. Sci. Mater. Electron. 28(4), 3337–3348 (2017). https://doi.org/10.1007/s10854-016-5927-x
X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
B. Zhao, Y. Li, Q. Zeng, B. Fan, L. Wang et al., Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Tech. 107, 100–110 (2022). https://doi.org/10.1016/j.jmst.2021.07.044
D. Fan, R. Tan, B. Wei, P. Chen, J. Zhou, Broadband microwave absorption performance and theoretical dielectric properties model of hollow porous carbon spheres/expanded polypropylene composite foams. Polymer 234, 124262 (2021). https://doi.org/10.1016/j.polymer.2021.124262
Q. Li, X. Zhao, Z. Zhang, X. Xun, B. Zhao et al., Architecture design and interface engineering of self-assembly vs4/rgo heterostructures for ultrathin absorbent. Nano-Micro Lett. 14, 67 (2022). https://doi.org/10.1007/s40820-022-00809-5
Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2022). https://doi.org/10.1007/s40820-021-00750-z
Y. Liu, X. Liu, E. Xinyu, B. Wang, Z. Jia et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Tech. 103, 157–164 (2022). https://doi.org/10.1016/j.jmst.2021.06.034
T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from mxene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919