Applications of Carbon Nanotubes in the Internet of Things Era
Corresponding Author: Gianaurelio Cuniberti
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 191
Abstract
The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain–machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
Highlights:
1 The Internet of Things era related electronics were updated based on carbon nanotube transistors, radiofrequency circuits and energy storage devices.
2 The applications in healthcare and biomedical devices were discussed including sensory, data processors and actuators.
3 The fabrication of wafer-scale carbon nanotubes has been introduced as well as the machine learning strategy for prediction of optimal synthesis parameters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Perkel, The internet of things comes to the lab. Nature 542(7639), 125–126 (2017). https://doi.org/10.1038/542125a
- R. Haight, W. Haensch, D. Friedman, ENGINEERING. solar-powering the internet of things. Science 353(6295), 124–125 (2016). https://doi.org/10.1126/science.aag0476
- E. Hittinger, P. Jaramillo, Internet of things: energy boon or bane? Science 364(6438), 326–328 (2019). https://doi.org/10.1126/science.aau8825
- M. Hvistendahl, China Pushes the “Internet of Things.” Science 336(6086), 1223–1223 (2012). https://doi.org/10.1126/science.336.6086.1223
- Q.F. Shi, B.W. Dong, T.Y.Y. He, Z.D. Sun, J.X. Zhu et al., Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- J.A. Cardenas, J.B. Andrews, S.G. Noyce, A.D. Franklin, Carbon nanotube electronics for IoT sensors. Nano Futures 4(1), 012001 (2020). https://doi.org/10.1088/2399-1984/ab5f20
- E. Amram Bengio, D. Senic, L.W. Taylor, D.E. Tsentalovich, P. Chen et al., High efficiency carbon nanotube thread antennas. Appl. Phys. Lett. 111(16), 163109 (2017)
- E. Amram Bengio, D. Senic, L.W. Taylor, R.J. Headrick, M. King et al., Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 114(20), 203102 (2019)
- B. Gervasi, Will carbon nanotube memory replace DRAM? IEEE Micro 39(2), 45–51 (2019). https://doi.org/10.1109/mm.2019.2897560
- Y. Sun, W. He, Z. Mao, H. Jiao, V. Kursun, Monolithic 3D carbon nanotube memory for enhanced yield and integration density. IEEE Trans. Circuits Syst. 67(7), 2431–2441 (2020). https://doi.org/10.1109/tcsi.2020.2980074
- P.S. Kanhaiya, C. Lau, G. Hills, M.D. Bishop, M.M. Shulaker, Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE Trans. Electron Devices 66(12), 5375–5380 (2019). https://doi.org/10.1109/ted.2019.2945533
- X. Wang, K.-C. Chang, Z. Zhang, Q. Liu, L. Li et al., Performance enhancement and mechanism exploration of all-carbon-nanotube memory with hydroxylation and dehydration through supercritical carbon dioxide. Carbon 173(88), 97–104 (2021). https://doi.org/10.1016/j.carbon.2020.10.084
- T.Y. Qu, Y. Sun, M.L. Chen, Z.B. Liu, Q.B. Zhu et al., A flexible carbon nanotube sen-memory device. Adv. Mater. 32(9), 1907288 (2020). https://doi.org/10.1002/adma.201907288
- S. Kim, M. Amjadi, T.I. Lee, Y. Jeong, D. Kwon et al., Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 11(26), 23639–23648 (2019). https://doi.org/10.1021/acsami.9b07636
- G. Choi, H. Jang, S. Oh, H. Cho, H. Yoo et al., A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J. Mater. Chem. C 7(31), 9504–9512 (2019). https://doi.org/10.1039/c9tc02486g
- W. Lee, H. Koo, J. Sun, J. Noh, K.S. Kwon et al., A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci. Rep. 5(88), 17707 (2015). https://doi.org/10.1038/srep17707
- T.Y. Zhao, D.D. Zhang, T.Y. Qu, L.L. Fang, Q.B. Zhu et al., Flexible 64 x 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces 11(12), 11699–11705 (2019). https://doi.org/10.1021/acsami.8b17909
- Y.C. Kim, S.H. Park, C.S. Lee, T.W. Chung, E. Cho et al., A 46-inch diagonal carbon nanotube field emission backlight for liquid crystal display. Carbon 91(88), 304–310 (2015). https://doi.org/10.1016/j.carbon.2015.04.093
- M.A. McCarthy, B. Liu, E.P. Donoghue, I. Kravchenko, D.Y. Kim et al., Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011). https://doi.org/10.1126/science.1203052
- C. Wang, J. Zhang, K. Ryu, A. Badmaev, L.G. De Arco et al., Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 9(12), 4285–4291 (2009). https://doi.org/10.1021/nl902522f
- R. Ho, C. Lau, G. Hills, M.M. Shulaker, Carbon nanotube CMOS analog circuitry. IEEE Trans. Nanotechn. 18(88), 845–848 (2019). https://doi.org/10.1109/tnano.2019.2902739
- D. Suzuki, Y. Kawano, Flexible terahertz imaging systems with single-walled carbon nanotube films. Carbon 162(88), 13–24 (2020). https://doi.org/10.1016/j.carbon.2020.01.113
- W.A. Gaviria Rojas, J.J. McMorrow, M.L. Geier, Q. Tang, C.H. Kim et al., Solution-processed carbon nanotube true random number generator. Nano Lett. 17(8), 4976–4981 (2017)
- A. Sandhu, Strictly nanotubes in Beijing. Nat. Nanotechnol. 4(7), 398–399 (2009). https://doi.org/10.1038/nnano.2009.164
- C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng et al., Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 20(6), 885–891 (2010). https://doi.org/10.1002/adfm.200901960
- L. Yu, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116(22), 13413–13453 (2016). https://doi.org/10.1021/acs.chemrev.6b00179
- D. Chen, K. Jiang, T. Huang, G. Shen, Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater. 32(5), 1901806 (2020). https://doi.org/10.1002/adma.201901806
- F.N. Ishikawa, H.K. Chang, K. Ryu, P.C. Chen, A. Badmaev et al., Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 3(1), 73–79 (2009). https://doi.org/10.1021/nn800434d
- P.-C. Chen, G. Shen, S. Sukcharoenchoke, C. Zhou, Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 94(4), 043113 (2009). https://doi.org/10.1063/1.3069277
- Y. He, H. Jin, S. Qiu, Q. Li, A novel strategy for high-performance transparent conductive films based on double-walled carbon nanotubes. Chem. Commun. 53(20), 2934–2937 (2017). https://doi.org/10.1039/c6cc10252b
- E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613
- P.M. Martinez, A. Ishteev, A. Fahimi, J. Velten, I. Jurewicz et al., Silver nanowires on carbon nanotube aerogel sheets for flexible, transparent electrodes. ACS Appl. Mater. Interfaces 11(35), 32235–32243 (2019). https://doi.org/10.1021/acsami.9b06368
- A.E. Goldt, O.T. Zaremba, M.O. Bulavskiy, F.S. Fedorov, K.V. Larionov et al., Highly efficient bilateral doping of single-walled carbon nanotubes. J. Mater. Chem. C 9(13), 4514–4521 (2021). https://doi.org/10.1039/d0tc05996j
- Q. Zhang, W. Zhou, X. Xia, K. Li, N. Zhang et al., Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique. Adv. Mater. 32(39), 2004277 (2020). https://doi.org/10.1002/adma.202004277
- W. Yu, C.H. Liu, S.S. Fan, High water-absorbent and phase-change heat dissipation materials based on super-aligned cross-stack CNT films. Adv. Engin. Mater. 21(5), 1801216 (2019). https://doi.org/10.1002/adem.201801216
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
- L. Xiang, H. Zhang, Y. Hu, L.-M. Peng, Carbon nanotube-based flexible electronics. J. Mater. Chem. C 6(29), 7714–7727 (2018). https://doi.org/10.1039/c8tc02280a
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
- D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.H. Kim, Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32(15), 1902743 (2020). https://doi.org/10.1002/adma.201902743
- K. Qi, Y. Zhou, K. Ou, Y. Dai, X. You et al., Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 170(88), 464–476 (2020). https://doi.org/10.1016/j.carbon.2020.07.042
- H. Kim, T.H. Kang, J. Ahn, H. Han, S. Park et al., Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable E-textile applications. ACS Nano 14(15), 17213–17223 (2020). https://doi.org/10.1021/acsnano.0c07143
- N. Matsuhisa, X. Chen, Z. Bao, T. Someya, Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48(11), 2946–2966 (2019). https://doi.org/10.1039/c8cs00814k
- H. Wu, Y. Huang, F. Xu, Y. Duan, Z. Yin, Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28(45), 9881–9919 (2016). https://doi.org/10.1002/adma.201602251
- Y.J. Hong, H. Jeong, K.W. Cho, N. Lu, D.H. Kim, Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29(19), 1808247 (2019). https://doi.org/10.1002/adfm.201808247
- T. Lei, I. Pochorovski, Z. Bao, Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 50(4), 1096–1104 (2017). https://doi.org/10.1021/acs.accounts.7b00062
- E. Oh, T. Kim, J. Yoon, S. Lee, D. Kim et al., Highly reliable liquid metal-solid metal contacts with a corrugated single-walled carbon nanotube diffusion barrier for stretchable electronics. Adv. Funct. Mater. 28(51), 1806014 (2018). https://doi.org/10.1002/adfm.201806014
- J. Lee, S. Pyo, D.S. Kwon, E. Jo, W. Kim et al., Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 15(12), 1805120 (2019). https://doi.org/10.1002/smll.201805120
- M. Matsunaga, J. Hirotani, S. Kishimoto, Y. Ohno, High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy 67(88), 104297 (2020). https://doi.org/10.1016/j.nanoen.2019.104297
- Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
- T. Lei, L.L. Shao, Y.Q. Zheng, G. Pitner, G. Fang et al., Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10(1), 2161 (2019). https://doi.org/10.1038/s41467-019-10145-9
- T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52(2), 288–296 (2019). https://doi.org/10.1021/acs.accounts.8b00497
- F. Sun, Q. Lu, S. Feng, T. Zhang, Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 15(3), 3875–3899 (2021). https://doi.org/10.1021/acsnano.0c10049
- Y. Ma, H. Li, S. Chen, Y. Liu, Y. Meng et al., Skin-like electronics for perception and interaction: materials, structural designs, and applications. Adv. Intell. Syst. 3(4), 2000108 (2020). https://doi.org/10.1002/aisy.202000108
- Q. Zhang, L. Tan, Y. Chen, T. Zhang, W. Wang et al., Human-like sensing and reflexes of graphene-based films. Adv. Sci. 3(12), 1600130 (2016). https://doi.org/10.1002/advs.201600130
- Y.H. Jung, B. Park, J.U. Kim, T.I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31(34), 1803637 (2019). https://doi.org/10.1002/adma.201803637
- L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur et al., Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 14(11), 6685–6692 (2014). https://doi.org/10.1021/nl5034304
- Y. Liu, N. Wei, Q. Zeng, J. Han, H. Huang et al., Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 4(2), 238–245 (2016). https://doi.org/10.1002/adom.201500529
- D. Berco, D. Shenp Ang, Recent progress in synaptic devices paving the way toward an artificial cogni‐retina for bionic and machine vision. Adv. Intell. Syst. 1(1), 1900003 (2019). https://doi.org/10.1002/aisy.201900003
- Y. Gu, X. Wang, W. Gu, Y. Wu, T. Li et al., Flexible electronic eardrum. Nano Res. 10(8), 2683–2691 (2017). https://doi.org/10.1007/s12274-017-1470-1
- S. Orzechowska, A. Mazurek, R. Swislocka, W. Lewandowski, Electronic nose: recent developments in gas sensing and molecular mechanisms of graphene detection and other materials. Materials 13(1), 80 (2019). https://doi.org/10.3390/ma13010080
- S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 1(3), 289–316 (2019). https://doi.org/10.1002/inf2.12029
- T. Zhu, Y. Zhang, L. Luo, X. Zhao, Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection. ACS Appl. Mater. Interfaces 11(11), 10856–10861 (2019). https://doi.org/10.1021/acsami.9b00803
- N.A. Fikri, A.H. Adom, A.YMd. Shakaff, M.N. Ahmad, A.H. Abdullah et al., Development of human sensory mimicking system. Sensor Lett. 9(1), 423–427 (2011). https://doi.org/10.1166/sl.2011.1492
- L.Y. Hsiao, L. Jing, K.R. Li, H.T. Yang, Y. Li et al., Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon 161(88), 784–793 (2020). https://doi.org/10.1016/j.carbon.2020.01.109
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015). https://doi.org/10.1002/advs.201500169
- K. Aoki, N. Ogihara, M. Tanaka, H. Haniu, N. Saito, Carbon nanotube-based biomaterials for orthopaedic applications. J. Mater. Chem. B 8(40), 9227–9238 (2020). https://doi.org/10.1039/d0tb01440k
- V. Mathur, S. Talapatra, S. Kar, Z. Hennighausen, In vivo partial restoration of neural activity across severed mouse spinal cord bridged with ultralong carbon nanotubes. ACS Appl. BioMater. 4(5), 4071–4078 (2021). https://doi.org/10.1021/acsabm.1c00248
- Y. Fang, L. Ouyang, T. Zhang, C. Wang, B. Lu et al., Optimizing bifurcated channels within an anisotropic scaffold for engineering vascularized oriented tissues. Adv. Healthc. Mater. 9(24), 2000782 (2020). https://doi.org/10.1002/adhm.202000782
- J. Chen, L. Wang, T. Wang, C. Li, W. Han et al., Functionalized carbon nanotube-embedded poly(vinyl alcohol) microspheres for efficient removal of tumor necrosis factor-alpha. ACS Biomater. Sci. Eng. 6(8), 4722–4730 (2020). https://doi.org/10.1021/acsbiomaterials.9b01916
- W. Chen, S. Yang, X. Wei, Z. Yang, D. Liu et al., Construction of aptamer-siRNA chimera/PEI/5-FU/carbon nanotube/collagen membranes for the treatment of peritoneal dissemination of drug-resistant gastric cancer. Adv. Healthc. Mater. 9(21), 2001153 (2020). https://doi.org/10.1002/adhm.202001153
- A. Sobajima, T. Okihara, S. Moriyama, N. Nishimura, T. Osawa et al., Multiwall carbon nanotube composites as artificial joint materials. ACS Biomater. Sci. Eng. 6(12), 7032–7040 (2020). https://doi.org/10.1021/acsbiomaterials.0c00916
- S.-C. Park, H.J. Jeong, M. Heo, J.H. Shin, J.-H. Ahn, Carbon nanotube-based ion-sensitive field-effect transistors with an on-chip reference electrode toward wearable sodium sensing. ACS Appl. Electron. Mater. 3(6), 2580–2588 (2021). https://doi.org/10.1021/acsaelm.1c00152
- T. Nguyen, T. Dinh, V.T. Dau, C.-D. Tran, H.-P. Phan et al., A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film. IEEE Sens. J. 21(6), 7308–7315 (2021). https://doi.org/10.1109/jsen.2020.3048236
- H. Wan, Y. Cao, L.W. Lo, J. Zhao, N. Sepulveda et al., Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 14(8), 10402–10412 (2020). https://doi.org/10.1021/acsnano.0c04259
- H. Xu, Y. Xie, E. Zhu, Y. Liu, Z. Shi et al., Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 8(13), 6311–6318 (2020). https://doi.org/10.1039/d0ta00158a
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
- K.-H. Kim, S.K. Hong, S.-H. Ha, L. Li, H.W. Lee et al., Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor via superaligned carbon nanotube-based strain engineering. Mater. Horizons 7(10), 2662–2672 (2020). https://doi.org/10.1039/d0mh00806k
- G. Zu, X. Wang, K. Kanamori, K. Nakanishi, Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. J. Mater. Chem. B 8(22), 4883–4889 (2020). https://doi.org/10.1039/c9tb02953b
- X.W. Xu, Y.C. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14(8), 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3
- K. Umapathi, V. Vanitha, L. Anbarasu, M. Zivkovic, N. Bacanin et al., Predictive data regression technique based carbon nanotube biosensor for efficient patient health monitoring system. J. Ambient Intell. Humanized Comput. (2021). https://doi.org/10.1007/s12652-021-03063-6
- R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci et al., Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340
- R.H. Baughman, Materials science. Playing nature’s game with artificial muscles. Science 308(5718), 63–65 (2005)
- M.Z. Miskin, A.J. Cortese, K. Dorsey, E.P. Esposito, M.F. Reynolds et al., Electronically integrated, mass-manufactured, microscopic robots. Nature 584(7822), 557–561 (2020). https://doi.org/10.1038/s41586-020-2626-9
- A.M. Brooks, M.S. Strano, A conceptual advance that gives microrobots legs. Nature 584(7822), 530–531 (2020). https://doi.org/10.1038/d41586-020-02421-2
- J.S. Hyeon, J.W. Park, R.H. Baughman, S.J. Kim, Electrochemical graphene/carbon nanotube yarn artificial muscles. Sens. Actuators B 286(88), 237–242 (2019). https://doi.org/10.1016/j.snb.2019.01.140
- H. Kim, J.A. Lee, C.P. Ambulo, H.B. Lee, S.H. Kim et al., Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv. Funct. Mater. 29(48), 1905063 (2019). https://doi.org/10.1002/adfm.201905063
- J. Liu, Y. Gao, H. Wang, R. Poling-Skutvik, C.O. Osuji et al., Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2(6), 1900163 (2020). https://doi.org/10.1002/aisy.201900163
- G.H. Kim, K. Kim, E. Lee, T. An, W. Choi et al., Recent progress on microelectrodes in neural interfaces. Materials 11(10), 1995 (2018). https://doi.org/10.3390/ma11101995
- L. Lu, X. Fu, Y. Liew, Y. Zhang, S. Zhao et al., Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 19(3), 1577–1586 (2019). https://doi.org/10.1021/acs.nanolett.8b04456
- S. Waldert,(2016) Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front. Neurosci https://doi.org/10.3389/fnins.2016.00295
- N.T. Alvarez, E. Buschbeck, S. Miller, A.D. Le, V.K. Gupta et al., Carbon nanotube fibers for neural recording and stimulation. ACS Appl. Bio-Mater. 3(9), 6478–6487 (2020). https://doi.org/10.1021/acsabm.0c00861
- N. Chen, B. Luo, A.C. Patil, J. Wang, G.G.L. Gammad et al., Nanotunnels within poly(3,4-ethylenedioxythiophene)-carbon nanotube composite for highly sensitive neural interfacing. ACS Nano 14(7), 8059–8073 (2020). https://doi.org/10.1021/acsnano.0c00672
- Y. Hu, C.M. Dominguez, J. Bauer, S. Weigel, A. Schipperges et al., Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat. Commun. 10(1), 5522 (2019). https://doi.org/10.1038/s41467-019-13381-1
- Y. Kubota, J. Sohn, S. Hatada, M. Schurr, J. Straehle et al., A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure. Nat. Commun. 9(1), 437 (2018). https://doi.org/10.1038/s41467-017-02768-7
- H.R. Lee, C.C. Kim, J.Y. Sun, Stretchable ionics - a promising candidate for upcoming wearable devices. Adv. Mater. 30(42), 1704403 (2018). https://doi.org/10.1002/adma.201704403
- J.B. Andrews, J.A. Cardenas, C.J. Lim, S.G. Noyce, J. Mullett et al., Fully printed and flexible carbon nanotube transistors for pressure sensing in automobile tires. IEEE Sens. J. 18(19), 7875–7880 (2018). https://doi.org/10.1109/jsen.2018.2842139
- M. He, R.G. Croy, J.M. Essigmann, T.M. Swager, Chemiresistive carbon nanotube sensors for N-nitrosodialkylamines. ACS Sens. 4(10), 2819–2824 (2019). https://doi.org/10.1021/acssensors.9b01532
- P. Gou, N.D. Kraut, I.M. Feigel, H. Bai, G.J. Morgan et al., Carbon nanotube chemiresistor for wireless pH sensing. Sci. Rep. 4(88), 4468 (2014). https://doi.org/10.1038/srep04468
- L. Zhang, J. He, Y. Liao, X. Zeng, N. Qiu et al., A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A 7(46), 26631–26640 (2019). https://doi.org/10.1039/c9ta10744d
- Y. Liu, F. Zhang, J. Leng, K. Fu, X.L. Lu et al., Remotely and sequentially controlled actuation of electroactivated carbon nanotube/shape memory polymer composites. Adv. Mater. Technol. 4(12), 1900600 (2019). https://doi.org/10.1002/admt.201900600
- C.B. Sweeney, A.G. Moran, J.T. Gruener, A.M. Strasser, M.J. Pospisil et al., Radio frequency heating of carbon nanotube composite materials. ACS Appl. Mater. Interfaces 10(32), 27252–27259 (2018). https://doi.org/10.1021/acsami.8b06268
- K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
- M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
- M. Umehara, H.S. Stein, D. Guevarra, P.F. Newhouse, D.A. Boyd et al.,(2019) Analyzing machine learning models to accelerate generation of fundamental materials insights. npj Comput. Mater. 5(1), 34
- K. Kaufmann, C. Zhu, A.S. Rosengarten, D. Maryanovsky, T.J. Harrington et al., Crystal symmetry determination in electron diffraction using machine learning. Science 367(6477), 564–568 (2020). https://doi.org/10.1126/science.aay3062
- B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400), 360–365 (2018). https://doi.org/10.1126/science.aat2663
- Z. Zhou, X. Li, R.N. Zare, Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent Sci. 3(12), 1337–1344 (2017). https://doi.org/10.1021/acscentsci.7b00492
- Z. Li, S. Wang, H. Xin, Toward artificial intelligence in catalysis. Nat. Catal. 1(9), 641–642 (2018). https://doi.org/10.1038/s41929-018-0150-1
- E.M. Khabushev, D.V. Krasnikov, O.T. Zaremba, A.P. Tsapenko, A.E. Goldt et al., Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10(21), 6962–6966 (2019). https://doi.org/10.1021/acs.jpclett.9b02777
- V.Y. Iakovlev, D.V. Krasnikov, E.M. Khabushev, J.V. Kolodiazhnaia, A.G. Nasibulin, Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 153(88), 100–103 (2019). https://doi.org/10.1016/j.carbon.2019.07.013
- S. Kapse, S. Janwari, U.V. Waghmare, R. Thapa, Energy parameter and electronic descriptor for carbon based catalyst predicted using QM/ML. Appl. Catal. B 286(88), 119866 (2021). https://doi.org/10.1016/j.apcatb.2020.119866
- Z.-H. Ji, L. Zhang, D.-M. Tang, C.-M. Chen, T.E.M. Nordling et al., High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3387-y
- P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker et al., Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2(1), 16031 (2016). https://doi.org/10.1038/npjcompumats.2016.31
- C. Cao, Y. Zhou, S. Ubnoske, J. Zang, Y. Cao et al., Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 9(22), 1900618 (2019). https://doi.org/10.1002/aenm.201900618
- Y. Wang, Y. Zhang, G. Wang, X. Shi, Y. Qiao et al., Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 30(16), 1907284 (2020). https://doi.org/10.1002/adfm.201907284
- C.J. Zhang, S.H. Park, O. Ronan, A. Harvey, A. Seral-Ascaso et al., Enabling flexible heterostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small 13(34), 1701677 (2017). https://doi.org/10.1002/smll.201701677
- E.B. Pomerantseva, Francesco Feng, Xinliang Cui, Yi Gogotsi, Yury, Energy storage: The future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- T.J. Mun, S.H. Kim, J.W. Park, J.H. Moon, Y. Jang et al., Wearable energy generating and storing textile based on carbon nanotube yarns. Adv. Funct. Mater. 30(23), 2000411 (2020). https://doi.org/10.1002/adfm.202000411
- I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362(6414), 547–553 (2018). https://doi.org/10.1126/science.aat7439
- T. Lv, Y. Yao, N. Li, T. Chen, Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11(5), 644–660 (2016). https://doi.org/10.1016/j.nantod.2016.08.010
- W. Lyu, W. Zhang, H. Liu, Y. Liu, H. Zuo et al., Conjugated microporous polymer network grafted carbon nanotube fibers with tunable redox activity for efficient flexible wearable energy storage. Chem. Mater. 32(19), 8276–8285 (2020). https://doi.org/10.1021/acs.chemmater.0c02089
- Z. Guo, H. Nie, Z. Yang, W. Hua, C. Ruan et al., 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Adv. Sci. 5(7), 1800026 (2018). https://doi.org/10.1002/advs.201800026
- Z. Fang, J. Wang, H. Wu, Q. Li, S. Fan et al., Progress and challenges of flexible lithium ion batteries. J. Power Sources 454(88), 227932 (2020). https://doi.org/10.1016/j.jpowsour.2020.227932
- L. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough et al., Lithium-ion textile batteries with large areal mass loading. Adv. Energy Mater. 1(6), 1012–1017 (2011). https://doi.org/10.1002/aenm.201100261
- S. Yoon, S. Lee, S. Kim, K.-W. Park, D. Cho et al., Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 279(88), 495–501 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.013
- H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
- F. Wan, S. Huang, H. Cao, Z. Niu, Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14(6), 6752–6760 (2020). https://doi.org/10.1021/acsnano.9b10214
- S. Shi, C. Sun, X. Yin, L. Shen, Q. Shi et al., FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv. Funct. Mater. 30(10), 1909283 (2020). https://doi.org/10.1002/adfm.201909283
- S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai et al., 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30(24), 2001592 (2020). https://doi.org/10.1002/adfm.202001592
- S. Yin, Z. Jin, T. Miyake, Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron. 141(88), 111471 (2019). https://doi.org/10.1016/j.bios.2019.111471
- C. Hu, Y. Lin, J.W. Connell, H.M. Cheng, Y. Gogotsi et al., Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31(13), 1806128 (2019). https://doi.org/10.1002/adma.201806128
- X. Li, J. Zhou, J. Zhang, M. Li, X. Bi et al., Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv. Mater. 31(39), 1903852 (2019). https://doi.org/10.1002/adma.201903852
- C. Zhang, H. Li, A. Huang, Q. Zhang, K. Rui et al., Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 15(18), 1805493 (2019). https://doi.org/10.1002/smll.201805493
- Y. Zhou, X. Wang, L. Acauan, E. Kalfon-Cohen, X. Ni et al., Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 31(30), 1901916 (2019). https://doi.org/10.1002/adma.201901916
- C. Choi, J.A. Lee, A.Y. Choi, Y.T. Kim, X. Lepro et al., Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 26(13), 2059–2065 (2014). https://doi.org/10.1002/adma.201304736
- J.H. Jeong, J.W. Park, D.W. Lee, R.H. Baughman, S.J. Kim, Electrodeposition of alpha-MnO2/gamma-MnO2 on carbon nanotube for yarn supercapacitor. Sci. Rep. 9(1), 11271 (2019). https://doi.org/10.1038/s41598-019-47744-x
- E. Gilshtein, C. Flox, F.S.M. Ali, B. Mehrabimatin, F.S. Fedorov et al., Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. J. Energy Storage 30(88), 101505 (2020). https://doi.org/10.1016/j.est.2020.101505
- K.L. Van Aken, C.R. Pérez, Y. Oh, M. Beidaghi, Y. Joo Jeong et al., High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 15(88), 662–669 (2015)
- S.K. Kim, H.J. Koo, J. Liu, P.V. Braun, Flexible and wearable fiber microsupercapacitors based on carbon nanotube-agarose gel composite electrodes. ACS Appl. Mater. Interfaces 9(23), 19925–19933 (2017). https://doi.org/10.1021/acsami.7b04753
- J. Miao, Z. Lang, T. Xue, Y. Li, Y. Li et al., Revival of zeolite-templated nanocarbon materials: recent advances in energy storage and conversion. Adv. Sci. 7(20), 2001335 (2020). https://doi.org/10.1002/advs.202001335
- J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi et al., Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7(3), eabd6978 (2021). https://doi.org/10.1126/sciadv.abd6978
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- L. Zeng, L. Qiu, H.-M. Cheng, Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 23(88), 434–438 (2019). https://doi.org/10.1016/j.ensm.2019.04.019
- F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang et al., Highly stretchable carbon aerogels. Nat. Commun. 9(1), 881 (2018). https://doi.org/10.1038/s41467-018-03268-y
- S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
- X. Zhang, W. Lu, G. Zhou, Q. Li, Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 32(5), 1902028 (2020). https://doi.org/10.1002/adma.201902028
- Z. Wu, K. Liu, C. Lv, S. Zhong, Q. Wang et al., Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 14(22), 1800414 (2018). https://doi.org/10.1002/smll.201800414
- Q. Wu, L. Yang, X. Wang, Z. Hu, Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 32(27), 1904177 (2020). https://doi.org/10.1002/adma.201904177
- X. Gao, X. Du, T.S. Mathis, M. Zhang, X. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11(1), 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3
- S. Deng, H. Zhu, G. Wang, M. Luo, S. Shen et al., Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nat. Commun. 11(1), 132 (2020). https://doi.org/10.1038/s41467-019-13945-1
- N. Lima, A.C. Baptista, B.M.M. Faustino, S. Taborda, A. Marques et al., Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 10(1), 7703 (2020). https://doi.org/10.1038/s41598-020-64649-2
- K. Hatakeyama-Sato, H. Wakamatsu, K. Yamagishi, T. Fujie, S. Takeoka et al., Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small 15(13), 1805296 (2019). https://doi.org/10.1002/smll.201805296
- M.D. Hager, B. Esser, X. Feng, W. Schuhmann, P. Theato et al., Polymer-based batteries-flexible and thin energy storage systems. Adv. Mater. 32(39), 2000587 (2020). https://doi.org/10.1002/adma.202000587
- W. Mai, Q. Yu, C. Han, F. Kang, B. Li, Self-healing materials for energy-storage devices. Adv. Funct. Mater. 30(24), 1909912 (2020). https://doi.org/10.1002/adfm.201909912
- S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120(5), 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466
- H. Zhan, G. Zhang, J.M. Bell, V.B.C. Tan, Y. Gu, High density mechanical energy storage with carbon nanothread bundle. Nat. Commun. 11(1), 1905 (2020). https://doi.org/10.1038/s41467-020-15807-7
- Y. Bai, B. Shen, S. Zhang, Z. Zhu, S. Sun et al., Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 31(9), 1800680 (2019). https://doi.org/10.1002/adma.201800680
- S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun et al., Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353), 773–778 (2017). https://doi.org/10.1126/science.aam8771
- L. Zhang, M. He, T.W. Hansen, J. Kling, H. Jiang et al., Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano 11(5), 4483–4493 (2017). https://doi.org/10.1021/acsnano.6b05941
- F. Yang, H. Zhao, W. Wang, Q. Liu, X. Liu et al., Carbon-involved near-surface evolution of cobalt nanocatalysts: an in situ study. CCS Chem. 3(1), 154–167 (2021)
- X. Zhang, F. Yang, D. Tian, H. Zhao, R. Wang et al., Atomic Scale Evolution of Graphitic Shells Growth via Pyrolysis of Cobalt Phthalocyanine. Adv. Mater. Interfaces 7(23), 2001112 (2020). https://doi.org/10.1002/admi.202001112
- R. Rao, D. Liptak, T. Cherukuri, B.I. Yakobson, B. Maruyama, In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat. Mater. 11(3), 213–216 (2012). https://doi.org/10.1038/nmat3231
- X. Yang, X. Zhao, T. Liu, F. Yang, Precise synthesis of carbon nanotubes and one-dimensional hybrids from templates. Chinese J. Chem. 39(6), 1726–1744 (2021). https://doi.org/10.1002/cjoc.202000673
- M.D. Bishop, G. Hills, T. Srimani, C. Lau, D. Murphy et al., Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3(8), 492–501 (2020). https://doi.org/10.1038/s41928-020-0419-7
- R.J. Headrick, D.E. Tsentalovich, J. Berdegue, E.A. Bengio, L. Liberman et al., Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater. 30(9), 1704482 (2018). https://doi.org/10.1002/adma.201704482
- M.L. Geier, J.J. McMorrow, W. Xu, J. Zhu, C.H. Kim et al., Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10(11), 944–948 (2015). https://doi.org/10.1038/nnano.2015.197
- K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan et al., Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21(14), 2721–2728 (2011). https://doi.org/10.1002/adfm.201100306
- D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao et al., Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 1(1), 40–45 (2017). https://doi.org/10.1038/s41928-017-0003-y
- C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics–moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013). https://doi.org/10.1039/c2cs35325c
- M. Zhu, H. Xiao, G. Yan, P. Sun, J. Jiang et al., Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 3(10), 622–629 (2020). https://doi.org/10.1038/s41928-020-0465-1
- Y. Yang, L. Ding, J. Han, Z. Zhang, L.M. Peng, High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11(4), 4124–4132 (2017). https://doi.org/10.1021/acsnano.7b00861
- S.J. Han, J. Tang, B. Kumar, A. Falk, D. Farmer et al., High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 12(9), 861–865 (2017). https://doi.org/10.1038/nnano.2017.115
- .A. Gaviria Rojas, M.E. Beck, V.K. Sangwan, S. Guo, M.C. Hersam, Ohmic‐contact‐gated carbon nanotube transistors for high‐performance analog amplifiers. Adv. Mater. 8(88), 2100994 (2021). https://doi.org/10.1002/adma.202100994
- Y. Liang, M. Xiao, D. Wu, Y. Lin, L. Liu et al., Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14(7), 8866–8874 (2020). https://doi.org/10.1021/acsnano.0c03523
- L. Xiang, H. Zhang, G. Dong, D. Zhong, J. Han et al., Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1(4), 237–245 (2018). https://doi.org/10.1038/s41928-018-0056-6
- C. Ma, S. Clark, Z. Liu, L. Liang, Y. Firdaus et al., Solution-processed mixed-dimensional hybrid perovskite/carbon nanotube electronics. ACS Nano 14(4), 3969–3979 (2020). https://doi.org/10.1021/acsnano.9b07888
- W. Su, D.H. Yang, J.M. Cui, F.T. Wang, X.J. Wei et al., Ultrafast wafer-scale assembly of uniform and highly dense semiconducting carbon nanotube films for optoelectronics. Carbon 163(88), 370–378 (2020). https://doi.org/10.1016/j.carbon.2020.03.032
- Y. Zhang, S.W. Ng, X. Lu, Z. Zheng, Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev. 120(4), 2049–2122 (2020). https://doi.org/10.1021/acs.chemrev.9b00483
- J. Di, X. Wang, Y. Xing, Y. Zhang, X. Zhang et al., Dry-processable carbon nanotubes for functional devices and composites. Small 10(22), 4606–4625 (2014). https://doi.org/10.1002/smll.201401465
- R. Zhang, Y. Zhang, F. Wei, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46(12), 3661–3715 (2017). https://doi.org/10.1039/c7cs00104e
- Q. Liu, M. Li, Y. Gu, Y. Zhang, S. Wang et al., Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 6(8), 4338–4344 (2014). https://doi.org/10.1039/c3nr06704a
- Z. Zhu, N. Wei, W. Cheng, B. Shen, S. Sun et al., Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 10(1), 4467 (2019). https://doi.org/10.1038/s41467-019-12519-5
- R. Peng, Y.Y. Pan, Z. Li, S.L. Zhang, A.R. Wheeler et al., Ionotronics based on horizontally aligned carbon nanotubes. Adv. Funct. Mater. 30(38), 2003177 (2020). https://doi.org/10.1002/adfm.202003177
- Y. Magnin, H. Amara, F. Ducastelle, A. Loiseau, C. Bichara, Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362(6411), 212–215 (2018). https://doi.org/10.1126/science.aat6228
- K.A. Brown, S. Brittman, N. Maccaferri, D. Jariwala, U. Celano, Machine learning in nanoscience: big data at small scales. Nano Lett. 20(1), 2–10 (2020). https://doi.org/10.1021/acs.nanolett.9b04090
- Y. Bai, H. Yue, J. Wang, B. Shen, S. Sun et al., Super-durable ultralong carbon nanotubes. Science 369(6507), 1104–1106 (2020). https://doi.org/10.1126/science.aay5220
- Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie et al., Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13(7), 589–595 (2018). https://doi.org/10.1038/s41565-018-0141-z
- L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao et al., Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368(6493), 850–856 (2020). https://doi.org/10.1126/science.aba5980
- F. Kreupl, Carbon-nanotube computer scaled up. Nature 572(7771), 588–589 (2019). https://doi.org/10.1038/d41586-019-02519-2
- M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547(7661), 74–78 (2017). https://doi.org/10.1038/nature22994
- S. Pi, C. Li, H. Jiang, W. Xia, H. Xin et al., Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14(1), 35–39 (2018). https://doi.org/10.1038/s41565-018-0302-0
- E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364(6440), 570–574 (2019). https://doi.org/10.1126/science.aaw5581
- S. Ham, M. Kang, S. Jang, J. Jang, S. Choi et al., One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 6(28), eaba1178 (2020). https://doi.org/10.1126/sciadv.aba1178
- V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15(7), 517–528 (2020). https://doi.org/10.1038/s41565-020-0647-z
References
J.M. Perkel, The internet of things comes to the lab. Nature 542(7639), 125–126 (2017). https://doi.org/10.1038/542125a
R. Haight, W. Haensch, D. Friedman, ENGINEERING. solar-powering the internet of things. Science 353(6295), 124–125 (2016). https://doi.org/10.1126/science.aag0476
E. Hittinger, P. Jaramillo, Internet of things: energy boon or bane? Science 364(6438), 326–328 (2019). https://doi.org/10.1126/science.aau8825
M. Hvistendahl, China Pushes the “Internet of Things.” Science 336(6086), 1223–1223 (2012). https://doi.org/10.1126/science.336.6086.1223
Q.F. Shi, B.W. Dong, T.Y.Y. He, Z.D. Sun, J.X. Zhu et al., Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
J.A. Cardenas, J.B. Andrews, S.G. Noyce, A.D. Franklin, Carbon nanotube electronics for IoT sensors. Nano Futures 4(1), 012001 (2020). https://doi.org/10.1088/2399-1984/ab5f20
E. Amram Bengio, D. Senic, L.W. Taylor, D.E. Tsentalovich, P. Chen et al., High efficiency carbon nanotube thread antennas. Appl. Phys. Lett. 111(16), 163109 (2017)
E. Amram Bengio, D. Senic, L.W. Taylor, R.J. Headrick, M. King et al., Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 114(20), 203102 (2019)
B. Gervasi, Will carbon nanotube memory replace DRAM? IEEE Micro 39(2), 45–51 (2019). https://doi.org/10.1109/mm.2019.2897560
Y. Sun, W. He, Z. Mao, H. Jiao, V. Kursun, Monolithic 3D carbon nanotube memory for enhanced yield and integration density. IEEE Trans. Circuits Syst. 67(7), 2431–2441 (2020). https://doi.org/10.1109/tcsi.2020.2980074
P.S. Kanhaiya, C. Lau, G. Hills, M.D. Bishop, M.M. Shulaker, Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE Trans. Electron Devices 66(12), 5375–5380 (2019). https://doi.org/10.1109/ted.2019.2945533
X. Wang, K.-C. Chang, Z. Zhang, Q. Liu, L. Li et al., Performance enhancement and mechanism exploration of all-carbon-nanotube memory with hydroxylation and dehydration through supercritical carbon dioxide. Carbon 173(88), 97–104 (2021). https://doi.org/10.1016/j.carbon.2020.10.084
T.Y. Qu, Y. Sun, M.L. Chen, Z.B. Liu, Q.B. Zhu et al., A flexible carbon nanotube sen-memory device. Adv. Mater. 32(9), 1907288 (2020). https://doi.org/10.1002/adma.201907288
S. Kim, M. Amjadi, T.I. Lee, Y. Jeong, D. Kwon et al., Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 11(26), 23639–23648 (2019). https://doi.org/10.1021/acsami.9b07636
G. Choi, H. Jang, S. Oh, H. Cho, H. Yoo et al., A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J. Mater. Chem. C 7(31), 9504–9512 (2019). https://doi.org/10.1039/c9tc02486g
W. Lee, H. Koo, J. Sun, J. Noh, K.S. Kwon et al., A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci. Rep. 5(88), 17707 (2015). https://doi.org/10.1038/srep17707
T.Y. Zhao, D.D. Zhang, T.Y. Qu, L.L. Fang, Q.B. Zhu et al., Flexible 64 x 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces 11(12), 11699–11705 (2019). https://doi.org/10.1021/acsami.8b17909
Y.C. Kim, S.H. Park, C.S. Lee, T.W. Chung, E. Cho et al., A 46-inch diagonal carbon nanotube field emission backlight for liquid crystal display. Carbon 91(88), 304–310 (2015). https://doi.org/10.1016/j.carbon.2015.04.093
M.A. McCarthy, B. Liu, E.P. Donoghue, I. Kravchenko, D.Y. Kim et al., Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011). https://doi.org/10.1126/science.1203052
C. Wang, J. Zhang, K. Ryu, A. Badmaev, L.G. De Arco et al., Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 9(12), 4285–4291 (2009). https://doi.org/10.1021/nl902522f
R. Ho, C. Lau, G. Hills, M.M. Shulaker, Carbon nanotube CMOS analog circuitry. IEEE Trans. Nanotechn. 18(88), 845–848 (2019). https://doi.org/10.1109/tnano.2019.2902739
D. Suzuki, Y. Kawano, Flexible terahertz imaging systems with single-walled carbon nanotube films. Carbon 162(88), 13–24 (2020). https://doi.org/10.1016/j.carbon.2020.01.113
W.A. Gaviria Rojas, J.J. McMorrow, M.L. Geier, Q. Tang, C.H. Kim et al., Solution-processed carbon nanotube true random number generator. Nano Lett. 17(8), 4976–4981 (2017)
A. Sandhu, Strictly nanotubes in Beijing. Nat. Nanotechnol. 4(7), 398–399 (2009). https://doi.org/10.1038/nnano.2009.164
C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng et al., Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 20(6), 885–891 (2010). https://doi.org/10.1002/adfm.200901960
L. Yu, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116(22), 13413–13453 (2016). https://doi.org/10.1021/acs.chemrev.6b00179
D. Chen, K. Jiang, T. Huang, G. Shen, Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater. 32(5), 1901806 (2020). https://doi.org/10.1002/adma.201901806
F.N. Ishikawa, H.K. Chang, K. Ryu, P.C. Chen, A. Badmaev et al., Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 3(1), 73–79 (2009). https://doi.org/10.1021/nn800434d
P.-C. Chen, G. Shen, S. Sukcharoenchoke, C. Zhou, Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 94(4), 043113 (2009). https://doi.org/10.1063/1.3069277
Y. He, H. Jin, S. Qiu, Q. Li, A novel strategy for high-performance transparent conductive films based on double-walled carbon nanotubes. Chem. Commun. 53(20), 2934–2937 (2017). https://doi.org/10.1039/c6cc10252b
E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613
P.M. Martinez, A. Ishteev, A. Fahimi, J. Velten, I. Jurewicz et al., Silver nanowires on carbon nanotube aerogel sheets for flexible, transparent electrodes. ACS Appl. Mater. Interfaces 11(35), 32235–32243 (2019). https://doi.org/10.1021/acsami.9b06368
A.E. Goldt, O.T. Zaremba, M.O. Bulavskiy, F.S. Fedorov, K.V. Larionov et al., Highly efficient bilateral doping of single-walled carbon nanotubes. J. Mater. Chem. C 9(13), 4514–4521 (2021). https://doi.org/10.1039/d0tc05996j
Q. Zhang, W. Zhou, X. Xia, K. Li, N. Zhang et al., Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique. Adv. Mater. 32(39), 2004277 (2020). https://doi.org/10.1002/adma.202004277
W. Yu, C.H. Liu, S.S. Fan, High water-absorbent and phase-change heat dissipation materials based on super-aligned cross-stack CNT films. Adv. Engin. Mater. 21(5), 1801216 (2019). https://doi.org/10.1002/adem.201801216
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
L. Xiang, H. Zhang, Y. Hu, L.-M. Peng, Carbon nanotube-based flexible electronics. J. Mater. Chem. C 6(29), 7714–7727 (2018). https://doi.org/10.1039/c8tc02280a
Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.H. Kim, Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32(15), 1902743 (2020). https://doi.org/10.1002/adma.201902743
K. Qi, Y. Zhou, K. Ou, Y. Dai, X. You et al., Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 170(88), 464–476 (2020). https://doi.org/10.1016/j.carbon.2020.07.042
H. Kim, T.H. Kang, J. Ahn, H. Han, S. Park et al., Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable E-textile applications. ACS Nano 14(15), 17213–17223 (2020). https://doi.org/10.1021/acsnano.0c07143
N. Matsuhisa, X. Chen, Z. Bao, T. Someya, Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48(11), 2946–2966 (2019). https://doi.org/10.1039/c8cs00814k
H. Wu, Y. Huang, F. Xu, Y. Duan, Z. Yin, Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28(45), 9881–9919 (2016). https://doi.org/10.1002/adma.201602251
Y.J. Hong, H. Jeong, K.W. Cho, N. Lu, D.H. Kim, Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29(19), 1808247 (2019). https://doi.org/10.1002/adfm.201808247
T. Lei, I. Pochorovski, Z. Bao, Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 50(4), 1096–1104 (2017). https://doi.org/10.1021/acs.accounts.7b00062
E. Oh, T. Kim, J. Yoon, S. Lee, D. Kim et al., Highly reliable liquid metal-solid metal contacts with a corrugated single-walled carbon nanotube diffusion barrier for stretchable electronics. Adv. Funct. Mater. 28(51), 1806014 (2018). https://doi.org/10.1002/adfm.201806014
J. Lee, S. Pyo, D.S. Kwon, E. Jo, W. Kim et al., Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 15(12), 1805120 (2019). https://doi.org/10.1002/smll.201805120
M. Matsunaga, J. Hirotani, S. Kishimoto, Y. Ohno, High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy 67(88), 104297 (2020). https://doi.org/10.1016/j.nanoen.2019.104297
Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
T. Lei, L.L. Shao, Y.Q. Zheng, G. Pitner, G. Fang et al., Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10(1), 2161 (2019). https://doi.org/10.1038/s41467-019-10145-9
T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52(2), 288–296 (2019). https://doi.org/10.1021/acs.accounts.8b00497
F. Sun, Q. Lu, S. Feng, T. Zhang, Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 15(3), 3875–3899 (2021). https://doi.org/10.1021/acsnano.0c10049
Y. Ma, H. Li, S. Chen, Y. Liu, Y. Meng et al., Skin-like electronics for perception and interaction: materials, structural designs, and applications. Adv. Intell. Syst. 3(4), 2000108 (2020). https://doi.org/10.1002/aisy.202000108
Q. Zhang, L. Tan, Y. Chen, T. Zhang, W. Wang et al., Human-like sensing and reflexes of graphene-based films. Adv. Sci. 3(12), 1600130 (2016). https://doi.org/10.1002/advs.201600130
Y.H. Jung, B. Park, J.U. Kim, T.I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31(34), 1803637 (2019). https://doi.org/10.1002/adma.201803637
L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur et al., Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 14(11), 6685–6692 (2014). https://doi.org/10.1021/nl5034304
Y. Liu, N. Wei, Q. Zeng, J. Han, H. Huang et al., Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 4(2), 238–245 (2016). https://doi.org/10.1002/adom.201500529
D. Berco, D. Shenp Ang, Recent progress in synaptic devices paving the way toward an artificial cogni‐retina for bionic and machine vision. Adv. Intell. Syst. 1(1), 1900003 (2019). https://doi.org/10.1002/aisy.201900003
Y. Gu, X. Wang, W. Gu, Y. Wu, T. Li et al., Flexible electronic eardrum. Nano Res. 10(8), 2683–2691 (2017). https://doi.org/10.1007/s12274-017-1470-1
S. Orzechowska, A. Mazurek, R. Swislocka, W. Lewandowski, Electronic nose: recent developments in gas sensing and molecular mechanisms of graphene detection and other materials. Materials 13(1), 80 (2019). https://doi.org/10.3390/ma13010080
S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 1(3), 289–316 (2019). https://doi.org/10.1002/inf2.12029
T. Zhu, Y. Zhang, L. Luo, X. Zhao, Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection. ACS Appl. Mater. Interfaces 11(11), 10856–10861 (2019). https://doi.org/10.1021/acsami.9b00803
N.A. Fikri, A.H. Adom, A.YMd. Shakaff, M.N. Ahmad, A.H. Abdullah et al., Development of human sensory mimicking system. Sensor Lett. 9(1), 423–427 (2011). https://doi.org/10.1166/sl.2011.1492
L.Y. Hsiao, L. Jing, K.R. Li, H.T. Yang, Y. Li et al., Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon 161(88), 784–793 (2020). https://doi.org/10.1016/j.carbon.2020.01.109
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015). https://doi.org/10.1002/advs.201500169
K. Aoki, N. Ogihara, M. Tanaka, H. Haniu, N. Saito, Carbon nanotube-based biomaterials for orthopaedic applications. J. Mater. Chem. B 8(40), 9227–9238 (2020). https://doi.org/10.1039/d0tb01440k
V. Mathur, S. Talapatra, S. Kar, Z. Hennighausen, In vivo partial restoration of neural activity across severed mouse spinal cord bridged with ultralong carbon nanotubes. ACS Appl. BioMater. 4(5), 4071–4078 (2021). https://doi.org/10.1021/acsabm.1c00248
Y. Fang, L. Ouyang, T. Zhang, C. Wang, B. Lu et al., Optimizing bifurcated channels within an anisotropic scaffold for engineering vascularized oriented tissues. Adv. Healthc. Mater. 9(24), 2000782 (2020). https://doi.org/10.1002/adhm.202000782
J. Chen, L. Wang, T. Wang, C. Li, W. Han et al., Functionalized carbon nanotube-embedded poly(vinyl alcohol) microspheres for efficient removal of tumor necrosis factor-alpha. ACS Biomater. Sci. Eng. 6(8), 4722–4730 (2020). https://doi.org/10.1021/acsbiomaterials.9b01916
W. Chen, S. Yang, X. Wei, Z. Yang, D. Liu et al., Construction of aptamer-siRNA chimera/PEI/5-FU/carbon nanotube/collagen membranes for the treatment of peritoneal dissemination of drug-resistant gastric cancer. Adv. Healthc. Mater. 9(21), 2001153 (2020). https://doi.org/10.1002/adhm.202001153
A. Sobajima, T. Okihara, S. Moriyama, N. Nishimura, T. Osawa et al., Multiwall carbon nanotube composites as artificial joint materials. ACS Biomater. Sci. Eng. 6(12), 7032–7040 (2020). https://doi.org/10.1021/acsbiomaterials.0c00916
S.-C. Park, H.J. Jeong, M. Heo, J.H. Shin, J.-H. Ahn, Carbon nanotube-based ion-sensitive field-effect transistors with an on-chip reference electrode toward wearable sodium sensing. ACS Appl. Electron. Mater. 3(6), 2580–2588 (2021). https://doi.org/10.1021/acsaelm.1c00152
T. Nguyen, T. Dinh, V.T. Dau, C.-D. Tran, H.-P. Phan et al., A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film. IEEE Sens. J. 21(6), 7308–7315 (2021). https://doi.org/10.1109/jsen.2020.3048236
H. Wan, Y. Cao, L.W. Lo, J. Zhao, N. Sepulveda et al., Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 14(8), 10402–10412 (2020). https://doi.org/10.1021/acsnano.0c04259
H. Xu, Y. Xie, E. Zhu, Y. Liu, Z. Shi et al., Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 8(13), 6311–6318 (2020). https://doi.org/10.1039/d0ta00158a
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
K.-H. Kim, S.K. Hong, S.-H. Ha, L. Li, H.W. Lee et al., Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor via superaligned carbon nanotube-based strain engineering. Mater. Horizons 7(10), 2662–2672 (2020). https://doi.org/10.1039/d0mh00806k
G. Zu, X. Wang, K. Kanamori, K. Nakanishi, Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. J. Mater. Chem. B 8(22), 4883–4889 (2020). https://doi.org/10.1039/c9tb02953b
X.W. Xu, Y.C. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14(8), 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3
K. Umapathi, V. Vanitha, L. Anbarasu, M. Zivkovic, N. Bacanin et al., Predictive data regression technique based carbon nanotube biosensor for efficient patient health monitoring system. J. Ambient Intell. Humanized Comput. (2021). https://doi.org/10.1007/s12652-021-03063-6
R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci et al., Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340
R.H. Baughman, Materials science. Playing nature’s game with artificial muscles. Science 308(5718), 63–65 (2005)
M.Z. Miskin, A.J. Cortese, K. Dorsey, E.P. Esposito, M.F. Reynolds et al., Electronically integrated, mass-manufactured, microscopic robots. Nature 584(7822), 557–561 (2020). https://doi.org/10.1038/s41586-020-2626-9
A.M. Brooks, M.S. Strano, A conceptual advance that gives microrobots legs. Nature 584(7822), 530–531 (2020). https://doi.org/10.1038/d41586-020-02421-2
J.S. Hyeon, J.W. Park, R.H. Baughman, S.J. Kim, Electrochemical graphene/carbon nanotube yarn artificial muscles. Sens. Actuators B 286(88), 237–242 (2019). https://doi.org/10.1016/j.snb.2019.01.140
H. Kim, J.A. Lee, C.P. Ambulo, H.B. Lee, S.H. Kim et al., Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv. Funct. Mater. 29(48), 1905063 (2019). https://doi.org/10.1002/adfm.201905063
J. Liu, Y. Gao, H. Wang, R. Poling-Skutvik, C.O. Osuji et al., Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2(6), 1900163 (2020). https://doi.org/10.1002/aisy.201900163
G.H. Kim, K. Kim, E. Lee, T. An, W. Choi et al., Recent progress on microelectrodes in neural interfaces. Materials 11(10), 1995 (2018). https://doi.org/10.3390/ma11101995
L. Lu, X. Fu, Y. Liew, Y. Zhang, S. Zhao et al., Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 19(3), 1577–1586 (2019). https://doi.org/10.1021/acs.nanolett.8b04456
S. Waldert,(2016) Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front. Neurosci https://doi.org/10.3389/fnins.2016.00295
N.T. Alvarez, E. Buschbeck, S. Miller, A.D. Le, V.K. Gupta et al., Carbon nanotube fibers for neural recording and stimulation. ACS Appl. Bio-Mater. 3(9), 6478–6487 (2020). https://doi.org/10.1021/acsabm.0c00861
N. Chen, B. Luo, A.C. Patil, J. Wang, G.G.L. Gammad et al., Nanotunnels within poly(3,4-ethylenedioxythiophene)-carbon nanotube composite for highly sensitive neural interfacing. ACS Nano 14(7), 8059–8073 (2020). https://doi.org/10.1021/acsnano.0c00672
Y. Hu, C.M. Dominguez, J. Bauer, S. Weigel, A. Schipperges et al., Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat. Commun. 10(1), 5522 (2019). https://doi.org/10.1038/s41467-019-13381-1
Y. Kubota, J. Sohn, S. Hatada, M. Schurr, J. Straehle et al., A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure. Nat. Commun. 9(1), 437 (2018). https://doi.org/10.1038/s41467-017-02768-7
H.R. Lee, C.C. Kim, J.Y. Sun, Stretchable ionics - a promising candidate for upcoming wearable devices. Adv. Mater. 30(42), 1704403 (2018). https://doi.org/10.1002/adma.201704403
J.B. Andrews, J.A. Cardenas, C.J. Lim, S.G. Noyce, J. Mullett et al., Fully printed and flexible carbon nanotube transistors for pressure sensing in automobile tires. IEEE Sens. J. 18(19), 7875–7880 (2018). https://doi.org/10.1109/jsen.2018.2842139
M. He, R.G. Croy, J.M. Essigmann, T.M. Swager, Chemiresistive carbon nanotube sensors for N-nitrosodialkylamines. ACS Sens. 4(10), 2819–2824 (2019). https://doi.org/10.1021/acssensors.9b01532
P. Gou, N.D. Kraut, I.M. Feigel, H. Bai, G.J. Morgan et al., Carbon nanotube chemiresistor for wireless pH sensing. Sci. Rep. 4(88), 4468 (2014). https://doi.org/10.1038/srep04468
L. Zhang, J. He, Y. Liao, X. Zeng, N. Qiu et al., A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A 7(46), 26631–26640 (2019). https://doi.org/10.1039/c9ta10744d
Y. Liu, F. Zhang, J. Leng, K. Fu, X.L. Lu et al., Remotely and sequentially controlled actuation of electroactivated carbon nanotube/shape memory polymer composites. Adv. Mater. Technol. 4(12), 1900600 (2019). https://doi.org/10.1002/admt.201900600
C.B. Sweeney, A.G. Moran, J.T. Gruener, A.M. Strasser, M.J. Pospisil et al., Radio frequency heating of carbon nanotube composite materials. ACS Appl. Mater. Interfaces 10(32), 27252–27259 (2018). https://doi.org/10.1021/acsami.8b06268
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
M. Umehara, H.S. Stein, D. Guevarra, P.F. Newhouse, D.A. Boyd et al.,(2019) Analyzing machine learning models to accelerate generation of fundamental materials insights. npj Comput. Mater. 5(1), 34
K. Kaufmann, C. Zhu, A.S. Rosengarten, D. Maryanovsky, T.J. Harrington et al., Crystal symmetry determination in electron diffraction using machine learning. Science 367(6477), 564–568 (2020). https://doi.org/10.1126/science.aay3062
B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400), 360–365 (2018). https://doi.org/10.1126/science.aat2663
Z. Zhou, X. Li, R.N. Zare, Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent Sci. 3(12), 1337–1344 (2017). https://doi.org/10.1021/acscentsci.7b00492
Z. Li, S. Wang, H. Xin, Toward artificial intelligence in catalysis. Nat. Catal. 1(9), 641–642 (2018). https://doi.org/10.1038/s41929-018-0150-1
E.M. Khabushev, D.V. Krasnikov, O.T. Zaremba, A.P. Tsapenko, A.E. Goldt et al., Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10(21), 6962–6966 (2019). https://doi.org/10.1021/acs.jpclett.9b02777
V.Y. Iakovlev, D.V. Krasnikov, E.M. Khabushev, J.V. Kolodiazhnaia, A.G. Nasibulin, Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 153(88), 100–103 (2019). https://doi.org/10.1016/j.carbon.2019.07.013
S. Kapse, S. Janwari, U.V. Waghmare, R. Thapa, Energy parameter and electronic descriptor for carbon based catalyst predicted using QM/ML. Appl. Catal. B 286(88), 119866 (2021). https://doi.org/10.1016/j.apcatb.2020.119866
Z.-H. Ji, L. Zhang, D.-M. Tang, C.-M. Chen, T.E.M. Nordling et al., High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3387-y
P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker et al., Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2(1), 16031 (2016). https://doi.org/10.1038/npjcompumats.2016.31
C. Cao, Y. Zhou, S. Ubnoske, J. Zang, Y. Cao et al., Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 9(22), 1900618 (2019). https://doi.org/10.1002/aenm.201900618
Y. Wang, Y. Zhang, G. Wang, X. Shi, Y. Qiao et al., Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 30(16), 1907284 (2020). https://doi.org/10.1002/adfm.201907284
C.J. Zhang, S.H. Park, O. Ronan, A. Harvey, A. Seral-Ascaso et al., Enabling flexible heterostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small 13(34), 1701677 (2017). https://doi.org/10.1002/smll.201701677
E.B. Pomerantseva, Francesco Feng, Xinliang Cui, Yi Gogotsi, Yury, Energy storage: The future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). https://doi.org/10.1126/science.aan8285
T.J. Mun, S.H. Kim, J.W. Park, J.H. Moon, Y. Jang et al., Wearable energy generating and storing textile based on carbon nanotube yarns. Adv. Funct. Mater. 30(23), 2000411 (2020). https://doi.org/10.1002/adfm.202000411
I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362(6414), 547–553 (2018). https://doi.org/10.1126/science.aat7439
T. Lv, Y. Yao, N. Li, T. Chen, Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11(5), 644–660 (2016). https://doi.org/10.1016/j.nantod.2016.08.010
W. Lyu, W. Zhang, H. Liu, Y. Liu, H. Zuo et al., Conjugated microporous polymer network grafted carbon nanotube fibers with tunable redox activity for efficient flexible wearable energy storage. Chem. Mater. 32(19), 8276–8285 (2020). https://doi.org/10.1021/acs.chemmater.0c02089
Z. Guo, H. Nie, Z. Yang, W. Hua, C. Ruan et al., 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Adv. Sci. 5(7), 1800026 (2018). https://doi.org/10.1002/advs.201800026
Z. Fang, J. Wang, H. Wu, Q. Li, S. Fan et al., Progress and challenges of flexible lithium ion batteries. J. Power Sources 454(88), 227932 (2020). https://doi.org/10.1016/j.jpowsour.2020.227932
L. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough et al., Lithium-ion textile batteries with large areal mass loading. Adv. Energy Mater. 1(6), 1012–1017 (2011). https://doi.org/10.1002/aenm.201100261
S. Yoon, S. Lee, S. Kim, K.-W. Park, D. Cho et al., Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 279(88), 495–501 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.013
H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
F. Wan, S. Huang, H. Cao, Z. Niu, Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14(6), 6752–6760 (2020). https://doi.org/10.1021/acsnano.9b10214
S. Shi, C. Sun, X. Yin, L. Shen, Q. Shi et al., FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv. Funct. Mater. 30(10), 1909283 (2020). https://doi.org/10.1002/adfm.201909283
S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai et al., 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30(24), 2001592 (2020). https://doi.org/10.1002/adfm.202001592
S. Yin, Z. Jin, T. Miyake, Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron. 141(88), 111471 (2019). https://doi.org/10.1016/j.bios.2019.111471
C. Hu, Y. Lin, J.W. Connell, H.M. Cheng, Y. Gogotsi et al., Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31(13), 1806128 (2019). https://doi.org/10.1002/adma.201806128
X. Li, J. Zhou, J. Zhang, M. Li, X. Bi et al., Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv. Mater. 31(39), 1903852 (2019). https://doi.org/10.1002/adma.201903852
C. Zhang, H. Li, A. Huang, Q. Zhang, K. Rui et al., Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 15(18), 1805493 (2019). https://doi.org/10.1002/smll.201805493
Y. Zhou, X. Wang, L. Acauan, E. Kalfon-Cohen, X. Ni et al., Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 31(30), 1901916 (2019). https://doi.org/10.1002/adma.201901916
C. Choi, J.A. Lee, A.Y. Choi, Y.T. Kim, X. Lepro et al., Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 26(13), 2059–2065 (2014). https://doi.org/10.1002/adma.201304736
J.H. Jeong, J.W. Park, D.W. Lee, R.H. Baughman, S.J. Kim, Electrodeposition of alpha-MnO2/gamma-MnO2 on carbon nanotube for yarn supercapacitor. Sci. Rep. 9(1), 11271 (2019). https://doi.org/10.1038/s41598-019-47744-x
E. Gilshtein, C. Flox, F.S.M. Ali, B. Mehrabimatin, F.S. Fedorov et al., Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. J. Energy Storage 30(88), 101505 (2020). https://doi.org/10.1016/j.est.2020.101505
K.L. Van Aken, C.R. Pérez, Y. Oh, M. Beidaghi, Y. Joo Jeong et al., High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 15(88), 662–669 (2015)
S.K. Kim, H.J. Koo, J. Liu, P.V. Braun, Flexible and wearable fiber microsupercapacitors based on carbon nanotube-agarose gel composite electrodes. ACS Appl. Mater. Interfaces 9(23), 19925–19933 (2017). https://doi.org/10.1021/acsami.7b04753
J. Miao, Z. Lang, T. Xue, Y. Li, Y. Li et al., Revival of zeolite-templated nanocarbon materials: recent advances in energy storage and conversion. Adv. Sci. 7(20), 2001335 (2020). https://doi.org/10.1002/advs.202001335
J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi et al., Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7(3), eabd6978 (2021). https://doi.org/10.1126/sciadv.abd6978
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
L. Zeng, L. Qiu, H.-M. Cheng, Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 23(88), 434–438 (2019). https://doi.org/10.1016/j.ensm.2019.04.019
F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang et al., Highly stretchable carbon aerogels. Nat. Commun. 9(1), 881 (2018). https://doi.org/10.1038/s41467-018-03268-y
S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
X. Zhang, W. Lu, G. Zhou, Q. Li, Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 32(5), 1902028 (2020). https://doi.org/10.1002/adma.201902028
Z. Wu, K. Liu, C. Lv, S. Zhong, Q. Wang et al., Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 14(22), 1800414 (2018). https://doi.org/10.1002/smll.201800414
Q. Wu, L. Yang, X. Wang, Z. Hu, Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 32(27), 1904177 (2020). https://doi.org/10.1002/adma.201904177
X. Gao, X. Du, T.S. Mathis, M. Zhang, X. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11(1), 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3
S. Deng, H. Zhu, G. Wang, M. Luo, S. Shen et al., Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nat. Commun. 11(1), 132 (2020). https://doi.org/10.1038/s41467-019-13945-1
N. Lima, A.C. Baptista, B.M.M. Faustino, S. Taborda, A. Marques et al., Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 10(1), 7703 (2020). https://doi.org/10.1038/s41598-020-64649-2
K. Hatakeyama-Sato, H. Wakamatsu, K. Yamagishi, T. Fujie, S. Takeoka et al., Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small 15(13), 1805296 (2019). https://doi.org/10.1002/smll.201805296
M.D. Hager, B. Esser, X. Feng, W. Schuhmann, P. Theato et al., Polymer-based batteries-flexible and thin energy storage systems. Adv. Mater. 32(39), 2000587 (2020). https://doi.org/10.1002/adma.202000587
W. Mai, Q. Yu, C. Han, F. Kang, B. Li, Self-healing materials for energy-storage devices. Adv. Funct. Mater. 30(24), 1909912 (2020). https://doi.org/10.1002/adfm.201909912
S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120(5), 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466
H. Zhan, G. Zhang, J.M. Bell, V.B.C. Tan, Y. Gu, High density mechanical energy storage with carbon nanothread bundle. Nat. Commun. 11(1), 1905 (2020). https://doi.org/10.1038/s41467-020-15807-7
Y. Bai, B. Shen, S. Zhang, Z. Zhu, S. Sun et al., Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 31(9), 1800680 (2019). https://doi.org/10.1002/adma.201800680
S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun et al., Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353), 773–778 (2017). https://doi.org/10.1126/science.aam8771
L. Zhang, M. He, T.W. Hansen, J. Kling, H. Jiang et al., Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano 11(5), 4483–4493 (2017). https://doi.org/10.1021/acsnano.6b05941
F. Yang, H. Zhao, W. Wang, Q. Liu, X. Liu et al., Carbon-involved near-surface evolution of cobalt nanocatalysts: an in situ study. CCS Chem. 3(1), 154–167 (2021)
X. Zhang, F. Yang, D. Tian, H. Zhao, R. Wang et al., Atomic Scale Evolution of Graphitic Shells Growth via Pyrolysis of Cobalt Phthalocyanine. Adv. Mater. Interfaces 7(23), 2001112 (2020). https://doi.org/10.1002/admi.202001112
R. Rao, D. Liptak, T. Cherukuri, B.I. Yakobson, B. Maruyama, In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat. Mater. 11(3), 213–216 (2012). https://doi.org/10.1038/nmat3231
X. Yang, X. Zhao, T. Liu, F. Yang, Precise synthesis of carbon nanotubes and one-dimensional hybrids from templates. Chinese J. Chem. 39(6), 1726–1744 (2021). https://doi.org/10.1002/cjoc.202000673
M.D. Bishop, G. Hills, T. Srimani, C. Lau, D. Murphy et al., Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3(8), 492–501 (2020). https://doi.org/10.1038/s41928-020-0419-7
R.J. Headrick, D.E. Tsentalovich, J. Berdegue, E.A. Bengio, L. Liberman et al., Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater. 30(9), 1704482 (2018). https://doi.org/10.1002/adma.201704482
M.L. Geier, J.J. McMorrow, W. Xu, J. Zhu, C.H. Kim et al., Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10(11), 944–948 (2015). https://doi.org/10.1038/nnano.2015.197
K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan et al., Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21(14), 2721–2728 (2011). https://doi.org/10.1002/adfm.201100306
D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao et al., Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 1(1), 40–45 (2017). https://doi.org/10.1038/s41928-017-0003-y
C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics–moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013). https://doi.org/10.1039/c2cs35325c
M. Zhu, H. Xiao, G. Yan, P. Sun, J. Jiang et al., Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 3(10), 622–629 (2020). https://doi.org/10.1038/s41928-020-0465-1
Y. Yang, L. Ding, J. Han, Z. Zhang, L.M. Peng, High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11(4), 4124–4132 (2017). https://doi.org/10.1021/acsnano.7b00861
S.J. Han, J. Tang, B. Kumar, A. Falk, D. Farmer et al., High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 12(9), 861–865 (2017). https://doi.org/10.1038/nnano.2017.115
.A. Gaviria Rojas, M.E. Beck, V.K. Sangwan, S. Guo, M.C. Hersam, Ohmic‐contact‐gated carbon nanotube transistors for high‐performance analog amplifiers. Adv. Mater. 8(88), 2100994 (2021). https://doi.org/10.1002/adma.202100994
Y. Liang, M. Xiao, D. Wu, Y. Lin, L. Liu et al., Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14(7), 8866–8874 (2020). https://doi.org/10.1021/acsnano.0c03523
L. Xiang, H. Zhang, G. Dong, D. Zhong, J. Han et al., Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1(4), 237–245 (2018). https://doi.org/10.1038/s41928-018-0056-6
C. Ma, S. Clark, Z. Liu, L. Liang, Y. Firdaus et al., Solution-processed mixed-dimensional hybrid perovskite/carbon nanotube electronics. ACS Nano 14(4), 3969–3979 (2020). https://doi.org/10.1021/acsnano.9b07888
W. Su, D.H. Yang, J.M. Cui, F.T. Wang, X.J. Wei et al., Ultrafast wafer-scale assembly of uniform and highly dense semiconducting carbon nanotube films for optoelectronics. Carbon 163(88), 370–378 (2020). https://doi.org/10.1016/j.carbon.2020.03.032
Y. Zhang, S.W. Ng, X. Lu, Z. Zheng, Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev. 120(4), 2049–2122 (2020). https://doi.org/10.1021/acs.chemrev.9b00483
J. Di, X. Wang, Y. Xing, Y. Zhang, X. Zhang et al., Dry-processable carbon nanotubes for functional devices and composites. Small 10(22), 4606–4625 (2014). https://doi.org/10.1002/smll.201401465
R. Zhang, Y. Zhang, F. Wei, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46(12), 3661–3715 (2017). https://doi.org/10.1039/c7cs00104e
Q. Liu, M. Li, Y. Gu, Y. Zhang, S. Wang et al., Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 6(8), 4338–4344 (2014). https://doi.org/10.1039/c3nr06704a
Z. Zhu, N. Wei, W. Cheng, B. Shen, S. Sun et al., Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 10(1), 4467 (2019). https://doi.org/10.1038/s41467-019-12519-5
R. Peng, Y.Y. Pan, Z. Li, S.L. Zhang, A.R. Wheeler et al., Ionotronics based on horizontally aligned carbon nanotubes. Adv. Funct. Mater. 30(38), 2003177 (2020). https://doi.org/10.1002/adfm.202003177
Y. Magnin, H. Amara, F. Ducastelle, A. Loiseau, C. Bichara, Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362(6411), 212–215 (2018). https://doi.org/10.1126/science.aat6228
K.A. Brown, S. Brittman, N. Maccaferri, D. Jariwala, U. Celano, Machine learning in nanoscience: big data at small scales. Nano Lett. 20(1), 2–10 (2020). https://doi.org/10.1021/acs.nanolett.9b04090
Y. Bai, H. Yue, J. Wang, B. Shen, S. Sun et al., Super-durable ultralong carbon nanotubes. Science 369(6507), 1104–1106 (2020). https://doi.org/10.1126/science.aay5220
Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie et al., Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13(7), 589–595 (2018). https://doi.org/10.1038/s41565-018-0141-z
L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao et al., Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368(6493), 850–856 (2020). https://doi.org/10.1126/science.aba5980
F. Kreupl, Carbon-nanotube computer scaled up. Nature 572(7771), 588–589 (2019). https://doi.org/10.1038/d41586-019-02519-2
M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547(7661), 74–78 (2017). https://doi.org/10.1038/nature22994
S. Pi, C. Li, H. Jiang, W. Xia, H. Xin et al., Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14(1), 35–39 (2018). https://doi.org/10.1038/s41565-018-0302-0
E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364(6440), 570–574 (2019). https://doi.org/10.1126/science.aaw5581
S. Ham, M. Kang, S. Jang, J. Jang, S. Choi et al., One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 6(28), eaba1178 (2020). https://doi.org/10.1126/sciadv.aba1178
V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15(7), 517–528 (2020). https://doi.org/10.1038/s41565-020-0647-z