Water Splitting: From Electrode to Green Energy System
Corresponding Author: Weijia Zhou
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 131
Abstract
Hydrogen (H2) production is a latent feasibility of renewable clean energy. The industrial H2 production is obtained from reforming of natural gas, which consumes a large amount of nonrenewable energy and simultaneously produces greenhouse gas carbon dioxide. Electrochemical water splitting is a promising approach for the H2 production, which is sustainable and pollution-free. Therefore, developing efficient and economic technologies for electrochemical water splitting has been an important goal for researchers around the world. The utilization of green energy systems to reduce overall energy consumption is more important for H2 production. Harvesting and converting energy from the environment by different green energy systems for water splitting can efficiently decrease the external power consumption. A variety of green energy systems for efficient producing H2, such as two-electrode electrolysis of water, water splitting driven by photoelectrode devices, solar cells, thermoelectric devices, triboelectric nanogenerator, pyroelectric device or electrochemical water–gas shift device, have been developed recently. In this review, some notable progress made in the different green energy cells for water splitting is discussed in detail. We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free H2 energy, which will realize the whole process of H2 production with low cost, pollution-free and energy sustainability conversion.
Highlights:
1 Bifunctional electrode and electrolytic cell configuration for electrochemical water splitting are reviewed.
2 The different green energy systems powered water splitting are summarized and discussed.
3 An outlook of future research prospects for the development of green energy system powered water splitting in practical application process is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11(4), 872–880 (2018). https://doi.org/10.1039/C8EE00076J
- F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9(1), 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
- B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
- W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. 59(1), 136–152 (2020). https://doi.org/10.1002/anie.201900292
- K. Oka, O. Tsujimura, T. Suga, H. Nishide, B. Winther-Jensen, Light-assisted electrochemical water-splitting at very low bias voltage using metal-free polythiophene as photocathode at high pH in a full-cell setup. Energy Environ. Sci. 11(5), 1335–1342 (2018). https://doi.org/10.1039/C7EE03669H
- S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4(5), 1600337 (2017). https://doi.org/10.1002/advs.201600337
- S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11(4), 744–771 (2018). https://doi.org/10.1039/C7EE03457A
- J. Yu, G. Li, H. Liu, L. Zhao, A. Wang et al., Ru–Ru2PФNPC and NPC@RuO2 synthesized via environment-friendly and solid-phase phosphating process by saccharomycetes as N/P sources and carbon template for overall water splitting in acid electrolyte. Adv. Funct. Mater. 29(22), 1901154 (2019). https://doi.org/10.1002/adfm.201901154
- C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang et al., Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48, 73–80 (2018). https://doi.org/10.1016/j.nanoen.2018.03.034
- H. Wu, X. Lu, G. Zheng, G.W. Ho, Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy Mater. 8(14), 1702704 (2018). https://doi.org/10.1002/aenm.201702704
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- X. Ren, H. Fan, C. Wang, J. Ma, H. Li, M. Zhang, S. Lei, W. Wang, Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 50, 562–570 (2018). https://doi.org/10.1016/j.nanoen.2018.06.002
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- Z. Wang, C. Li, K. Domen, Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48(7), 2109–2125 (2019). https://doi.org/10.1039/C8CS00542G
- W. Yang, R.R. Prabhakar, J. Tan, S.D. Tilley, J. Moon, Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48(19), 4979–5015 (2019). https://doi.org/10.1039/C8CS00997J
- F. Niu, D. Wang, F. Li, Y. Liu, S. Shen, T.J. Meyer, Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Adv. Energy Mater. 10(11), 1900399 (2019). https://doi.org/10.1002/aenm.201900399
- H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin et al., Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 11(10), 2858–2864 (2018). https://doi.org/10.1039/C8EE00927A
- G. Li, J. Yu, J. Jia, L. Yang, L. Zhao, W. Zhou, H. Liu, Cobalt–cobalt phosphide nanoparticles@nitrogen–phosphorus doped carbon/graphene derived from cobalt ions adsorbed saccharomycete yeasts as an efficient, stable, and large-current-density electrode for hydrogen evolution reactions. Adv. Funct. Mater. 28(40), 1801332 (2018). https://doi.org/10.1002/adfm.201801332
- X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019). https://doi.org/10.1016/j.nanoen.2019.05.013
- J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen, Ultrathin n-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11(12), 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607
- W. Zhou, J. Lu, K. Zhou, L. Yang, Y. Ke, Z. Tang, S. Chen, CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28, 143–150 (2016). https://doi.org/10.1016/j.nanoen.2016.08.040
- L.P. Wen, X.Y. Shan, J. Liu, H.R. Mu, Y. Xiao et al., Engineered superhydrophilic/superaerophobic electrocatalysts composed of supported CoMoSx chalcogels for overall water splitting. Angew. Chem. Int. Ed. 59(4), 1659–1665 (2020). https://doi.org/10.1002/anie.201911617
- N.N. Han, K.R. Yang, Z.Y. Lu, Y.J. Li, W.W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
- Z.Y. Lu, W. Zhu, X.Y. Yu, H.C. Zhang, Y.J. Li et al., Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26(17), 2683–2687 (2014). https://doi.org/10.1002/adma.201304759
- W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590–1598 (2018). https://doi.org/10.1021/acs.accounts.8b00070
- H.Y. Li, S.M. Chen, Y. Zhang, Q.H. Zhang, X.F. Jia et al., Systematic design of superaerophobic nanotubearray electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 9, 2452 (2018). https://doi.org/10.1038/s41467-018-04888-0
- D. Jeon, J. Park, C. Shin, H. Kim, J.-W. Jang, D.W. Lee, J. Ryu, Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 6, eaaz3944 (2020). https://doi.org/10.1126/sciadv.aaz3944
- L. Zeng, L. Yang, J. Lu, J. Jia, J. Yu, Y. Deng, M. Shao, W. Zhou, One-step synthesis of Fe–Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chin. Chem. Lett. 29(12), 1875–1878 (2018). https://doi.org/10.1016/j.cclet.2018.10.026
- J.H. Lin, Y.T. Yan, C. Li, X.Q. Si, H.H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
- Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4(45), 17587–17603 (2016). https://doi.org/10.1039/C6TA08075H
- Y. Ha, L. Shi, Z. Chen, R. Wu, Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 6(11), 1900272 (2019). https://doi.org/10.1002/advs.201900272
- K. Chi, X. Tian, Q. Wang, Z. Zhang, X. Zhang et al., Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. J. Catal. 381, 44–52 (2020). https://doi.org/10.1016/j.jcat.2019.10.025
- Y. Zhang, J. Fu, H. Zhao, R. Jiang, F. Tian, R. Zhang, Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting. Appl. Catal. B 257, 117899 (2019). https://doi.org/10.1016/j.apcatb.2019.117899
- N. Yao, P. Li, Z. Zhou, R. Meng, G. Cheng, W. Luo, Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 15(31), 1901993 (2019). https://doi.org/10.1002/smll.201901993
- Q. Qin, L. Chen, T. Wei, X. Liu, MoS2/NiS yolk–shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small 15(29), 1803639 (2019). https://doi.org/10.1002/smll.201803639
- Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7(4), 2357–2366 (2017). https://doi.org/10.1021/acscatal.6b03192
- L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li, F. Pan, Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. J. Mater. Chem. A 7(30), 18003–18011 (2019). https://doi.org/10.1039/C9TA05578A
- J. Lin, P. Wang, H. Wang, C. Li, X. Si et al., Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 6(14), 1900246 (2019). https://doi.org/10.1002/advs.201900246
- Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen et al., Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 62, 338–347 (2019). https://doi.org/10.1016/j.nanoen.2019.05.036
- T. Zhang, L. Hang, Y. Sun, D. Men, X. Li, L. Wen, X. Lyu, Y. Li, Hierarchical hetero-Ni3Se4@NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horiz. 4(5), 1132–1138 (2019). https://doi.org/10.1039/C9NH00177H
- H. Sun, J.-G. Li, L. Lv, Z. Li, X. Ao, C. Xu, X. Xue, G. Hong, C. Wang, Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 425, 138–146 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.014
- F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, MOF-derived co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 4(39), 15148–15155 (2016). https://doi.org/10.1039/C6TA06496E
- N. Li, Y. Zhang, M. Jia, X. Lv, X. Li et al., 1T/2H MoSe2-on-mxene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 326, 134976 (2019). https://doi.org/10.1016/j.electacta.2019.134976
- J. Wang, W. Yang, J. Liu, CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 4(13), 4686–4690 (2016). https://doi.org/10.1039/C6TA00596A
- Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27(37), 1702513 (2017). https://doi.org/10.1002/adfm.201702513
- H. Sun, Y. Min, W. Yang, Y. Lian, L. Lin et al., Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal. 9(10), 8882–8892 (2019). https://doi.org/10.1021/acscatal.9b02264
- B. Cao, Y. Cheng, M. Hu, P. Jing, Z. Ma, B. Liu, R. Gao, J. Zhang, Efficient and durable 3D self-supported nitrogen-doped carbon-coupled nickel/cobalt phosphide electrodes: Stoichiometric ratio regulated phase- and morphology-dependent overall water splitting performance. Adv. Funct. Mater. 29(44), 1906316 (2019). https://doi.org/10.1002/adfm.201906316
- L. Zhang, X. Wang, A. Li, X. Zheng, L. Peng et al., Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts. J. Mater. Chem. A 7(29), 17529–17535 (2019). https://doi.org/10.1039/C9TA05282H
- J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11(1), 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
- Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo, S. Wang, Nanoparticle-stacked porous nickel-iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces. 8(29), 18652–18657 (2016). https://doi.org/10.1021/acsami.6b05811
- A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu et al., Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 44, 353–363 (2018). https://doi.org/10.1016/j.nanoen.2017.11.045
- Y. Hu, D. Huang, J. Zhang, Y. Huang, M.S.J.T. Balogun, Y. Tong, Dual doping induced interfacial engineering of Fe2N/Fe3N hybrids with favorable d-band towards efficient overall water splitting. ChemCatChem 11(24), 6051–6060 (2019). https://doi.org/10.1002/cctc.201901224
- Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin et al., Promotion of overall water splitting activity over a wide pH range by interfacial electrical effects of metallic NiCo-nitrides nanoparticle/NiCo2O4 nanoflake/graphite fibers. Adv. Sci. 6(5), 1801829 (2019). https://doi.org/10.1002/advs.201801829
- Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian, D. Yu, X. Chen, L. Dai, Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 141(12), 4972–4979 (2019). https://doi.org/10.1021/jacs.9b00154
- C. Xing, Y. Xue, B. Huang, H. Yu, L. Hui et al., Fluorographdiyne: a metal-free catalyst for applications in water reduction and oxidation. Angew. Chem. Int. Ed. 131(39), 14035–14041 (2019). https://doi.org/10.1002/anie.201905729
- C.W. Liang, P.C. Zou, A. Nairan, Y.Q. Zhang, J.X. Liu et al., Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020). https://doi.org/10.1039/c9ee02388g
- I. Vincent, D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sustain. Energy Rev. 81, 1690–1704 (2018). https://doi.org/10.1016/j.rser.2017.05.258
- H. Ju, S. Badwal, S. Giddey, A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Appl. Energy 231, 502–533 (2018). https://doi.org/10.1016/j.apenergy.2018.09.125
- C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, In situ formation of nanostructured core-shell Cu3N–CuO to promote alkaline water electrolysis. ACS Energy Lett. 4(3), 747–754 (2019). https://doi.org/10.1021/acsenergylett.9b00091
- J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
- T. Zhang, K. Yang, C. Wang, S. Li, Q. Zhang et al., Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis. Adv. Energy Mater. 8(29), 1801690 (2018). https://doi.org/10.1002/aenm.201801690
- K. Zhang, M.B. McDonald, I.E.A. Genina, P.T. Hammond, A highly conductive and mechanically robust OH− conducting membrane for alkaline water electrolysis. Chem. Mater. 30(18), 6420–6430 (2018). https://doi.org/10.1021/acs.chemmater.8b02709
- D. Aili, M.R. Kraglund, J. Tavacoli, C. Chatzichristodoulou, J.O. Jensen, Polysulfone–polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis. J. Membr. Sci. 598, 117674 (2020). https://doi.org/10.1016/j.memsci.2019.117674
- P. Fortin, T. Khoza, X. Cao, S.Y. Martinsen, A. Oyarce Barnett, S. Holdcroft, High-performance alkaline water electrolysis using Aemion™ anion exchange membranes. J. Power Sources 451, 227814 (2020). https://doi.org/10.1016/j.jpowsour.2020.227814
- M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38(12), 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
- W. Tong, M. Forster, F. Dionigi, S. Dresp, R.S. Erami, P. Strasser, A.J. Cowan, P. Farràs, Electrolysis of low-grade and saline surface water. Nat. Energy (2020). https://doi.org/10.1038/s41560-020-0550-8
- A. Kovač, D. Marciuš, L. Budin, Solar hydrogen production via alkaline water electrolysis. Int. J. Hydrogen Energy 44(20), 9841–9848 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.007
- S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis. Electrochim. Acta 82, 384–391 (2012). https://doi.org/10.1016/j.electacta.2012.05.011
- S. Barwe, B. Mei, J. Masa, W. Schuhmann, E. Ventosa, Overcoming cathode poisoning from electrolyte impurities in alkaline electrolysis by means of self-healing electrocatalyst films. Nano Energy 53, 763–768 (2018). https://doi.org/10.1016/j.nanoen.2018.09.045
- R. Phillips, A. Edwards, B. Rome, D.R. Jones, C.W. Dunnill, Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy 42(38), 23986–23994 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.184
- A. Gabler, C.I. Müller, T. Rauscher, T. Gimpel, R. Hahn et al., Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy 43(15), 7216–7226 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.130
- J. Zhang, C. Zhang, J. Sha, H. Fei, Y. Li, J.M. Tour, Efficient water-splitting electrodes based on laser-induced graphene. ACS Appl. Mater. Interfaces. 9(32), 26840–26847 (2017). https://doi.org/10.1021/acsami.7b06727
- S.M.H. Hashemi, P. Karnakov, P. Hadikhani, E. Chinello, S. Litvinov, C. Moser, P. Koumoutsakos, D. Psaltis, A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy Environ. Sci. 12(5), 1592–1604 (2019). https://doi.org/10.1039/C9EE00219G
- J.C. Bui, J.T. Davis, D.V. Esposito, 3D-printed electrodes for membraneless water electrolysis. Sustain. Energy Fuels 4(1), 213–225 (2020). https://doi.org/10.1039/C9SE00710E
- M.I. Gillespie, R.J. Kriek, Hydrogen production from a rectangular horizontal filter press divergent electrode-flow-through (DEFT™) alkaline electrolysis stack. J. Power Sources 372, 252–259 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.080
- M.I. Gillespie, R.J. Kriek, Scalable hydrogen production from a mono-circular filter press divergent electrode-flow-through alkaline electrolysis stack. J. Power Sources 397, 204–213 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.026
- A.G. Wallace, M.D. Symes, Decoupling strategies in electrochemical water splitting and beyond. Joule 2(8), 1390–1395 (2018). https://doi.org/10.1016/j.joule.2018.06.011
- J. Wang, L. Ji, X. Teng, Y. Liu, L. Guo, Z. Chen, Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. J. Mater. Chem. A 7(21), 13149–13153 (2019). https://doi.org/10.1039/C9TA03285A
- X. Liu, J. Chi, B. Dong, Y. Sun, Recent progress in decoupled H2 and O2 production from electrolytic water splitting. ChemElectroChem 6(8), 2157–2166 (2019). https://doi.org/10.1002/celc.201801671
- A. Landman, H. Dotan, G.E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G.S. Grader, A. Rothschild, Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16(6), 646–651 (2017). https://doi.org/10.1038/nmat4876
- Y. Ma, X. Dong, Y. Wang, Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. 57(11), 2904–2908 (2018). https://doi.org/10.1002/anie.201800436
- Y. Ma, Z. Guo, X. Dong, Y. Wang, Y. Xia, Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. 58(14), 4622–4626 (2019). https://doi.org/10.1002/anie.201814625
- H. Dotan, A. Landman, S.W. Sheehan, K.D. Malviya, G.E. Shter et al., Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4(9), 786–795 (2019). https://doi.org/10.1038/s41560-019-0462-7
- W.T. Grubb, Ionic migration in ion-exchange membranes. J. Phys. Chem. 63(1), 55–58 (1959). https://doi.org/10.1021/j150571a015
- E.J. Park, C.B. Capuano, K.E. Ayers, C. Bae, Chemically durable polymer electrolytes for solid-state alkaline water electrolysis. J. Power Sources 375, 367–372 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.090
- M. Zhu, Q. Shao, Y. Qian, X. Huang, Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir–Ag nanotubes. Nano Energy 56, 330–337 (2019). https://doi.org/10.1016/j.nanoen.2018.11.023
- L. Fu, F. Yang, G. Cheng, W. Luo, Ultrathin Ir nanowires as high-performance electrocatalysts for efficient water splitting in acidic media. Nanoscale 10(4), 1892–1897 (2018). https://doi.org/10.1039/C7NR09377B
- C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert et al., Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochem. Commun. 97, 96–99 (2018). https://doi.org/10.1016/j.elecom.2018.10.021
- J.-W. Yu, G.-B. Jung, Y.-J. Su, C.-C. Yeh, M.-Y. Kan, C.-Y. Lee, C.-J. Lai, Proton exchange membrane water electrolysis system-membrane electrode assembly with additive. Int. J. Hydrogen Energy 44(30), 15721–15726 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.192
- A. Zinser, G. Papakonstantinou, K. Sundmacher, Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. Int. J. Hydrogen Energy 44(52), 28077–28087 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.081
- W. Xu, K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. Int. J. Hydrogen Energy 35(21), 12029–12037 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.055
- P. Millet, R. Ngameni, S.A. Grigoriev, V.N. Fateev, Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems. Int. J. Hydrogen Energy 36(6), 4156–4163 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.106
- J.E. Bennett, Electrodes for generation of hydrogen and oxygen from seawater. Int. J. Hydrogen Energy 5(4), 401–408 (1980). https://doi.org/10.1016/0360-3199(80)90021-X
- Y. Kuang, M.J. Kenney, Y.T. Meng, W.-H. Hung, Y.J. Liuf et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U.S.A. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
- S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29(11), 1503–1512 (1984). https://doi.org/10.1016/0013-4686(84)85004-5
- F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis. Chemsuschem 9(9), 962 (2016). https://doi.org/10.1002/cssc.201501581
- F.J. Quan, G.M. Zhan, H. Shang, Y.H. Huang, F.L. Jia, L.Z. Zhang, Z.H. Ai, Highly efficient electrochemical conversion of CO2 and NaCl to CO and NaClO. Green Chem. 21, 3256 (2019). https://doi.org/10.1039/c9gc01099h
- X. Long, L. Gao, F. Li, Y. Hu, S. Wei, C. Wang, T. Wang, J. Jin, J. Ma, Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl. Catal. B 257, 117813 (2019). https://doi.org/10.1016/j.apcatb.2019.117813
- J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Copper oxide nanowires for efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 240, 1–8 (2019). https://doi.org/10.1016/j.apcatb.2018.08.070
- L.G. Xia, J.H. Li, J. Bai, L.S. Li, S. Chen, B.X. Zhou, BiVO4 photoanode with exposed (040) facets for enhanced photoelectrochemical performance. Nano-Micro Lett. 10, 11 (2018). https://doi.org/10.1007/s40820-017-0163-3
- A. Landman, R. Halabi, P. Dias, H. Dotan, A. Mehlmann et al., Decoupled photoelectrochemical water splitting system for centralized hydrogen production. Joule 4(2), 448–471 (2020). https://doi.org/10.1016/j.joule.2019.12.006
- J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31(20), 1806938 (2019). https://doi.org/10.1002/adma.201806938
- E. Edwardes Moore, V. Andrei, S. Zacarias, I.A.C. Pereira, E. Reisner, Integration of a hydrogenase in a lead halide perovskite photoelectrode for tandem solar water splitting. ACS Energy Lett. 5(1), 232–237 (2020). https://doi.org/10.1021/acsenergylett.9b02437
- M. Chen, Y. Liu, C. Li, A. Li, X. Chang et al., Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy Environ. Sci. 11(8), 2025–2034 (2018). https://doi.org/10.1039/C7EE03650G
- H. Kobayashi, N. Sato, M. Orita, Y. Kuang, H. Kaneko, T. Minegishi, T. Yamada, K. Domen, Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 11(10), 3003–3009 (2018). https://doi.org/10.1039/C8EE01783B
- L. Pan, J.H. Kim, M.T. Mayer, M.-K. Son, A. Ummadisingu et al., Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1(6), 412–420 (2018). https://doi.org/10.1038/s41929-018-0077-6
- X. Li, M. Jia, Y. Lu, N. Li, Y.-Z. Zheng, X. Tao, M. Huang, Co(OH)2/BiVO4 photoanode in tandem with a carbon-based perovskite solar cell for solar-driven overall water splitting. Electrochim. Acta 330, 135183 (2020). https://doi.org/10.1016/j.electacta.2019.135183
- D. Shao, L. Zheng, D. Feng, J. He, R. Zhang et al., TiO2–P3HT:PCBM photoelectrochemical tandem cells for solar-driven overall water splitting. J. Mater. Chem. A 6(9), 4032–4039 (2018). https://doi.org/10.1039/C7TA09367E
- M. Huang, W. Lei, M. Wang, S. Zhao, C. Li, M. Wang, H. Zhu, Large area high-performance bismuth vanadate photoanode for efficient solar water splitting. J. Mater. Chem. A 8(7), 3845–3850 (2020). https://doi.org/10.1039/C9TA13715G
- P. Varadhan, H.-C. Fu, Y.-C. Kao, R.-H. Horng, J.-H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10(1), 5282 (2019). https://doi.org/10.1038/s41467-019-12977-x
- V. Andrei, R.L.Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, E. Reisner, Scalable triple cation mixed halide perovskite-BiVO4 tandems for bias-free water splitting. Adv. Energy Mater. 8(25), 1801403 (2018). https://doi.org/10.1002/aenm.201801403
- Y. Chen, X. Feng, Y. Liu, X. Guan, C. Burda, L. Guo, Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 5(3), 844–866 (2020). https://doi.org/10.1021/acsenergylett.9b02620
- X. Wang, W. Gao, Z. Zhao, L. Zhao, J.P. Claverie et al., Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus. Appl. Catal. B 248, 388–393 (2019). https://doi.org/10.1016/j.apcatb.2019.02.048
- G.D. Sabba, M.H. Kumar, L.H. Wong, J. Barber, M. Grätzel, N. Mathews, Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett. 15(6), 3833–3839 (2015). https://doi.org/10.1021/acs.nanolett.5b00616
- J.H. Kim, Y. Jo, J.H. Kim, J.W. Jang, H.J. Kang et al., Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano 9(12), 11820–11829 (2015). https://doi.org/10.1021/acsnano.5b03859
- J. Luo, Z. Li, S. Nishiwaki, M. Schreier, M.T. Mayer et al., Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1−xSe2 photocathodes. Adv. Energy Mater. 5(24), 1501520 (2015). https://doi.org/10.1002/aenm.201501520
- Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou et al., Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2(6), e1501764 (2016). https://doi.org/10.1126/sciadv.1501764
- K.P. Sokol, W.E. Robinson, J. Warnan, N. Kornienko, M.M. Nowaczyk, A. Ruff, J.Z. Zhang, E. Reisner, Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3(11), 944–951 (2018). https://doi.org/10.1038/s41560-018-0232-y
- J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6(12), 824–828 (2012). https://doi.org/10.1038/nphoton.2012.265
- X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon et al., Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13, 182–191 (2015). https://doi.org/10.1016/j.nanoen.2015.02.018
- V. González-Pedro, I. Zarazua, E.M. Barea, F. Fabregat-Santiago, E. de la Rosa, I. Mora-Seró, S. Giménez, Panchromatic solar-to-H2 conversion by a hybrid quantum dots–dye dual absorber tandem device. J. Phys. Chem. C 118(2), 891–895 (2014). https://doi.org/10.1021/jp4109893
- X. Zhou, J. Zhou, G. Huang, R. Fan, S. Ju, Z. Mi, M. Shen, A bifunctional and stable Ni–Co–S/Ni–Co–P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting. J. Mater. Chem. A 6(41), 20297–20303 (2018). https://doi.org/10.1039/C8TA07197G
- L. Ma, W. Zhang, P. Zhao, J. Liang, Y. Hu et al., Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. J. Mater. Chem. A 6(41), 20076–20082 (2018). https://doi.org/10.1039/C8TA08116F
- L. Yao, A. Rahmanudin, N. Guijarro, K. Sivula, Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 8(32), 1802585 (2018). https://doi.org/10.1002/aenm.201802585
- J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
- J. Jung, J. Lee, Thermovoltage-driven solar hydrogen for commercialized water splitting. SPIE (2015). https://doi.org/10.1117/2.1201512.006219
- Y. Xin, X. Kan, L.-Y. Gan, Z. Zhang, Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11(10), 10303–10312 (2017). https://doi.org/10.1021/acsnano.7b05020
- H. Song, S. Oh, H. Yoon, K.-H. Kim, S. Ryu, J. Oh, Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting. Nano Energy 42, 1–7 (2017). https://doi.org/10.1016/j.nanoen.2017.10.028
- B. Koo, D. Kim, P. Boonmongkolras, S.R. Pae, S. Byun et al., Unassisted water splitting exceeding 9% solar-to-hydrogen conversion efficiency by Cu(In, Ga)(S, Se)2 photocathode with modified surface band structure and halide perovskite solar cell. ACS Appl. Energy Mater. 3(3), 2296–2303 (2020). https://doi.org/10.1021/acsaem.9b02387
- B. Kim, G.S. Park, Y.J. Hwang, D.H. Won, W. Kim, D.K. Lee, B.K. Min, Cu(In, Ga)(S, Se)2 photocathodes with a grown-in CuxS catalyst for solar water splitting. ACS Energy Lett. 4(12), 2937–2944 (2019). https://doi.org/10.1021/acsenergylett.9b01816
- N. Gaillard, D. Prasher, M. Chong, A. Deangelis, K. Horsley et al., Wide-bandgap Cu(In, Ga)S2 photocathodes integrated on transparent conductive F:SnO2 substrates for chalcopyrite-based water splitting tandem devices. ACS Appl. Energy Mater. 2(8), 5515–5524 (2019). https://doi.org/10.1021/acsaem.9b00690
- T.J. Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff, T. Edvinsson, A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6(12), 3676–3683 (2013). https://doi.org/10.1039/C3EE42519C
- T.J. Jacobsson, C. Platzer-Björkman, M. Edoff, T. Edvinsson, CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation. Int. J. Hydrogen Energy 38(35), 15027–15035 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.094
- A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019). https://doi.org/10.1016/j.joule.2019.05.009
- C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Low-bandgap mixed tin–lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 29(47), 1808801 (2019). https://doi.org/10.1002/adfm.201808801
- Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni et al., Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10(1), 4498 (2019). https://doi.org/10.1038/s41467-019-12513-x
- D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3(12), 1093–1100 (2018). https://doi.org/10.1038/s41560-018-0278-x
- R. Lin, H. Lei, D. Ruan, K. Jiang, X. Yu, Z. Wang, W. Mai, H. Yan, Solar-powered overall water splitting system combing metal-organic frameworks derived bimetallic nanohybrids based electrocatalysts and one organic solar cell. Nano Energy 56, 82–91 (2019). https://doi.org/10.1016/j.nanoen.2018.10.058
- X. Liu, Y. Wang, X. Cui, M. Zhang, B. Wang et al., Enabling highly efficient photocatalytic hydrogen generation and organics degradation via a perovskite solar cell-assisted semiconducting nanocomposite photoanode. J. Mater. Chem. A 7(1), 165–171 (2019). https://doi.org/10.1039/C8TA08998A
- J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593 (2014). https://doi.org/10.1126/science.1258307
- A. Kumar, D.K. Chaudhary, S. Parvin, S. Bhattacharyya, High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J. Mater. Chem. A 6(39), 18948–18959 (2018). https://doi.org/10.1039/C8TA06946H
- R. Merienne, J. Lynn, E. McSweeney, S.M. O’Shaughnessy, Thermal cycling of thermoelectric generators: the effect of heating rate. Appl. Energy 237, 671–681 (2019). https://doi.org/10.1016/j.apenergy.2019.01.041
- Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416
- L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, H. Han, Efficient perovskite photovoltaic–thermoelectric hybrid device. Adv. Energy Mater. 8(13), 1702937 (2018). https://doi.org/10.1002/aenm.201702937
- G. Li, S. Shittu, T.M.O. Diallo, M. Yu, X. Zhao, J. Ji, A review of solar photovoltaic–thermoelectric hybrid system for electricity generation. Energy 158, 41–58 (2018). https://doi.org/10.1016/j.energy.2018.06.021
- Z. Yang, W. Li, X. Chen, S. Su, G. Lin, J. Chen, Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell-thermoelectric generator system. Energy Convers. Manag. 174, 65–71 (2018). https://doi.org/10.1016/j.enconman.2018.08.038
- G. Li, S. Shittu, X. Ma, X. Zhao, Comparative analysis of thermoelectric elements optimum geometry between photovoltaic–thermoelectric and solar thermoelectric. Energy 171, 599–610 (2019). https://doi.org/10.1016/j.energy.2019.01.057
- D. Zhang, Y. Wang, Y. Yang, Design, performance, and application of thermoelectric nanogenerators. Small 15(32), 1805241 (2019). https://doi.org/10.1002/smll.201805241
- J. Zhang, H. Zhai, Z. Wu, Y. Wang, H. Xie, M. Zhang, Enhanced performance of photovoltaic–thermoelectric coupling devices with thermal interface materials. Energy Rep. 6, 116–122 (2020). https://doi.org/10.1016/j.egyr.2019.12.001
- A. Majumdar, Thermoelectricity in semiconductor nanostructures. Science 303(5659), 777 (2004). https://doi.org/10.1126/science.1093164
- L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8(6), 1701797 (2017). https://doi.org/10.1002/aenm.201701797
- J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30(11), 1704386 (2018). https://doi.org/10.1002/adma.201704386
- S. Sun, W. Wang, D. Jiang, L. Zhang, J. Zhou, Infrared light induced photoelectrocatalytic application via graphene oxide coated thermoelectric device. Appl. Catal. B 158–159, 136–139 (2014). https://doi.org/10.1016/j.apcatb.2014.04.009
- S.A. Shankaregowda, R.F.S.M. Ahmed, C.B. Nanjegowda, J. Wang, S. Guan et al., Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy 66, 104141 (2019). https://doi.org/10.1016/j.nanoen.2019.104141
- X. Huang, W. Zhang, G. Guan, G. Song, R. Zou, J. Hu, Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 50(10), 2529–2538 (2017). https://doi.org/10.1021/acs.accounts.7b00294
- X. Zhang, W. Gao, X. Su, F. Wang, B. Liu, J.-J. Wang, H. Liu, Y. Sang, Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 48, 481–488 (2018). https://doi.org/10.1016/j.nanoen.2018.03.055
- L. Zhao, Z. Yang, Q. Cao, L. Yang, X. Zhang et al., An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 56, 563–570 (2019). https://doi.org/10.1016/j.nanoen.2018.11.035
- L. Huang, J. Chen, Z. Yu, D. Tang, Self-powered temperature sensor with seebeck effect transduction for photothermal-thermoelectric coupled immunoassay. Anal. Chem. 92(3), 2809–2814 (2020). https://doi.org/10.1021/acs.analchem.9b05218
- V. Andrei, K. Bethke, K. Rademann, Thermoelectricity in the context of renewable energy sources: joining forces instead of competing. Energy Environ. Sci. 9(5), 1528–1532 (2016). https://doi.org/10.1039/C6EE00247A
- J.-Y. Jung, D.W. Kim, D.-H. Kim, T.J. Park, R.B. Wehrspohn, J.-H. Lee, Seebeck-voltage-triggered self-biased photoelectrochemical water splitting using HfOx/SiOx bi-layer protected Si photocathodes. Sci. Rep. 9(1), 9132 (2019). https://doi.org/10.1038/s41598-019-45672-4
- N. Getoff, Basic problems of photochemical and photoelectrochemical hydrogen production from water. Int. J. Hydrogen Energy 9(12), 997–1004 (1984). https://doi.org/10.1016/0360-3199(84)90171-X
- S.-M. Shin, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, Catalyst-free hydrogen evolution of Si photocathode by thermovoltage-driven solar water splitting. J. Power Sources 279, 151–156 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.020
- N. Wang, L. Han, H. He, N.-H. Park, K. Koumoto, A novel high-performance photovoltaic–thermoelectric hybrid device. Energy Environ. Sci. 4(9), 3676–3679 (2011). https://doi.org/10.1039/C1EE01646F
- Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen et al., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429–2434 (2013). https://doi.org/10.1039/C3EE41485J
- L. Jin, B. Zhang, L. Zhang, W. Yang, Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 66, 104086 (2019). https://doi.org/10.1016/j.nanoen.2019.104086
- X. Xia, H. Wang, P. Basset, Y. Zhu, Y. Zi, Inductor-free output multiplier for power promotion and management of triboelectric nanogenerators toward self-powered systems. ACS Appl. Mater. Interfaces 12(5), 5892–5900 (2020). https://doi.org/10.1021/acsami.9b20060
- J. Han, X. Meng, L. Lu, Z.L. Wang, C. Sun, Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc–air battery: a case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy 72, 104669 (2020). https://doi.org/10.1016/j.nanoen.2020.104669
- A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan et al., Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12(8), 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363
- S. Shittu, G. Li, Y.G. Akhlaghi, X. Ma, X. Zhao, E. Ayodele, Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renew. Sustain. Energy Rev. 109, 24–54 (2019). https://doi.org/10.1016/j.rser.2019.04.023
- X. Meng, J. Han, L. Lu, G. Qiu, Z.L. Wang, C. Sun, Fe2+-doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems. Small 15(41), 1902551 (2019). https://doi.org/10.1002/smll.201902551
- P. Cheng, Y. Liu, Z. Wen, H. Shao, A. Wei et al., Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 54, 156–162 (2018). https://doi.org/10.1016/j.nanoen.2018.10.007
- W. Tang, Y. Han, C.B. Han, C.Z. Gao, X. Cao, Z.L. Wang, Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). https://doi.org/10.1002/adma.201404071
- T. Li, Y. Xu, F. Xing, X. Cao, J. Bian, N. Wang, Z.L. Wang, Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery. Adv. Energy Mater. 7(15), 1700124 (2017). https://doi.org/10.1002/aenm.201700124
- H. Askari, A. Khajepour, M.B. Khamesee, Z.L. Wang, Embedded self-powered sensing systems for smart vehicles and intelligent transportation. Nano Energy 66, 104103 (2019). https://doi.org/10.1016/j.nanoen.2019.104103
- W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019). https://doi.org/10.1002/adfm.201901069
- H. Yang, M. Deng, Q. Zeng, X. Zhang, J. Hu et al., Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano 14(3), 3328–3336 (2020). https://doi.org/10.1021/acsnano.9b08998
- J.-W. Lee, W. Hwang, Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy 52, 315–322 (2018). https://doi.org/10.1016/j.nanoen.2018.08.008
- J. Xiong, H. Luo, D. Gao, X. Zhou, P. Cui, G. Thangavel, K. Parida, P.S. Lee, Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 61, 584–593 (2019). https://doi.org/10.1016/j.nanoen.2019.04.089
- Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou, W. Liu, Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55, 260–268 (2019). https://doi.org/10.1016/j.nanoen.2018.10.075
- H. Lin, M. He, Q. Jing, W. Yang, S. Wang et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 56, 269–276 (2019). https://doi.org/10.1016/j.nanoen.2018.11.037
- K. Han, J. Luo, Y. Feng, Q. Lai, Y. Bai, W. Tang, Z.L. Wang, Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano 14(3), 2751–2759 (2020). https://doi.org/10.1021/acsnano.9b08496
- M.T. Rahman, M. Salauddin, P. Maharjan, M.S. Rasel, H. Cho, J.Y. Park, Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy 57, 256–268 (2019). https://doi.org/10.1016/j.nanoen.2018.12.052
- X. Zhao, B. Chen, G. Wei, J.M. Wu, W. Han, Y. Yang, Polyimide/graphene nanocomposite foam-based wind-driven triboelectric nanogenerator for self-powered pressure sensor. Adv. Mater. Technol. 4(5), 1800723 (2019). https://doi.org/10.1002/admt.201800723
- M. Xie, S. Dunn, E.L. Boulbar, C.R. Bowen, Pyroelectric energy harvesting for water splitting. Int. J. Hydrogen Energy 42(37), 23437–23445 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.086
- Y. Zhang, S. Kumar, F. Marken, M. Krasny, E. Roake et al., Pyro-electrolytic water splitting for hydrogen generation. Nano Energy 58, 183–191 (2019). https://doi.org/10.1016/j.nanoen.2019.01.030
- J. Schlechtweg, S. Raufeisen, M. Stelter, P. Braeutigam, A novel model for pyro-electro-catalytic hydrogen production in pure water. Phys. Chem. Chem. Phys. 21(41), 23009–23016 (2019). https://doi.org/10.1039/c9cp02510c
- Y. Zhang, P.T.T. Phuong, E. Roake, H. Khanbareh, Y. Wang, S. Dunn, C. Bowen, Thermal energy harvesting using pyroelectric–electrochemical coupling in ferroelectric materials. Joule 4(2), 301–309 (2020). https://doi.org/10.1016/j.joule.2019.12.019
- T. Ding, L. Zhu, X.-Q. Wang, K.H. Chan, X. Lu, Y. Cheng, G.W. Ho, Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting. Adv. Energy Mater. 8(33), 1802397 (2018). https://doi.org/10.1002/aenm.201802397
- S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, L.W. Martin, Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17(5), 432–438 (2018). https://doi.org/10.1038/s41563-018-0059-8
- J. Harada, Y. Kawamura, Y. Takahashi, Y. Uemura, T. Hasegawa, H. Taniguchi, K. Maruyama, Plastic/ferroelectric crystals with easily switchable polarization: low-voltage operation, unprecedentedly high pyroelectric performance, and large piezoelectric effect in polycrystalline forms. J. Am. Chem. Soc. 141(23), 9349–9357 (2019). https://doi.org/10.1021/jacs.9b03369
- K. Zhang, Y. Wang, Z.L. Wang, Y. Yang, Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 55, 534–540 (2019). https://doi.org/10.1016/j.nanoen.2018.11.020
- S. Pandya, G.A. Velarde, R. Gao, A.S. Everhardt, J.D. Wilbur et al., Understanding the role of ferroelastic domains on the pyroelectric and electrocaloric effects in ferroelectric thin films. Adv. Mater. 31(5), 1803312 (2019). https://doi.org/10.1002/adma.201803312
- L. Kuai, S. Liu, S. Cao, Y. Ren, E. Kan et al., Atomically dispersed Pt/metal oxide mesoporous catalysts from synchronous pyrolysis-deposition route for water–gas shift reaction. Chem. Mater. 30(16), 5534–5538 (2018). https://doi.org/10.1021/acs.chemmater.8b02144
- L. Pastor-Pérez, V. Belda-Alcázar, C. Marini, M.M. Pastor-Blas, A. Sepúlveda-Escribano, E.V. Ramos-Fernandez, Effect of cold ar plasma treatment on the catalytic performance of Pt/CeO2 in water–gas shift reaction (WGS). Appl. Catal. B 225, 121–127 (2018). https://doi.org/10.1016/j.apcatb.2017.11.065
- L. Zhao, Y. Qi, L. Song, S. Ning, S. Ouyang, H. Xu, J. Ye, Solar-driven water–gas shift reaction over CuOx/Al2O3 with 1.1% of light-to-energy storage. Angew. Chem. Int. Ed. 58(23), 7708–7712 (2019). https://doi.org/10.1002/anie.201902324
- N. Liu, M. Xu, Y. Yang, S. Zhang, J. Zhang, W. Wang, L. Zheng, S. Hong, M. Wei, Auδ−–Ov–Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction. ACS Catal. 9(4), 2707–2717 (2019). https://doi.org/10.1021/acscatal.8b04913
- S. Xu, S. Chansai, C. Stere, B. Inceesungvorn, A. Goguet et al., Sustaining metal-organic frameworks for water–gas shift catalysis by non-thermal plasma. Nat. Catal. 2(2), 142–148 (2019). https://doi.org/10.1038/s41929-018-0206-2
- S.C. Ammal, A. Heyden, Understanding the nature and activity of supported platinum catalysts for the water–gas shift reaction: from metallic nanoclusters to alkali-stabilized single-atom cations. ACS Catal. 9(9), 7721–7740 (2019). https://doi.org/10.1021/acscatal.9b01560
- M. Xu, S. Yao, D. Rao, Y. Niu, N. Liu et al., Insights into interfacial synergistic catalysis over Ni@TiO2−x catalyst toward water–gas shift reaction. J. Am. Chem. Soc. 140(36), 11241–11251 (2018). https://doi.org/10.1021/jacs.8b03117
- D.B. Pal, R. Chand, S.N. Upadhyay, P.K. Mishra, Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018). https://doi.org/10.1016/j.rser.2018.05.003
- J.A. Rodriguez, E.R. Remesal, P.J. Ramírez, I. Orozco, Z. Liu, J. Graciani, S.D. Senanayake, J.F. Sanz, Water–gas shift reaction on K/Cu(111) and Cu/K/TiO2(110) surfaces: alkali promotion of water dissociation and production of H2. ACS Catal. 9(12), 10751–10760 (2019). https://doi.org/10.1021/acscatal.9b03922
- M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu et al., Strong metal-support interactions between copper and iron oxide during the high-temperature water–gas shift reaction. Angew. Chem. Int. Ed. 131(27), 9181–9185 (2019). https://doi.org/10.1002/anie.201903298
- J. Shi, A. Wittstock, C. Mahr, M.M. Murshed, T.M. Gesing, A. Rosenauer, M. Bäumer, Nanoporous gold functionalized with praseodymia–titania mixed oxides as a stable catalyst for the water–gas shift reaction. Phys. Chem. Chem. Phys. 21(6), 3278–3286 (2019). https://doi.org/10.1039/C8CP06040A
- D. Damma, D. Jampaiah, A. Welton, P. Boolchand, A. Arvanitis, J. Dong, P.G. Smirniotis, Effect of Nb modification on the structural and catalytic property of Fe/Nb/M (M = Mn Co, Ni, and Cu) catalyst for high temperature water–gas shift reaction. Catal. Today (2019). https://doi.org/10.1016/j.cattod.2019.02.029
- X. Cui, H.-Y. Su, R. Chen, L. Yu, J. Dong et al., Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production. Nat. Commun. 10(1), 86 (2019). https://doi.org/10.1038/s41467-018-07937-w
References
E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11(4), 872–880 (2018). https://doi.org/10.1039/C8EE00076J
F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9(1), 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. 59(1), 136–152 (2020). https://doi.org/10.1002/anie.201900292
K. Oka, O. Tsujimura, T. Suga, H. Nishide, B. Winther-Jensen, Light-assisted electrochemical water-splitting at very low bias voltage using metal-free polythiophene as photocathode at high pH in a full-cell setup. Energy Environ. Sci. 11(5), 1335–1342 (2018). https://doi.org/10.1039/C7EE03669H
S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4(5), 1600337 (2017). https://doi.org/10.1002/advs.201600337
S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11(4), 744–771 (2018). https://doi.org/10.1039/C7EE03457A
J. Yu, G. Li, H. Liu, L. Zhao, A. Wang et al., Ru–Ru2PФNPC and NPC@RuO2 synthesized via environment-friendly and solid-phase phosphating process by saccharomycetes as N/P sources and carbon template for overall water splitting in acid electrolyte. Adv. Funct. Mater. 29(22), 1901154 (2019). https://doi.org/10.1002/adfm.201901154
C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang et al., Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48, 73–80 (2018). https://doi.org/10.1016/j.nanoen.2018.03.034
H. Wu, X. Lu, G. Zheng, G.W. Ho, Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy Mater. 8(14), 1702704 (2018). https://doi.org/10.1002/aenm.201702704
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
X. Ren, H. Fan, C. Wang, J. Ma, H. Li, M. Zhang, S. Lei, W. Wang, Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 50, 562–570 (2018). https://doi.org/10.1016/j.nanoen.2018.06.002
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
Z. Wang, C. Li, K. Domen, Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48(7), 2109–2125 (2019). https://doi.org/10.1039/C8CS00542G
W. Yang, R.R. Prabhakar, J. Tan, S.D. Tilley, J. Moon, Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48(19), 4979–5015 (2019). https://doi.org/10.1039/C8CS00997J
F. Niu, D. Wang, F. Li, Y. Liu, S. Shen, T.J. Meyer, Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Adv. Energy Mater. 10(11), 1900399 (2019). https://doi.org/10.1002/aenm.201900399
H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin et al., Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 11(10), 2858–2864 (2018). https://doi.org/10.1039/C8EE00927A
G. Li, J. Yu, J. Jia, L. Yang, L. Zhao, W. Zhou, H. Liu, Cobalt–cobalt phosphide nanoparticles@nitrogen–phosphorus doped carbon/graphene derived from cobalt ions adsorbed saccharomycete yeasts as an efficient, stable, and large-current-density electrode for hydrogen evolution reactions. Adv. Funct. Mater. 28(40), 1801332 (2018). https://doi.org/10.1002/adfm.201801332
X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019). https://doi.org/10.1016/j.nanoen.2019.05.013
J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen, Ultrathin n-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11(12), 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607
W. Zhou, J. Lu, K. Zhou, L. Yang, Y. Ke, Z. Tang, S. Chen, CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28, 143–150 (2016). https://doi.org/10.1016/j.nanoen.2016.08.040
L.P. Wen, X.Y. Shan, J. Liu, H.R. Mu, Y. Xiao et al., Engineered superhydrophilic/superaerophobic electrocatalysts composed of supported CoMoSx chalcogels for overall water splitting. Angew. Chem. Int. Ed. 59(4), 1659–1665 (2020). https://doi.org/10.1002/anie.201911617
N.N. Han, K.R. Yang, Z.Y. Lu, Y.J. Li, W.W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
Z.Y. Lu, W. Zhu, X.Y. Yu, H.C. Zhang, Y.J. Li et al., Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26(17), 2683–2687 (2014). https://doi.org/10.1002/adma.201304759
W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590–1598 (2018). https://doi.org/10.1021/acs.accounts.8b00070
H.Y. Li, S.M. Chen, Y. Zhang, Q.H. Zhang, X.F. Jia et al., Systematic design of superaerophobic nanotubearray electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 9, 2452 (2018). https://doi.org/10.1038/s41467-018-04888-0
D. Jeon, J. Park, C. Shin, H. Kim, J.-W. Jang, D.W. Lee, J. Ryu, Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 6, eaaz3944 (2020). https://doi.org/10.1126/sciadv.aaz3944
L. Zeng, L. Yang, J. Lu, J. Jia, J. Yu, Y. Deng, M. Shao, W. Zhou, One-step synthesis of Fe–Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chin. Chem. Lett. 29(12), 1875–1878 (2018). https://doi.org/10.1016/j.cclet.2018.10.026
J.H. Lin, Y.T. Yan, C. Li, X.Q. Si, H.H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4(45), 17587–17603 (2016). https://doi.org/10.1039/C6TA08075H
Y. Ha, L. Shi, Z. Chen, R. Wu, Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 6(11), 1900272 (2019). https://doi.org/10.1002/advs.201900272
K. Chi, X. Tian, Q. Wang, Z. Zhang, X. Zhang et al., Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. J. Catal. 381, 44–52 (2020). https://doi.org/10.1016/j.jcat.2019.10.025
Y. Zhang, J. Fu, H. Zhao, R. Jiang, F. Tian, R. Zhang, Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting. Appl. Catal. B 257, 117899 (2019). https://doi.org/10.1016/j.apcatb.2019.117899
N. Yao, P. Li, Z. Zhou, R. Meng, G. Cheng, W. Luo, Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 15(31), 1901993 (2019). https://doi.org/10.1002/smll.201901993
Q. Qin, L. Chen, T. Wei, X. Liu, MoS2/NiS yolk–shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small 15(29), 1803639 (2019). https://doi.org/10.1002/smll.201803639
Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7(4), 2357–2366 (2017). https://doi.org/10.1021/acscatal.6b03192
L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li, F. Pan, Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. J. Mater. Chem. A 7(30), 18003–18011 (2019). https://doi.org/10.1039/C9TA05578A
J. Lin, P. Wang, H. Wang, C. Li, X. Si et al., Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 6(14), 1900246 (2019). https://doi.org/10.1002/advs.201900246
Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen et al., Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 62, 338–347 (2019). https://doi.org/10.1016/j.nanoen.2019.05.036
T. Zhang, L. Hang, Y. Sun, D. Men, X. Li, L. Wen, X. Lyu, Y. Li, Hierarchical hetero-Ni3Se4@NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horiz. 4(5), 1132–1138 (2019). https://doi.org/10.1039/C9NH00177H
H. Sun, J.-G. Li, L. Lv, Z. Li, X. Ao, C. Xu, X. Xue, G. Hong, C. Wang, Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 425, 138–146 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.014
F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, MOF-derived co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 4(39), 15148–15155 (2016). https://doi.org/10.1039/C6TA06496E
N. Li, Y. Zhang, M. Jia, X. Lv, X. Li et al., 1T/2H MoSe2-on-mxene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 326, 134976 (2019). https://doi.org/10.1016/j.electacta.2019.134976
J. Wang, W. Yang, J. Liu, CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 4(13), 4686–4690 (2016). https://doi.org/10.1039/C6TA00596A
Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27(37), 1702513 (2017). https://doi.org/10.1002/adfm.201702513
H. Sun, Y. Min, W. Yang, Y. Lian, L. Lin et al., Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal. 9(10), 8882–8892 (2019). https://doi.org/10.1021/acscatal.9b02264
B. Cao, Y. Cheng, M. Hu, P. Jing, Z. Ma, B. Liu, R. Gao, J. Zhang, Efficient and durable 3D self-supported nitrogen-doped carbon-coupled nickel/cobalt phosphide electrodes: Stoichiometric ratio regulated phase- and morphology-dependent overall water splitting performance. Adv. Funct. Mater. 29(44), 1906316 (2019). https://doi.org/10.1002/adfm.201906316
L. Zhang, X. Wang, A. Li, X. Zheng, L. Peng et al., Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts. J. Mater. Chem. A 7(29), 17529–17535 (2019). https://doi.org/10.1039/C9TA05282H
J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11(1), 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo, S. Wang, Nanoparticle-stacked porous nickel-iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces. 8(29), 18652–18657 (2016). https://doi.org/10.1021/acsami.6b05811
A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu et al., Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 44, 353–363 (2018). https://doi.org/10.1016/j.nanoen.2017.11.045
Y. Hu, D. Huang, J. Zhang, Y. Huang, M.S.J.T. Balogun, Y. Tong, Dual doping induced interfacial engineering of Fe2N/Fe3N hybrids with favorable d-band towards efficient overall water splitting. ChemCatChem 11(24), 6051–6060 (2019). https://doi.org/10.1002/cctc.201901224
Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin et al., Promotion of overall water splitting activity over a wide pH range by interfacial electrical effects of metallic NiCo-nitrides nanoparticle/NiCo2O4 nanoflake/graphite fibers. Adv. Sci. 6(5), 1801829 (2019). https://doi.org/10.1002/advs.201801829
Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian, D. Yu, X. Chen, L. Dai, Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 141(12), 4972–4979 (2019). https://doi.org/10.1021/jacs.9b00154
C. Xing, Y. Xue, B. Huang, H. Yu, L. Hui et al., Fluorographdiyne: a metal-free catalyst for applications in water reduction and oxidation. Angew. Chem. Int. Ed. 131(39), 14035–14041 (2019). https://doi.org/10.1002/anie.201905729
C.W. Liang, P.C. Zou, A. Nairan, Y.Q. Zhang, J.X. Liu et al., Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020). https://doi.org/10.1039/c9ee02388g
I. Vincent, D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sustain. Energy Rev. 81, 1690–1704 (2018). https://doi.org/10.1016/j.rser.2017.05.258
H. Ju, S. Badwal, S. Giddey, A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Appl. Energy 231, 502–533 (2018). https://doi.org/10.1016/j.apenergy.2018.09.125
C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, In situ formation of nanostructured core-shell Cu3N–CuO to promote alkaline water electrolysis. ACS Energy Lett. 4(3), 747–754 (2019). https://doi.org/10.1021/acsenergylett.9b00091
J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
T. Zhang, K. Yang, C. Wang, S. Li, Q. Zhang et al., Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis. Adv. Energy Mater. 8(29), 1801690 (2018). https://doi.org/10.1002/aenm.201801690
K. Zhang, M.B. McDonald, I.E.A. Genina, P.T. Hammond, A highly conductive and mechanically robust OH− conducting membrane for alkaline water electrolysis. Chem. Mater. 30(18), 6420–6430 (2018). https://doi.org/10.1021/acs.chemmater.8b02709
D. Aili, M.R. Kraglund, J. Tavacoli, C. Chatzichristodoulou, J.O. Jensen, Polysulfone–polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis. J. Membr. Sci. 598, 117674 (2020). https://doi.org/10.1016/j.memsci.2019.117674
P. Fortin, T. Khoza, X. Cao, S.Y. Martinsen, A. Oyarce Barnett, S. Holdcroft, High-performance alkaline water electrolysis using Aemion™ anion exchange membranes. J. Power Sources 451, 227814 (2020). https://doi.org/10.1016/j.jpowsour.2020.227814
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38(12), 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
W. Tong, M. Forster, F. Dionigi, S. Dresp, R.S. Erami, P. Strasser, A.J. Cowan, P. Farràs, Electrolysis of low-grade and saline surface water. Nat. Energy (2020). https://doi.org/10.1038/s41560-020-0550-8
A. Kovač, D. Marciuš, L. Budin, Solar hydrogen production via alkaline water electrolysis. Int. J. Hydrogen Energy 44(20), 9841–9848 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.007
S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis. Electrochim. Acta 82, 384–391 (2012). https://doi.org/10.1016/j.electacta.2012.05.011
S. Barwe, B. Mei, J. Masa, W. Schuhmann, E. Ventosa, Overcoming cathode poisoning from electrolyte impurities in alkaline electrolysis by means of self-healing electrocatalyst films. Nano Energy 53, 763–768 (2018). https://doi.org/10.1016/j.nanoen.2018.09.045
R. Phillips, A. Edwards, B. Rome, D.R. Jones, C.W. Dunnill, Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy 42(38), 23986–23994 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.184
A. Gabler, C.I. Müller, T. Rauscher, T. Gimpel, R. Hahn et al., Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy 43(15), 7216–7226 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.130
J. Zhang, C. Zhang, J. Sha, H. Fei, Y. Li, J.M. Tour, Efficient water-splitting electrodes based on laser-induced graphene. ACS Appl. Mater. Interfaces. 9(32), 26840–26847 (2017). https://doi.org/10.1021/acsami.7b06727
S.M.H. Hashemi, P. Karnakov, P. Hadikhani, E. Chinello, S. Litvinov, C. Moser, P. Koumoutsakos, D. Psaltis, A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy Environ. Sci. 12(5), 1592–1604 (2019). https://doi.org/10.1039/C9EE00219G
J.C. Bui, J.T. Davis, D.V. Esposito, 3D-printed electrodes for membraneless water electrolysis. Sustain. Energy Fuels 4(1), 213–225 (2020). https://doi.org/10.1039/C9SE00710E
M.I. Gillespie, R.J. Kriek, Hydrogen production from a rectangular horizontal filter press divergent electrode-flow-through (DEFT™) alkaline electrolysis stack. J. Power Sources 372, 252–259 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.080
M.I. Gillespie, R.J. Kriek, Scalable hydrogen production from a mono-circular filter press divergent electrode-flow-through alkaline electrolysis stack. J. Power Sources 397, 204–213 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.026
A.G. Wallace, M.D. Symes, Decoupling strategies in electrochemical water splitting and beyond. Joule 2(8), 1390–1395 (2018). https://doi.org/10.1016/j.joule.2018.06.011
J. Wang, L. Ji, X. Teng, Y. Liu, L. Guo, Z. Chen, Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. J. Mater. Chem. A 7(21), 13149–13153 (2019). https://doi.org/10.1039/C9TA03285A
X. Liu, J. Chi, B. Dong, Y. Sun, Recent progress in decoupled H2 and O2 production from electrolytic water splitting. ChemElectroChem 6(8), 2157–2166 (2019). https://doi.org/10.1002/celc.201801671
A. Landman, H. Dotan, G.E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G.S. Grader, A. Rothschild, Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16(6), 646–651 (2017). https://doi.org/10.1038/nmat4876
Y. Ma, X. Dong, Y. Wang, Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. 57(11), 2904–2908 (2018). https://doi.org/10.1002/anie.201800436
Y. Ma, Z. Guo, X. Dong, Y. Wang, Y. Xia, Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. 58(14), 4622–4626 (2019). https://doi.org/10.1002/anie.201814625
H. Dotan, A. Landman, S.W. Sheehan, K.D. Malviya, G.E. Shter et al., Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4(9), 786–795 (2019). https://doi.org/10.1038/s41560-019-0462-7
W.T. Grubb, Ionic migration in ion-exchange membranes. J. Phys. Chem. 63(1), 55–58 (1959). https://doi.org/10.1021/j150571a015
E.J. Park, C.B. Capuano, K.E. Ayers, C. Bae, Chemically durable polymer electrolytes for solid-state alkaline water electrolysis. J. Power Sources 375, 367–372 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.090
M. Zhu, Q. Shao, Y. Qian, X. Huang, Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir–Ag nanotubes. Nano Energy 56, 330–337 (2019). https://doi.org/10.1016/j.nanoen.2018.11.023
L. Fu, F. Yang, G. Cheng, W. Luo, Ultrathin Ir nanowires as high-performance electrocatalysts for efficient water splitting in acidic media. Nanoscale 10(4), 1892–1897 (2018). https://doi.org/10.1039/C7NR09377B
C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert et al., Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochem. Commun. 97, 96–99 (2018). https://doi.org/10.1016/j.elecom.2018.10.021
J.-W. Yu, G.-B. Jung, Y.-J. Su, C.-C. Yeh, M.-Y. Kan, C.-Y. Lee, C.-J. Lai, Proton exchange membrane water electrolysis system-membrane electrode assembly with additive. Int. J. Hydrogen Energy 44(30), 15721–15726 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.192
A. Zinser, G. Papakonstantinou, K. Sundmacher, Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. Int. J. Hydrogen Energy 44(52), 28077–28087 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.081
W. Xu, K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. Int. J. Hydrogen Energy 35(21), 12029–12037 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.055
P. Millet, R. Ngameni, S.A. Grigoriev, V.N. Fateev, Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems. Int. J. Hydrogen Energy 36(6), 4156–4163 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.106
J.E. Bennett, Electrodes for generation of hydrogen and oxygen from seawater. Int. J. Hydrogen Energy 5(4), 401–408 (1980). https://doi.org/10.1016/0360-3199(80)90021-X
Y. Kuang, M.J. Kenney, Y.T. Meng, W.-H. Hung, Y.J. Liuf et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U.S.A. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29(11), 1503–1512 (1984). https://doi.org/10.1016/0013-4686(84)85004-5
F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis. Chemsuschem 9(9), 962 (2016). https://doi.org/10.1002/cssc.201501581
F.J. Quan, G.M. Zhan, H. Shang, Y.H. Huang, F.L. Jia, L.Z. Zhang, Z.H. Ai, Highly efficient electrochemical conversion of CO2 and NaCl to CO and NaClO. Green Chem. 21, 3256 (2019). https://doi.org/10.1039/c9gc01099h
X. Long, L. Gao, F. Li, Y. Hu, S. Wei, C. Wang, T. Wang, J. Jin, J. Ma, Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl. Catal. B 257, 117813 (2019). https://doi.org/10.1016/j.apcatb.2019.117813
J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Copper oxide nanowires for efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 240, 1–8 (2019). https://doi.org/10.1016/j.apcatb.2018.08.070
L.G. Xia, J.H. Li, J. Bai, L.S. Li, S. Chen, B.X. Zhou, BiVO4 photoanode with exposed (040) facets for enhanced photoelectrochemical performance. Nano-Micro Lett. 10, 11 (2018). https://doi.org/10.1007/s40820-017-0163-3
A. Landman, R. Halabi, P. Dias, H. Dotan, A. Mehlmann et al., Decoupled photoelectrochemical water splitting system for centralized hydrogen production. Joule 4(2), 448–471 (2020). https://doi.org/10.1016/j.joule.2019.12.006
J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31(20), 1806938 (2019). https://doi.org/10.1002/adma.201806938
E. Edwardes Moore, V. Andrei, S. Zacarias, I.A.C. Pereira, E. Reisner, Integration of a hydrogenase in a lead halide perovskite photoelectrode for tandem solar water splitting. ACS Energy Lett. 5(1), 232–237 (2020). https://doi.org/10.1021/acsenergylett.9b02437
M. Chen, Y. Liu, C. Li, A. Li, X. Chang et al., Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy Environ. Sci. 11(8), 2025–2034 (2018). https://doi.org/10.1039/C7EE03650G
H. Kobayashi, N. Sato, M. Orita, Y. Kuang, H. Kaneko, T. Minegishi, T. Yamada, K. Domen, Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 11(10), 3003–3009 (2018). https://doi.org/10.1039/C8EE01783B
L. Pan, J.H. Kim, M.T. Mayer, M.-K. Son, A. Ummadisingu et al., Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1(6), 412–420 (2018). https://doi.org/10.1038/s41929-018-0077-6
X. Li, M. Jia, Y. Lu, N. Li, Y.-Z. Zheng, X. Tao, M. Huang, Co(OH)2/BiVO4 photoanode in tandem with a carbon-based perovskite solar cell for solar-driven overall water splitting. Electrochim. Acta 330, 135183 (2020). https://doi.org/10.1016/j.electacta.2019.135183
D. Shao, L. Zheng, D. Feng, J. He, R. Zhang et al., TiO2–P3HT:PCBM photoelectrochemical tandem cells for solar-driven overall water splitting. J. Mater. Chem. A 6(9), 4032–4039 (2018). https://doi.org/10.1039/C7TA09367E
M. Huang, W. Lei, M. Wang, S. Zhao, C. Li, M. Wang, H. Zhu, Large area high-performance bismuth vanadate photoanode for efficient solar water splitting. J. Mater. Chem. A 8(7), 3845–3850 (2020). https://doi.org/10.1039/C9TA13715G
P. Varadhan, H.-C. Fu, Y.-C. Kao, R.-H. Horng, J.-H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10(1), 5282 (2019). https://doi.org/10.1038/s41467-019-12977-x
V. Andrei, R.L.Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, E. Reisner, Scalable triple cation mixed halide perovskite-BiVO4 tandems for bias-free water splitting. Adv. Energy Mater. 8(25), 1801403 (2018). https://doi.org/10.1002/aenm.201801403
Y. Chen, X. Feng, Y. Liu, X. Guan, C. Burda, L. Guo, Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 5(3), 844–866 (2020). https://doi.org/10.1021/acsenergylett.9b02620
X. Wang, W. Gao, Z. Zhao, L. Zhao, J.P. Claverie et al., Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus. Appl. Catal. B 248, 388–393 (2019). https://doi.org/10.1016/j.apcatb.2019.02.048
G.D. Sabba, M.H. Kumar, L.H. Wong, J. Barber, M. Grätzel, N. Mathews, Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett. 15(6), 3833–3839 (2015). https://doi.org/10.1021/acs.nanolett.5b00616
J.H. Kim, Y. Jo, J.H. Kim, J.W. Jang, H.J. Kang et al., Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano 9(12), 11820–11829 (2015). https://doi.org/10.1021/acsnano.5b03859
J. Luo, Z. Li, S. Nishiwaki, M. Schreier, M.T. Mayer et al., Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1−xSe2 photocathodes. Adv. Energy Mater. 5(24), 1501520 (2015). https://doi.org/10.1002/aenm.201501520
Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou et al., Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2(6), e1501764 (2016). https://doi.org/10.1126/sciadv.1501764
K.P. Sokol, W.E. Robinson, J. Warnan, N. Kornienko, M.M. Nowaczyk, A. Ruff, J.Z. Zhang, E. Reisner, Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3(11), 944–951 (2018). https://doi.org/10.1038/s41560-018-0232-y
J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6(12), 824–828 (2012). https://doi.org/10.1038/nphoton.2012.265
X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon et al., Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13, 182–191 (2015). https://doi.org/10.1016/j.nanoen.2015.02.018
V. González-Pedro, I. Zarazua, E.M. Barea, F. Fabregat-Santiago, E. de la Rosa, I. Mora-Seró, S. Giménez, Panchromatic solar-to-H2 conversion by a hybrid quantum dots–dye dual absorber tandem device. J. Phys. Chem. C 118(2), 891–895 (2014). https://doi.org/10.1021/jp4109893
X. Zhou, J. Zhou, G. Huang, R. Fan, S. Ju, Z. Mi, M. Shen, A bifunctional and stable Ni–Co–S/Ni–Co–P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting. J. Mater. Chem. A 6(41), 20297–20303 (2018). https://doi.org/10.1039/C8TA07197G
L. Ma, W. Zhang, P. Zhao, J. Liang, Y. Hu et al., Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. J. Mater. Chem. A 6(41), 20076–20082 (2018). https://doi.org/10.1039/C8TA08116F
L. Yao, A. Rahmanudin, N. Guijarro, K. Sivula, Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 8(32), 1802585 (2018). https://doi.org/10.1002/aenm.201802585
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
J. Jung, J. Lee, Thermovoltage-driven solar hydrogen for commercialized water splitting. SPIE (2015). https://doi.org/10.1117/2.1201512.006219
Y. Xin, X. Kan, L.-Y. Gan, Z. Zhang, Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11(10), 10303–10312 (2017). https://doi.org/10.1021/acsnano.7b05020
H. Song, S. Oh, H. Yoon, K.-H. Kim, S. Ryu, J. Oh, Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting. Nano Energy 42, 1–7 (2017). https://doi.org/10.1016/j.nanoen.2017.10.028
B. Koo, D. Kim, P. Boonmongkolras, S.R. Pae, S. Byun et al., Unassisted water splitting exceeding 9% solar-to-hydrogen conversion efficiency by Cu(In, Ga)(S, Se)2 photocathode with modified surface band structure and halide perovskite solar cell. ACS Appl. Energy Mater. 3(3), 2296–2303 (2020). https://doi.org/10.1021/acsaem.9b02387
B. Kim, G.S. Park, Y.J. Hwang, D.H. Won, W. Kim, D.K. Lee, B.K. Min, Cu(In, Ga)(S, Se)2 photocathodes with a grown-in CuxS catalyst for solar water splitting. ACS Energy Lett. 4(12), 2937–2944 (2019). https://doi.org/10.1021/acsenergylett.9b01816
N. Gaillard, D. Prasher, M. Chong, A. Deangelis, K. Horsley et al., Wide-bandgap Cu(In, Ga)S2 photocathodes integrated on transparent conductive F:SnO2 substrates for chalcopyrite-based water splitting tandem devices. ACS Appl. Energy Mater. 2(8), 5515–5524 (2019). https://doi.org/10.1021/acsaem.9b00690
T.J. Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff, T. Edvinsson, A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6(12), 3676–3683 (2013). https://doi.org/10.1039/C3EE42519C
T.J. Jacobsson, C. Platzer-Björkman, M. Edoff, T. Edvinsson, CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation. Int. J. Hydrogen Energy 38(35), 15027–15035 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.094
A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019). https://doi.org/10.1016/j.joule.2019.05.009
C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Low-bandgap mixed tin–lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 29(47), 1808801 (2019). https://doi.org/10.1002/adfm.201808801
Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni et al., Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10(1), 4498 (2019). https://doi.org/10.1038/s41467-019-12513-x
D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3(12), 1093–1100 (2018). https://doi.org/10.1038/s41560-018-0278-x
R. Lin, H. Lei, D. Ruan, K. Jiang, X. Yu, Z. Wang, W. Mai, H. Yan, Solar-powered overall water splitting system combing metal-organic frameworks derived bimetallic nanohybrids based electrocatalysts and one organic solar cell. Nano Energy 56, 82–91 (2019). https://doi.org/10.1016/j.nanoen.2018.10.058
X. Liu, Y. Wang, X. Cui, M. Zhang, B. Wang et al., Enabling highly efficient photocatalytic hydrogen generation and organics degradation via a perovskite solar cell-assisted semiconducting nanocomposite photoanode. J. Mater. Chem. A 7(1), 165–171 (2019). https://doi.org/10.1039/C8TA08998A
J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593 (2014). https://doi.org/10.1126/science.1258307
A. Kumar, D.K. Chaudhary, S. Parvin, S. Bhattacharyya, High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J. Mater. Chem. A 6(39), 18948–18959 (2018). https://doi.org/10.1039/C8TA06946H
R. Merienne, J. Lynn, E. McSweeney, S.M. O’Shaughnessy, Thermal cycling of thermoelectric generators: the effect of heating rate. Appl. Energy 237, 671–681 (2019). https://doi.org/10.1016/j.apenergy.2019.01.041
Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416
L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, H. Han, Efficient perovskite photovoltaic–thermoelectric hybrid device. Adv. Energy Mater. 8(13), 1702937 (2018). https://doi.org/10.1002/aenm.201702937
G. Li, S. Shittu, T.M.O. Diallo, M. Yu, X. Zhao, J. Ji, A review of solar photovoltaic–thermoelectric hybrid system for electricity generation. Energy 158, 41–58 (2018). https://doi.org/10.1016/j.energy.2018.06.021
Z. Yang, W. Li, X. Chen, S. Su, G. Lin, J. Chen, Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell-thermoelectric generator system. Energy Convers. Manag. 174, 65–71 (2018). https://doi.org/10.1016/j.enconman.2018.08.038
G. Li, S. Shittu, X. Ma, X. Zhao, Comparative analysis of thermoelectric elements optimum geometry between photovoltaic–thermoelectric and solar thermoelectric. Energy 171, 599–610 (2019). https://doi.org/10.1016/j.energy.2019.01.057
D. Zhang, Y. Wang, Y. Yang, Design, performance, and application of thermoelectric nanogenerators. Small 15(32), 1805241 (2019). https://doi.org/10.1002/smll.201805241
J. Zhang, H. Zhai, Z. Wu, Y. Wang, H. Xie, M. Zhang, Enhanced performance of photovoltaic–thermoelectric coupling devices with thermal interface materials. Energy Rep. 6, 116–122 (2020). https://doi.org/10.1016/j.egyr.2019.12.001
A. Majumdar, Thermoelectricity in semiconductor nanostructures. Science 303(5659), 777 (2004). https://doi.org/10.1126/science.1093164
L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8(6), 1701797 (2017). https://doi.org/10.1002/aenm.201701797
J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30(11), 1704386 (2018). https://doi.org/10.1002/adma.201704386
S. Sun, W. Wang, D. Jiang, L. Zhang, J. Zhou, Infrared light induced photoelectrocatalytic application via graphene oxide coated thermoelectric device. Appl. Catal. B 158–159, 136–139 (2014). https://doi.org/10.1016/j.apcatb.2014.04.009
S.A. Shankaregowda, R.F.S.M. Ahmed, C.B. Nanjegowda, J. Wang, S. Guan et al., Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy 66, 104141 (2019). https://doi.org/10.1016/j.nanoen.2019.104141
X. Huang, W. Zhang, G. Guan, G. Song, R. Zou, J. Hu, Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 50(10), 2529–2538 (2017). https://doi.org/10.1021/acs.accounts.7b00294
X. Zhang, W. Gao, X. Su, F. Wang, B. Liu, J.-J. Wang, H. Liu, Y. Sang, Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 48, 481–488 (2018). https://doi.org/10.1016/j.nanoen.2018.03.055
L. Zhao, Z. Yang, Q. Cao, L. Yang, X. Zhang et al., An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 56, 563–570 (2019). https://doi.org/10.1016/j.nanoen.2018.11.035
L. Huang, J. Chen, Z. Yu, D. Tang, Self-powered temperature sensor with seebeck effect transduction for photothermal-thermoelectric coupled immunoassay. Anal. Chem. 92(3), 2809–2814 (2020). https://doi.org/10.1021/acs.analchem.9b05218
V. Andrei, K. Bethke, K. Rademann, Thermoelectricity in the context of renewable energy sources: joining forces instead of competing. Energy Environ. Sci. 9(5), 1528–1532 (2016). https://doi.org/10.1039/C6EE00247A
J.-Y. Jung, D.W. Kim, D.-H. Kim, T.J. Park, R.B. Wehrspohn, J.-H. Lee, Seebeck-voltage-triggered self-biased photoelectrochemical water splitting using HfOx/SiOx bi-layer protected Si photocathodes. Sci. Rep. 9(1), 9132 (2019). https://doi.org/10.1038/s41598-019-45672-4
N. Getoff, Basic problems of photochemical and photoelectrochemical hydrogen production from water. Int. J. Hydrogen Energy 9(12), 997–1004 (1984). https://doi.org/10.1016/0360-3199(84)90171-X
S.-M. Shin, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, Catalyst-free hydrogen evolution of Si photocathode by thermovoltage-driven solar water splitting. J. Power Sources 279, 151–156 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.020
N. Wang, L. Han, H. He, N.-H. Park, K. Koumoto, A novel high-performance photovoltaic–thermoelectric hybrid device. Energy Environ. Sci. 4(9), 3676–3679 (2011). https://doi.org/10.1039/C1EE01646F
Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen et al., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429–2434 (2013). https://doi.org/10.1039/C3EE41485J
L. Jin, B. Zhang, L. Zhang, W. Yang, Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 66, 104086 (2019). https://doi.org/10.1016/j.nanoen.2019.104086
X. Xia, H. Wang, P. Basset, Y. Zhu, Y. Zi, Inductor-free output multiplier for power promotion and management of triboelectric nanogenerators toward self-powered systems. ACS Appl. Mater. Interfaces 12(5), 5892–5900 (2020). https://doi.org/10.1021/acsami.9b20060
J. Han, X. Meng, L. Lu, Z.L. Wang, C. Sun, Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc–air battery: a case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy 72, 104669 (2020). https://doi.org/10.1016/j.nanoen.2020.104669
A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan et al., Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12(8), 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363
S. Shittu, G. Li, Y.G. Akhlaghi, X. Ma, X. Zhao, E. Ayodele, Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renew. Sustain. Energy Rev. 109, 24–54 (2019). https://doi.org/10.1016/j.rser.2019.04.023
X. Meng, J. Han, L. Lu, G. Qiu, Z.L. Wang, C. Sun, Fe2+-doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems. Small 15(41), 1902551 (2019). https://doi.org/10.1002/smll.201902551
P. Cheng, Y. Liu, Z. Wen, H. Shao, A. Wei et al., Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 54, 156–162 (2018). https://doi.org/10.1016/j.nanoen.2018.10.007
W. Tang, Y. Han, C.B. Han, C.Z. Gao, X. Cao, Z.L. Wang, Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). https://doi.org/10.1002/adma.201404071
T. Li, Y. Xu, F. Xing, X. Cao, J. Bian, N. Wang, Z.L. Wang, Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery. Adv. Energy Mater. 7(15), 1700124 (2017). https://doi.org/10.1002/aenm.201700124
H. Askari, A. Khajepour, M.B. Khamesee, Z.L. Wang, Embedded self-powered sensing systems for smart vehicles and intelligent transportation. Nano Energy 66, 104103 (2019). https://doi.org/10.1016/j.nanoen.2019.104103
W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019). https://doi.org/10.1002/adfm.201901069
H. Yang, M. Deng, Q. Zeng, X. Zhang, J. Hu et al., Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano 14(3), 3328–3336 (2020). https://doi.org/10.1021/acsnano.9b08998
J.-W. Lee, W. Hwang, Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy 52, 315–322 (2018). https://doi.org/10.1016/j.nanoen.2018.08.008
J. Xiong, H. Luo, D. Gao, X. Zhou, P. Cui, G. Thangavel, K. Parida, P.S. Lee, Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 61, 584–593 (2019). https://doi.org/10.1016/j.nanoen.2019.04.089
Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou, W. Liu, Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55, 260–268 (2019). https://doi.org/10.1016/j.nanoen.2018.10.075
H. Lin, M. He, Q. Jing, W. Yang, S. Wang et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 56, 269–276 (2019). https://doi.org/10.1016/j.nanoen.2018.11.037
K. Han, J. Luo, Y. Feng, Q. Lai, Y. Bai, W. Tang, Z.L. Wang, Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano 14(3), 2751–2759 (2020). https://doi.org/10.1021/acsnano.9b08496
M.T. Rahman, M. Salauddin, P. Maharjan, M.S. Rasel, H. Cho, J.Y. Park, Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy 57, 256–268 (2019). https://doi.org/10.1016/j.nanoen.2018.12.052
X. Zhao, B. Chen, G. Wei, J.M. Wu, W. Han, Y. Yang, Polyimide/graphene nanocomposite foam-based wind-driven triboelectric nanogenerator for self-powered pressure sensor. Adv. Mater. Technol. 4(5), 1800723 (2019). https://doi.org/10.1002/admt.201800723
M. Xie, S. Dunn, E.L. Boulbar, C.R. Bowen, Pyroelectric energy harvesting for water splitting. Int. J. Hydrogen Energy 42(37), 23437–23445 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.086
Y. Zhang, S. Kumar, F. Marken, M. Krasny, E. Roake et al., Pyro-electrolytic water splitting for hydrogen generation. Nano Energy 58, 183–191 (2019). https://doi.org/10.1016/j.nanoen.2019.01.030
J. Schlechtweg, S. Raufeisen, M. Stelter, P. Braeutigam, A novel model for pyro-electro-catalytic hydrogen production in pure water. Phys. Chem. Chem. Phys. 21(41), 23009–23016 (2019). https://doi.org/10.1039/c9cp02510c
Y. Zhang, P.T.T. Phuong, E. Roake, H. Khanbareh, Y. Wang, S. Dunn, C. Bowen, Thermal energy harvesting using pyroelectric–electrochemical coupling in ferroelectric materials. Joule 4(2), 301–309 (2020). https://doi.org/10.1016/j.joule.2019.12.019
T. Ding, L. Zhu, X.-Q. Wang, K.H. Chan, X. Lu, Y. Cheng, G.W. Ho, Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting. Adv. Energy Mater. 8(33), 1802397 (2018). https://doi.org/10.1002/aenm.201802397
S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, L.W. Martin, Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17(5), 432–438 (2018). https://doi.org/10.1038/s41563-018-0059-8
J. Harada, Y. Kawamura, Y. Takahashi, Y. Uemura, T. Hasegawa, H. Taniguchi, K. Maruyama, Plastic/ferroelectric crystals with easily switchable polarization: low-voltage operation, unprecedentedly high pyroelectric performance, and large piezoelectric effect in polycrystalline forms. J. Am. Chem. Soc. 141(23), 9349–9357 (2019). https://doi.org/10.1021/jacs.9b03369
K. Zhang, Y. Wang, Z.L. Wang, Y. Yang, Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 55, 534–540 (2019). https://doi.org/10.1016/j.nanoen.2018.11.020
S. Pandya, G.A. Velarde, R. Gao, A.S. Everhardt, J.D. Wilbur et al., Understanding the role of ferroelastic domains on the pyroelectric and electrocaloric effects in ferroelectric thin films. Adv. Mater. 31(5), 1803312 (2019). https://doi.org/10.1002/adma.201803312
L. Kuai, S. Liu, S. Cao, Y. Ren, E. Kan et al., Atomically dispersed Pt/metal oxide mesoporous catalysts from synchronous pyrolysis-deposition route for water–gas shift reaction. Chem. Mater. 30(16), 5534–5538 (2018). https://doi.org/10.1021/acs.chemmater.8b02144
L. Pastor-Pérez, V. Belda-Alcázar, C. Marini, M.M. Pastor-Blas, A. Sepúlveda-Escribano, E.V. Ramos-Fernandez, Effect of cold ar plasma treatment on the catalytic performance of Pt/CeO2 in water–gas shift reaction (WGS). Appl. Catal. B 225, 121–127 (2018). https://doi.org/10.1016/j.apcatb.2017.11.065
L. Zhao, Y. Qi, L. Song, S. Ning, S. Ouyang, H. Xu, J. Ye, Solar-driven water–gas shift reaction over CuOx/Al2O3 with 1.1% of light-to-energy storage. Angew. Chem. Int. Ed. 58(23), 7708–7712 (2019). https://doi.org/10.1002/anie.201902324
N. Liu, M. Xu, Y. Yang, S. Zhang, J. Zhang, W. Wang, L. Zheng, S. Hong, M. Wei, Auδ−–Ov–Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction. ACS Catal. 9(4), 2707–2717 (2019). https://doi.org/10.1021/acscatal.8b04913
S. Xu, S. Chansai, C. Stere, B. Inceesungvorn, A. Goguet et al., Sustaining metal-organic frameworks for water–gas shift catalysis by non-thermal plasma. Nat. Catal. 2(2), 142–148 (2019). https://doi.org/10.1038/s41929-018-0206-2
S.C. Ammal, A. Heyden, Understanding the nature and activity of supported platinum catalysts for the water–gas shift reaction: from metallic nanoclusters to alkali-stabilized single-atom cations. ACS Catal. 9(9), 7721–7740 (2019). https://doi.org/10.1021/acscatal.9b01560
M. Xu, S. Yao, D. Rao, Y. Niu, N. Liu et al., Insights into interfacial synergistic catalysis over Ni@TiO2−x catalyst toward water–gas shift reaction. J. Am. Chem. Soc. 140(36), 11241–11251 (2018). https://doi.org/10.1021/jacs.8b03117
D.B. Pal, R. Chand, S.N. Upadhyay, P.K. Mishra, Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018). https://doi.org/10.1016/j.rser.2018.05.003
J.A. Rodriguez, E.R. Remesal, P.J. Ramírez, I. Orozco, Z. Liu, J. Graciani, S.D. Senanayake, J.F. Sanz, Water–gas shift reaction on K/Cu(111) and Cu/K/TiO2(110) surfaces: alkali promotion of water dissociation and production of H2. ACS Catal. 9(12), 10751–10760 (2019). https://doi.org/10.1021/acscatal.9b03922
M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu et al., Strong metal-support interactions between copper and iron oxide during the high-temperature water–gas shift reaction. Angew. Chem. Int. Ed. 131(27), 9181–9185 (2019). https://doi.org/10.1002/anie.201903298
J. Shi, A. Wittstock, C. Mahr, M.M. Murshed, T.M. Gesing, A. Rosenauer, M. Bäumer, Nanoporous gold functionalized with praseodymia–titania mixed oxides as a stable catalyst for the water–gas shift reaction. Phys. Chem. Chem. Phys. 21(6), 3278–3286 (2019). https://doi.org/10.1039/C8CP06040A
D. Damma, D. Jampaiah, A. Welton, P. Boolchand, A. Arvanitis, J. Dong, P.G. Smirniotis, Effect of Nb modification on the structural and catalytic property of Fe/Nb/M (M = Mn Co, Ni, and Cu) catalyst for high temperature water–gas shift reaction. Catal. Today (2019). https://doi.org/10.1016/j.cattod.2019.02.029
X. Cui, H.-Y. Su, R. Chen, L. Yu, J. Dong et al., Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production. Nat. Commun. 10(1), 86 (2019). https://doi.org/10.1038/s41467-018-07937-w