A Wire-Shaped Supercapacitor in Micrometer Size Based on Fe3O4 Nanosheet Arrays on Fe Wire
Corresponding Author: Weijia Zhou
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 46
Abstract
One-dimensional (1D, wire- and fiber-shaped) supercapacitors have recently attracted interest due to their roll-up, micrometer size and potential applications in portable or wearable electronics. Herein, a 1D wire-shaped electrode was developed based on Fe3O4 nanosheet arrays connected on the Fe wire, which was prepared via oxidation of Fe wire in 0.1 M KCl solution (pH 3) with O2-rich environment under 70 °C. The obtained Fe3O4 nanosheet arrays displayed a high specific capacitance (20.8 mF cm−1 at 10 mV s−1) and long cycling lifespan (91.7% retention after 2500 cycles). The excellent performance may attribute to the connected nanosheet structure with abundant open spaces and the intimate contact between the Fe3O4 and iron substrate. In addition, a wire-shaped asymmetric supercapacitor was fabricated and had excellent capacitive properties with a high energy density (9 µWh cm−2) at power density of 532.7 µW cm−2 and remarkable long-term cycling performance (99% capacitance retention after 2000 cycles). Considering low cost and earth-abundant electrode material, as well as outstanding electrochemical properties, the assembled supercapacitor will possess enormous potential for practical applications in portable electronic device.
Highlights:
1 Fe3O4 nanosheet arrays were successfully assembled on one-dimensional Fe wire by a simple one-step oxidization treatment.
2 The Fe@Fe3O4 electrode displays a high specific capacitance of 20.8 mF cm−1 at 10 mV s−1.
3 A wire-shaped supercapacitor (WSSC) based on Fe@Fe3O4 was assembled, and it exhibited a high energy density (9 µWh cm−2 at 532.7 µW cm−2) and good stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li, S. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach. Adv. Funct. Mater. 25(48), 7530–7538 (2015). doi:10.1002/adfm.201503662
- W. Zhou, X. Liu, Y. Sang, Z. Zhao, K. Zhou, H. Liu, S. Chen, Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl. Mater. Inter. 6(6), 4578–4586 (2014). doi:10.1021/am500421r
- W. Zhou, K. Zhou, X. Liu, R. Hu, H. Liu, S. Chen, Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers. J. Mater. Chem. A 2(20), 7250–7255 (2014). doi:10.1039/C3TA15280D
- K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji, W. Li, J. Lu, L. Li, W. Niu, H. Liu, S. Chen, Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015). doi:10.1016/j.nanoen.2015.01.017
- R. Li, Z. Hu, X. Shao, P. Cheng, S. Li, W. Yu, W. Lin, D. Yuan, Large Scale Synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 6, 18737 (2016). doi:10.1038/srep18737
- X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015). doi:10.1016/j.nanoen.2015.06.018
- S. Li, D. Wu, C. Cheng, J. Wang, F. Zhang, Y. Su, X. Feng, Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem. Int. Ed. 125, 12327–12331 (2013). doi:10.1002/anie.201306871
- X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013). doi:10.1002/adma.201301519
- P. Xu, B. Wei, Z. Cao, J. Zheng, K. Gong et al., Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9(6), 6088–6096 (2015). doi:10.1021/acsnano.5b01244
- Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013). doi:10.1002/anie.201307619
- J. Cherusseri, K.K. Kar, Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 4(25), 9910–9922 (2016). doi:10.1039/c6ta02690g
- J. Zhang, X. Zhao, Z. Huang, T. Xu, Q. Zhang, High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon 107, 844–851 (2016). doi:10.1016/j.carbon.2016.06.064
- T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated energy wire for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 124(48), 11977–11980 (2012). doi:10.1002/anie.201207023
- K. Guo, Y. Ma, H. Li, T. Zhai, Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 12(8), 1024–1033 (2016). doi:10.1002/smll.201503021
- X.F. Lu, X.Y. Chen, W. Zhou, Y.X. Tong, G.R. Li, Alpha-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Inter. 7(27), 14843–14850 (2015). doi:10.1021/acsami.5b03126
- Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 245, 101–106 (2014). doi:10.1016/j.jpowsour.2013.06.035
- D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, D. Golberg, Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. J. Mater. Chem. A 1(6), 1952 (2013). doi:10.1039/c2ta01035f
- B. Zhu, S. Tang, S. Vongehr, H. Xie, J. Zhu, X. Meng, FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem. Commun. 52(12), 2624–2627 (2016). doi:10.1039/c5cc08857g
- Q. Qu, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580 (2011). doi:10.1002/adma.201103042
- P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014). doi:10.1021/nl404008e
- C. Fu, A. Mahadevegowda, P.S. Grant, Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J. Mater. Chem. A 4(7), 2597–2604 (2016). doi:10.1039/C5TA09141A
- C. Fu, A. Mahadevegowda, P.S. Grant, Fe3O4/carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. J. Mater. Chem. A 3(27), 14245–14253 (2015). doi:10.1039/C5TA02210J
- Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6(24), 1601053 (2016). doi:10.1002/aenm.201601053
- R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Inter. 9(10), 8880–8890 (2017). doi:10.1021/acsami.6b14704
- L. Li, Y. Dou, L. Wang, M. Luo, J. Liang, One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Adv. 4(49), 25658–25665 (2014). doi:10.1039/c4ra02962c
- M. Liu, J. Sun, In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J. Mater. Chem. A 2(30), 12068–12074 (2014). doi:10.1039/C4TA01442A
- L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, G. Yang, Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9), 3793 (2013). doi:10.1039/c3nr00256j
- C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5), 4459–4469 (2013). doi:10.1021/nn401059h
- Y. Chen, B. Song, M. Li, L. Lu, J. Xue, Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 24(3), 319–326 (2014). doi:10.1002/adfm.201300872
- B. Wang, H.B. Wu, L. Zhang, X.W. Lou, Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem. Int. Ed. 52(15), 4165–4168 (2013). doi:10.1002/anie.201300190
- F.X. Ma, H. Hu, H.B. Wu, C.Y. Xu, Z. Xu, L. Zhen, X.W. David Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 27(27), 4097–4101 (2015). doi:10.1002/adma.201501130
- Y. Wang, L. Zhang, X. Gao, L. Mao, Y. Hu, X.W. Lou, One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 10(14), 2815–2819 (2014). doi:10.1002/smll.201400239
- O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174(2), 424–430 (2003). doi:10.1016/s0022-4596(03)00294-9
- G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). doi:10.1021/cm101532x
- J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013). doi:10.1021/nl403461n
- X.C. Li, L. Zhang. G.H. He, Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon 99, 514–522 (2016). doi:10.1016/j.carbon.2015.12.076
- J. Ren, L. Li, C. Chen, X. Chen, Z. Cai et al., Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013). doi:10.1002/adma.201203445
- H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8(4), 1148–1158 (2015). doi:10.1007/s12274-014-0595-8
- V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang et al., Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7), 5940–5947 (2013). doi:10.1021/nn4016345
- C. Choi, S.H. Kim, H.J. Sim, J.A. Lee, A.Y. Choi et al., Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 5, 9387 (2015). doi:10.1038/srep09387
- J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50(7), 1683–1687 (2011). doi:10.1002/anie.201006062
- Q. Kang, J. Zhao, X. Li, G. Zhu, X. Feng, Y. Ma, W. Huang, J. Liu, A single wire as all-inclusive fully functional supercapacitor. Nano Energy 32, 201–208 (2017). doi:10.1016/j.nanoen.2016.12.020
- Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016). doi:10.1016/j.nanoen.2015.12.030
References
K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li, S. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach. Adv. Funct. Mater. 25(48), 7530–7538 (2015). doi:10.1002/adfm.201503662
W. Zhou, X. Liu, Y. Sang, Z. Zhao, K. Zhou, H. Liu, S. Chen, Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl. Mater. Inter. 6(6), 4578–4586 (2014). doi:10.1021/am500421r
W. Zhou, K. Zhou, X. Liu, R. Hu, H. Liu, S. Chen, Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers. J. Mater. Chem. A 2(20), 7250–7255 (2014). doi:10.1039/C3TA15280D
K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji, W. Li, J. Lu, L. Li, W. Niu, H. Liu, S. Chen, Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015). doi:10.1016/j.nanoen.2015.01.017
R. Li, Z. Hu, X. Shao, P. Cheng, S. Li, W. Yu, W. Lin, D. Yuan, Large Scale Synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 6, 18737 (2016). doi:10.1038/srep18737
X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015). doi:10.1016/j.nanoen.2015.06.018
S. Li, D. Wu, C. Cheng, J. Wang, F. Zhang, Y. Su, X. Feng, Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem. Int. Ed. 125, 12327–12331 (2013). doi:10.1002/anie.201306871
X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013). doi:10.1002/adma.201301519
P. Xu, B. Wei, Z. Cao, J. Zheng, K. Gong et al., Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9(6), 6088–6096 (2015). doi:10.1021/acsnano.5b01244
Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013). doi:10.1002/anie.201307619
J. Cherusseri, K.K. Kar, Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 4(25), 9910–9922 (2016). doi:10.1039/c6ta02690g
J. Zhang, X. Zhao, Z. Huang, T. Xu, Q. Zhang, High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon 107, 844–851 (2016). doi:10.1016/j.carbon.2016.06.064
T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated energy wire for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 124(48), 11977–11980 (2012). doi:10.1002/anie.201207023
K. Guo, Y. Ma, H. Li, T. Zhai, Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 12(8), 1024–1033 (2016). doi:10.1002/smll.201503021
X.F. Lu, X.Y. Chen, W. Zhou, Y.X. Tong, G.R. Li, Alpha-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Inter. 7(27), 14843–14850 (2015). doi:10.1021/acsami.5b03126
Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 245, 101–106 (2014). doi:10.1016/j.jpowsour.2013.06.035
D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, D. Golberg, Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. J. Mater. Chem. A 1(6), 1952 (2013). doi:10.1039/c2ta01035f
B. Zhu, S. Tang, S. Vongehr, H. Xie, J. Zhu, X. Meng, FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem. Commun. 52(12), 2624–2627 (2016). doi:10.1039/c5cc08857g
Q. Qu, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580 (2011). doi:10.1002/adma.201103042
P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014). doi:10.1021/nl404008e
C. Fu, A. Mahadevegowda, P.S. Grant, Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J. Mater. Chem. A 4(7), 2597–2604 (2016). doi:10.1039/C5TA09141A
C. Fu, A. Mahadevegowda, P.S. Grant, Fe3O4/carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. J. Mater. Chem. A 3(27), 14245–14253 (2015). doi:10.1039/C5TA02210J
Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6(24), 1601053 (2016). doi:10.1002/aenm.201601053
R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Inter. 9(10), 8880–8890 (2017). doi:10.1021/acsami.6b14704
L. Li, Y. Dou, L. Wang, M. Luo, J. Liang, One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Adv. 4(49), 25658–25665 (2014). doi:10.1039/c4ra02962c
M. Liu, J. Sun, In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J. Mater. Chem. A 2(30), 12068–12074 (2014). doi:10.1039/C4TA01442A
L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, G. Yang, Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9), 3793 (2013). doi:10.1039/c3nr00256j
C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5), 4459–4469 (2013). doi:10.1021/nn401059h
Y. Chen, B. Song, M. Li, L. Lu, J. Xue, Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 24(3), 319–326 (2014). doi:10.1002/adfm.201300872
B. Wang, H.B. Wu, L. Zhang, X.W. Lou, Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem. Int. Ed. 52(15), 4165–4168 (2013). doi:10.1002/anie.201300190
F.X. Ma, H. Hu, H.B. Wu, C.Y. Xu, Z. Xu, L. Zhen, X.W. David Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 27(27), 4097–4101 (2015). doi:10.1002/adma.201501130
Y. Wang, L. Zhang, X. Gao, L. Mao, Y. Hu, X.W. Lou, One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 10(14), 2815–2819 (2014). doi:10.1002/smll.201400239
O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174(2), 424–430 (2003). doi:10.1016/s0022-4596(03)00294-9
G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). doi:10.1021/cm101532x
J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013). doi:10.1021/nl403461n
X.C. Li, L. Zhang. G.H. He, Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon 99, 514–522 (2016). doi:10.1016/j.carbon.2015.12.076
J. Ren, L. Li, C. Chen, X. Chen, Z. Cai et al., Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013). doi:10.1002/adma.201203445
H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8(4), 1148–1158 (2015). doi:10.1007/s12274-014-0595-8
V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang et al., Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7), 5940–5947 (2013). doi:10.1021/nn4016345
C. Choi, S.H. Kim, H.J. Sim, J.A. Lee, A.Y. Choi et al., Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 5, 9387 (2015). doi:10.1038/srep09387
J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50(7), 1683–1687 (2011). doi:10.1002/anie.201006062
Q. Kang, J. Zhao, X. Li, G. Zhu, X. Feng, Y. Ma, W. Huang, J. Liu, A single wire as all-inclusive fully functional supercapacitor. Nano Energy 32, 201–208 (2017). doi:10.1016/j.nanoen.2016.12.020
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016). doi:10.1016/j.nanoen.2015.12.030