Anti-Swelling Polyelectrolyte Hydrogel with Submillimeter Lateral Confinement for Osmotic Energy Conversion
Corresponding Author: Guobin Xue
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 81
Abstract
Harvesting the immense and renewable osmotic energy with reverse electrodialysis (RED) technology shows great promise in dealing with the ever-growing energy crisis. One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity. Herein, polyelectrolyte hydrogels (channel width, 2.2 nm) with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale (radius, 0.1 mm). The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers. With real seawater and river water, the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m−2 (per unit total membrane area), much better than state-of-the-art membranes. This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes, owning broad application prospects in the fields of osmotic energy collection, electrodialysis, flow battery and so on.
Highlights:
1 Ionic polymers can directly serve as high-performance ion-selective membranes when it was physically confined within submillimeter-sized cylindrical pore.
2 The universality of this strategy is demonstrated in preparing cation/anion-selective membrane.
3 With real seawater and river water, the output power density of a three-chamber cell on behalf of repeat unit of reverse electrodialysis system can reach up to 8.99 W m−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Hu, Y. Teng, Y. Sun, P. Liu, L. Fu et al., Bioinspired poly (ionic liquid) membrane for efficient salinity gradient energy harvesting: electrostatic crosslinking induced hierarchical nanoporous network. Nano Energy 97, 107170 (2022). https://doi.org/10.1016/j.nanoen.2022.107170
- C. Li, P. Liu, Y. Zhai, L. Yao, H. Lin et al., Unconventional dual ion selectivity determined by the forward side of a bipolar channel toward ion flux. ACS Appl. Mater. Interfaces 14, 2230–2236 (2022). https://doi.org/10.1021/acsami.1c18474
- Q. Ren, H. Zhu, K. Chen, J.F. Zhang, Z.G. Qu, Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion. Appl. Energy 307, 118312 (2022). https://doi.org/10.1016/j.apenergy.2021.118312
- G. Laucirica, M.E. Toimil-Molares, C. Trautmann, W. Marmisollé, O. Azzaroni, Nanofluidic osmotic power generators–advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem. Sci. 12, 12874–12910 (2021). https://doi.org/10.1039/D1SC03581A
- K. Xiao, L. Jiang, M. Antonietti, Ion transport in nanofluidic devices for energy harvesting. Joule 3, 2364–2380 (2019). https://doi.org/10.1016/j.joule.2019.09.005
- Y. Fu, X. Guo, Y. Wang, X. Wang, J. Xue, An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient. Nano Energy 57, 783–790 (2019). https://doi.org/10.1016/j.nanoen.2018.12.075
- P. Zuo, J. Ran, C. Ye, X. Li, T. Xu et al., Advancing ion selective membranes with micropore ion channels in the interaction confinement regime. ACS Nano 18, 6016–6027 (2024). https://doi.org/10.1021/acsnano.3c12616
- T. Bian, X. Wang, Q. Zhang, X. Zhu, J. Jiao et al., Uniform nanoscale ion-selective membrane prepared by precision control of solution spreading and evaporation. Nano Lett. 24, 2352–2359 (2024). https://doi.org/10.1021/acs.nanolett.3c04847
- B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012). https://doi.org/10.1038/nature11477
- L. Cao, H. Wu, C. Fan, Z. Zhang, B. Shi et al., Lamellar porous vermiculite membranes for boosting nanofluidic osmotic energy conversion. J. Mater. Chem. A 9, 14576–14581 (2021). https://doi.org/10.1039/D1TA02400K
- G. Yang, D. Liu, C. Chen, Y. Qian, Y. Su et al., Stable Ti3C2Tx MXene-boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting. ACS Nano 15, 6594–6603 (2021). https://doi.org/10.1021/acsnano.0c09845
- L. Wang, Z. Wang, S.K. Patel, S. Lin, M. Elimelech, Nanopore-based power generation from salinity gradient: why it is not viable. ACS Nano 15, 4093–4107 (2021). https://doi.org/10.1021/acsnano.0c08628
- Q. Zhu, Y. Li, Q. Qian, P. Zuo, M.D. Guiver et al., A sulfonated ultramicroporous membrane with selective ion transport enables osmotic energy extraction from multiform salt solutions with exceptional efficiency. Energy Environ. Sci. 15, 4148–4156 (2022). https://doi.org/10.1039/D2EE00851C
- X. Zhao, C. Lu, L. Yang, W. Chen, W. Xin et al., Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 81, 105657 (2021). https://doi.org/10.1016/j.nanoen.2020.105657
- Q. Zhu, Y. Liu, P. Zuo, Y. Dong, Z. Yang et al., An isoporous ion exchange membrane for selective Na+ transport. J. Membr. Sci. 659, 120805 (2022). https://doi.org/10.1016/j.memsci.2022.120805
- X. Lin, P. Liu, W. Xin, Y. Teng, J. Chen et al., Heterogeneous MXene/PS-b-P2VP nanofluidic membranes with controllable ion transport for osmotic energy conversion. Adv. Funct. Mater. 31, 2105013 (2021). https://doi.org/10.1002/adfm.202105013
- L. Cao, Q. Wen, Y. Feng, D. Ji, H. Li et al., On the origin of ion selectivity in ultrathin nanopores: insights for membrane-scale osmotic energy conversion. Adv. Funct. Mater. 28, 1804189 (2018). https://doi.org/10.1002/adfm.201804189
- L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng et al., Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv. Funct. Mater. 27, 1604302 (2017). https://doi.org/10.1002/adfm.201604302
- S. Zhou, L. Xie, X. Li, Y. Huang, L. Zhang et al., Interfacial super-assembly of ordered mesoporous carbon-silica/AAO hybrid membrane with enhanced permselectivity for temperature- and pH-sensitive smart ion transport. Angew. Chem. Int. Ed. 60, 26167–26176 (2021). https://doi.org/10.1002/anie.202110731
- S. Hou, W. Ji, J. Chen, Y. Teng, L. Wen et al., Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew. Chem. Int. Ed. 60, 9925–9930 (2021). https://doi.org/10.1002/anie.202100205
- N. He, H. Wang, F. Li, B. Jiang, D. Tang et al., Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy Environ. Sci. 16, 2494–2504 (2023). https://doi.org/10.1039/d2ee03621e
- M. Wang, X. Hou, Building artificial aligned nanochannels for highly efficient ion transport. Joule 7, 251–253 (2023). https://doi.org/10.1016/j.joule.2023.01.012
- Y. Xiao, L. Hu, L. Gao, M. Di, X. Sun et al., Enabling high anion-selective conductivity in membrane for high-performance neutral organic based aqueous redox flow battery by microstructure design. Chem. Eng. J. 432, 134268 (2022). https://doi.org/10.1016/j.cej.2021.134268
- P. Bulejko, E. Stránská, Variations in anion-exchange membrane properties with ionic resin moisture. Ionics 25, 4251–4263 (2019). https://doi.org/10.1007/s11581-019-02984-9
- F. Liao, Z. Xu, Z. Fan, Q. Meng, B. Lv et al., Confined assembly of ultrathin dual-functionalized Z-MXene nanosheet intercalated GO nanofilms with controlled structure for size-selective permeation. J. Mater. Chem. A 9, 12236–12243 (2021). https://doi.org/10.1039/D1TA01514A
- K.-T. Huang, W.-H. Hung, Y.-C. Su, F.-C. Tang, L.D. Linh et al., Zwitterionic gradient double-network hydrogel membranes with superior biofouling resistance for sustainable osmotic energy harvesting. Adv. Funct. Mater. 33, 2211316 (2023). https://doi.org/10.1002/adfm.202211316
- P. Jia, L. Wang, Y. Zhang, Y. Yang, X. Jin et al., Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 33, e2007529 (2021). https://doi.org/10.1002/adma.202007529
- P. Qian, W. Zhou, Y. Zhang, D. Chao, M. Song, Review and perspectives of sulfonated poly(ether ether ketone) proton exchange membrane for vanadium flow batteries. Energy Fuels 37, 17681–17707 (2023). https://doi.org/10.1021/acs.energyfuels.3c02373
- Y. Xiao, J. Xu, L. Hu, H. Wang, L. Gao et al., Advanced anion-selective membranes with pendant quaternary ammonium for neutral aqueous supporting redox flow battery. J. Membr. Sci. 659, 120748 (2022). https://doi.org/10.1016/j.memsci.2022.120748
- Y. Zhang, H. Wang, P. Qian, L. Zhang, Y. Zhou et al., Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J. Membr. Sci. 625, 119159 (2021). https://doi.org/10.1016/j.memsci.2021.119159
- W. Chen, Q. Zhang, Y. Qian, W. Xin, D. Hao et al., Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion. ACS Central Sci. 6, 2097–2104 (2020). https://doi.org/10.1021/acscentsci.0c01054
- W. Li, X. Wang, Z. Liu, X. Zou, Z. Shen et al., Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat. Mater. 23, 131–138 (2024). https://doi.org/10.1038/s41563-023-01697-9
- A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998). https://doi.org/10.1063/1.368911
- C. Chen, D. Liu, L. He, S. Qin, J. Wang et al., Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247–261 (2020). https://doi.org/10.1016/j.joule.2019.11.010
- C. Chen, G. Yang, D. Liu, X. Wang, N.A. Kotov et al., Aramid nanofiber membranes for energy harvesting from proton gradients. Adv. Funct. Mater. 32, 2102080 (2022). https://doi.org/10.1002/adfm.202102080
- R. Qin, J. Tang, C. Wu, Q. Zhang, T. Xiao et al., Nanofiber-reinforced clay-based 2D nanofluidics for highly efficient osmotic energy harvesting. Nano Energy 100, 107526 (2022). https://doi.org/10.1016/j.nanoen.2022.107526
- Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian et al., Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 7, 2702–2709 (2020). https://doi.org/10.1039/D0MH00979B
- R. Liu, J. Chen, Z. Luo, X. Zhang, W. Chen et al., Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. React. Funct. Polym. 172, 105197 (2022). https://doi.org/10.1016/j.reactfunctpolym.2022.105197
- L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo et al., Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9, 1803046 (2019). https://doi.org/10.1002/aenm.201803046
- N. Xue, L. Wang, M. Pei, Y. He, Y. Du et al., Preparation and characterization of sodium polyacrylate-grafted bentonite and its performance removing Pb2+ from aqueous solutions. RSC Adv. 6, 98945–98951 (2016). https://doi.org/10.1039/C6RA17214H
- X. Zhang, F. Lin, Q. Yuan, L. Zhu, C. Wang et al., Hydrogen-bonded thin films of cellulose ethers and poly(acrylic acid). Carbohydr. Polym. 215, 58–62 (2019). https://doi.org/10.1016/j.carbpol.2019.03.066
- J. Chen, Y. Liu, D. Wang, H. Zhi, J. Tang et al., Wood vessel-confined anti-swelling hydrogel for efficient osmotic energy conversion. Nano Energy 104, 107981 (2022). https://doi.org/10.1016/j.nanoen.2022.107981
- J. Zhang, K. Zhan, S. Zhang, Y. Shen, Y. Hou et al., Discontinuous streaming potential via liquid gate. eScience 2, 615–622 (2022). https://doi.org/10.1016/j.esci.2022.08.001
- D.D. Ordinario, L. Phan, W.G. Walkup 4th., J.-M. Jocson, E. Karshalev et al., Bulk protonic conductivity in a cephalopod structural protein. Nat. Chem. 6, 596–602 (2014). https://doi.org/10.1038/nchem.1960
- C. Li, L. Wen, X. Sui, Y. Cheng, L. Gao et al., Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 7, eabg2183 (2021). https://doi.org/10.1126/sciadv.abg2183
- G. Bian, N. Pan, Z. Luan, X. Sui, W. Fan et al., Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem. Int. Ed. 133, 20456–20462 (2021). https://doi.org/10.1002/ange.202108549
- J. Chen, W. Xin, W. Chen, X. Zhao, Y. Qian et al., Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Cent. Sci. 7, 1486–1492 (2021). https://doi.org/10.1021/acscentsci.1c00633
- L. Ding, M. Zheng, D. Xiao, Z. Zhao, J. Xue et al., Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion. Angew. Chem. Int. Ed. 61, e202206152 (2022). https://doi.org/10.1002/anie.202206152
- Z. Man, J. Safaei, Z. Zhang, Y. Wang, D. Zhou et al., Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 143, 16206–16216 (2021). https://doi.org/10.1021/jacs.1c07392
- J. Safaei, Y. Gao, M. Hosseinpour, X. Zhang, Y. Sun et al., Vacancy engineering for high-efficiency nanofluidic osmotic energy generation. J. Am. Chem. Soc. 145, 2669–2678 (2023). https://doi.org/10.1021/jacs.2c12936
- N. Sheng, S. Chen, M. Zhang, Z. Wu, Q. Liang et al., TEMPO-oxidized bacterial cellulose nanofibers/graphene oxide fibers for osmotic energy conversion. ACS Appl. Mater. Interfaces 13, 22416–22425 (2021). https://doi.org/10.1021/acsami.1c03192
- Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). https://doi.org/10.1038/s41467-019-10885-8
- Y. Zhao, J. Wang, X.-Y. Kong, W. Xin, T. Zhou et al., Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Natl. Sci. Rev. 7, 1349–1359 (2020). https://doi.org/10.1093/nsr/nwaa057
- J. Zhou, J. Hao, R. Wu, L. Su, J. Wang et al., Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high-efficient blue energy generation. Adv. Funct. Mater. 32, 2209767 (2022). https://doi.org/10.1002/adfm.202209767
- S. Chen, C. Zhu, W. Xian, X. Liu, X. Liu et al., Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J. Am. Chem. Soc. 143, 9415–9422 (2021). https://doi.org/10.1021/jacs.1c02090
- Z. Wu, P. Ji, B. Wang, N. Sheng, M. Zhang et al., Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting. Nano Energy 80, 105554 (2021). https://doi.org/10.1016/j.nanoen.2020.105554
- Z. Wu, T. Zhang, B. Wang, P. Ji, N. Sheng et al., Scalable bacterial cellulose biofilms with improved ion transport for high osmotic power generation. Nano Energy 88, 106275 (2021). https://doi.org/10.1016/j.nanoen.2021.106275
- L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei et al., Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 132, 8798–8804 (2020). https://doi.org/10.1002/ange.201915993
- F. Hashemifar, A. Esfandiar, Oppositely charged MXene fibers as a highly efficient osmotic power generator from sea and river water. J. Mater. Chem. A 10, 24915–24926 (2022). https://doi.org/10.1039/D2TA06557F
- J. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen et al., Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017). https://doi.org/10.1002/adfm.201603623
- N. Sheng, M. Zhang, Q. Song, H. Zhang, S. Chen et al., Enhanced salinity gradient energy harvesting with oppositely charged bacterial cellulose-based composite membranes. Nano Energy 101, 107548 (2022). https://doi.org/10.1016/j.nanoen.2022.107548
- Q.-Y. Wu, C. Wang, R. Wang, C. Chen, J. Gao et al., Salinity-gradient power generation with ionized wood membranes. Adv. Energy Mater. 10, 1902590 (2020). https://doi.org/10.1002/aenm.201902590
- M. Zhang, N. Sheng, Q. Song, H. Zhang, S. Chen et al., Enhanced selective ion transport by assembling nanofibers to membrane pairs with channel-like nanopores for osmotic energy harvesting. Nano Energy 103, 107786 (2022). https://doi.org/10.1016/j.nanoen.2022.107786
- W. Zhao, Y. Wang, M. Han, J. Xu, L. Han et al., Osmotic energy generation with mechanically robust and oppositely charged cellulose nanocrystal intercalating GO membranes. Nano Energy 98, 107291 (2022). https://doi.org/10.1016/j.nanoen.2022.107291
- B. Zhou, Z. Lin, Z. Xie, X. Fu, Z. Yuan et al., Scalable fabrication of regenerated cellulose nanohybrid membranes integrating opposite charges and aligned nanochannels for continuous osmotic energy harvesting. Nano Energy 115, 108693 (2023). https://doi.org/10.1016/j.nanoen.2023.108693
References
Y. Hu, Y. Teng, Y. Sun, P. Liu, L. Fu et al., Bioinspired poly (ionic liquid) membrane for efficient salinity gradient energy harvesting: electrostatic crosslinking induced hierarchical nanoporous network. Nano Energy 97, 107170 (2022). https://doi.org/10.1016/j.nanoen.2022.107170
C. Li, P. Liu, Y. Zhai, L. Yao, H. Lin et al., Unconventional dual ion selectivity determined by the forward side of a bipolar channel toward ion flux. ACS Appl. Mater. Interfaces 14, 2230–2236 (2022). https://doi.org/10.1021/acsami.1c18474
Q. Ren, H. Zhu, K. Chen, J.F. Zhang, Z.G. Qu, Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion. Appl. Energy 307, 118312 (2022). https://doi.org/10.1016/j.apenergy.2021.118312
G. Laucirica, M.E. Toimil-Molares, C. Trautmann, W. Marmisollé, O. Azzaroni, Nanofluidic osmotic power generators–advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem. Sci. 12, 12874–12910 (2021). https://doi.org/10.1039/D1SC03581A
K. Xiao, L. Jiang, M. Antonietti, Ion transport in nanofluidic devices for energy harvesting. Joule 3, 2364–2380 (2019). https://doi.org/10.1016/j.joule.2019.09.005
Y. Fu, X. Guo, Y. Wang, X. Wang, J. Xue, An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient. Nano Energy 57, 783–790 (2019). https://doi.org/10.1016/j.nanoen.2018.12.075
P. Zuo, J. Ran, C. Ye, X. Li, T. Xu et al., Advancing ion selective membranes with micropore ion channels in the interaction confinement regime. ACS Nano 18, 6016–6027 (2024). https://doi.org/10.1021/acsnano.3c12616
T. Bian, X. Wang, Q. Zhang, X. Zhu, J. Jiao et al., Uniform nanoscale ion-selective membrane prepared by precision control of solution spreading and evaporation. Nano Lett. 24, 2352–2359 (2024). https://doi.org/10.1021/acs.nanolett.3c04847
B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012). https://doi.org/10.1038/nature11477
L. Cao, H. Wu, C. Fan, Z. Zhang, B. Shi et al., Lamellar porous vermiculite membranes for boosting nanofluidic osmotic energy conversion. J. Mater. Chem. A 9, 14576–14581 (2021). https://doi.org/10.1039/D1TA02400K
G. Yang, D. Liu, C. Chen, Y. Qian, Y. Su et al., Stable Ti3C2Tx MXene-boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting. ACS Nano 15, 6594–6603 (2021). https://doi.org/10.1021/acsnano.0c09845
L. Wang, Z. Wang, S.K. Patel, S. Lin, M. Elimelech, Nanopore-based power generation from salinity gradient: why it is not viable. ACS Nano 15, 4093–4107 (2021). https://doi.org/10.1021/acsnano.0c08628
Q. Zhu, Y. Li, Q. Qian, P. Zuo, M.D. Guiver et al., A sulfonated ultramicroporous membrane with selective ion transport enables osmotic energy extraction from multiform salt solutions with exceptional efficiency. Energy Environ. Sci. 15, 4148–4156 (2022). https://doi.org/10.1039/D2EE00851C
X. Zhao, C. Lu, L. Yang, W. Chen, W. Xin et al., Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 81, 105657 (2021). https://doi.org/10.1016/j.nanoen.2020.105657
Q. Zhu, Y. Liu, P. Zuo, Y. Dong, Z. Yang et al., An isoporous ion exchange membrane for selective Na+ transport. J. Membr. Sci. 659, 120805 (2022). https://doi.org/10.1016/j.memsci.2022.120805
X. Lin, P. Liu, W. Xin, Y. Teng, J. Chen et al., Heterogeneous MXene/PS-b-P2VP nanofluidic membranes with controllable ion transport for osmotic energy conversion. Adv. Funct. Mater. 31, 2105013 (2021). https://doi.org/10.1002/adfm.202105013
L. Cao, Q. Wen, Y. Feng, D. Ji, H. Li et al., On the origin of ion selectivity in ultrathin nanopores: insights for membrane-scale osmotic energy conversion. Adv. Funct. Mater. 28, 1804189 (2018). https://doi.org/10.1002/adfm.201804189
L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng et al., Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv. Funct. Mater. 27, 1604302 (2017). https://doi.org/10.1002/adfm.201604302
S. Zhou, L. Xie, X. Li, Y. Huang, L. Zhang et al., Interfacial super-assembly of ordered mesoporous carbon-silica/AAO hybrid membrane with enhanced permselectivity for temperature- and pH-sensitive smart ion transport. Angew. Chem. Int. Ed. 60, 26167–26176 (2021). https://doi.org/10.1002/anie.202110731
S. Hou, W. Ji, J. Chen, Y. Teng, L. Wen et al., Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew. Chem. Int. Ed. 60, 9925–9930 (2021). https://doi.org/10.1002/anie.202100205
N. He, H. Wang, F. Li, B. Jiang, D. Tang et al., Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy Environ. Sci. 16, 2494–2504 (2023). https://doi.org/10.1039/d2ee03621e
M. Wang, X. Hou, Building artificial aligned nanochannels for highly efficient ion transport. Joule 7, 251–253 (2023). https://doi.org/10.1016/j.joule.2023.01.012
Y. Xiao, L. Hu, L. Gao, M. Di, X. Sun et al., Enabling high anion-selective conductivity in membrane for high-performance neutral organic based aqueous redox flow battery by microstructure design. Chem. Eng. J. 432, 134268 (2022). https://doi.org/10.1016/j.cej.2021.134268
P. Bulejko, E. Stránská, Variations in anion-exchange membrane properties with ionic resin moisture. Ionics 25, 4251–4263 (2019). https://doi.org/10.1007/s11581-019-02984-9
F. Liao, Z. Xu, Z. Fan, Q. Meng, B. Lv et al., Confined assembly of ultrathin dual-functionalized Z-MXene nanosheet intercalated GO nanofilms with controlled structure for size-selective permeation. J. Mater. Chem. A 9, 12236–12243 (2021). https://doi.org/10.1039/D1TA01514A
K.-T. Huang, W.-H. Hung, Y.-C. Su, F.-C. Tang, L.D. Linh et al., Zwitterionic gradient double-network hydrogel membranes with superior biofouling resistance for sustainable osmotic energy harvesting. Adv. Funct. Mater. 33, 2211316 (2023). https://doi.org/10.1002/adfm.202211316
P. Jia, L. Wang, Y. Zhang, Y. Yang, X. Jin et al., Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 33, e2007529 (2021). https://doi.org/10.1002/adma.202007529
P. Qian, W. Zhou, Y. Zhang, D. Chao, M. Song, Review and perspectives of sulfonated poly(ether ether ketone) proton exchange membrane for vanadium flow batteries. Energy Fuels 37, 17681–17707 (2023). https://doi.org/10.1021/acs.energyfuels.3c02373
Y. Xiao, J. Xu, L. Hu, H. Wang, L. Gao et al., Advanced anion-selective membranes with pendant quaternary ammonium for neutral aqueous supporting redox flow battery. J. Membr. Sci. 659, 120748 (2022). https://doi.org/10.1016/j.memsci.2022.120748
Y. Zhang, H. Wang, P. Qian, L. Zhang, Y. Zhou et al., Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J. Membr. Sci. 625, 119159 (2021). https://doi.org/10.1016/j.memsci.2021.119159
W. Chen, Q. Zhang, Y. Qian, W. Xin, D. Hao et al., Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion. ACS Central Sci. 6, 2097–2104 (2020). https://doi.org/10.1021/acscentsci.0c01054
W. Li, X. Wang, Z. Liu, X. Zou, Z. Shen et al., Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat. Mater. 23, 131–138 (2024). https://doi.org/10.1038/s41563-023-01697-9
A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998). https://doi.org/10.1063/1.368911
C. Chen, D. Liu, L. He, S. Qin, J. Wang et al., Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247–261 (2020). https://doi.org/10.1016/j.joule.2019.11.010
C. Chen, G. Yang, D. Liu, X. Wang, N.A. Kotov et al., Aramid nanofiber membranes for energy harvesting from proton gradients. Adv. Funct. Mater. 32, 2102080 (2022). https://doi.org/10.1002/adfm.202102080
R. Qin, J. Tang, C. Wu, Q. Zhang, T. Xiao et al., Nanofiber-reinforced clay-based 2D nanofluidics for highly efficient osmotic energy harvesting. Nano Energy 100, 107526 (2022). https://doi.org/10.1016/j.nanoen.2022.107526
Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian et al., Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 7, 2702–2709 (2020). https://doi.org/10.1039/D0MH00979B
R. Liu, J. Chen, Z. Luo, X. Zhang, W. Chen et al., Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. React. Funct. Polym. 172, 105197 (2022). https://doi.org/10.1016/j.reactfunctpolym.2022.105197
L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo et al., Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9, 1803046 (2019). https://doi.org/10.1002/aenm.201803046
N. Xue, L. Wang, M. Pei, Y. He, Y. Du et al., Preparation and characterization of sodium polyacrylate-grafted bentonite and its performance removing Pb2+ from aqueous solutions. RSC Adv. 6, 98945–98951 (2016). https://doi.org/10.1039/C6RA17214H
X. Zhang, F. Lin, Q. Yuan, L. Zhu, C. Wang et al., Hydrogen-bonded thin films of cellulose ethers and poly(acrylic acid). Carbohydr. Polym. 215, 58–62 (2019). https://doi.org/10.1016/j.carbpol.2019.03.066
J. Chen, Y. Liu, D. Wang, H. Zhi, J. Tang et al., Wood vessel-confined anti-swelling hydrogel for efficient osmotic energy conversion. Nano Energy 104, 107981 (2022). https://doi.org/10.1016/j.nanoen.2022.107981
J. Zhang, K. Zhan, S. Zhang, Y. Shen, Y. Hou et al., Discontinuous streaming potential via liquid gate. eScience 2, 615–622 (2022). https://doi.org/10.1016/j.esci.2022.08.001
D.D. Ordinario, L. Phan, W.G. Walkup 4th., J.-M. Jocson, E. Karshalev et al., Bulk protonic conductivity in a cephalopod structural protein. Nat. Chem. 6, 596–602 (2014). https://doi.org/10.1038/nchem.1960
C. Li, L. Wen, X. Sui, Y. Cheng, L. Gao et al., Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 7, eabg2183 (2021). https://doi.org/10.1126/sciadv.abg2183
G. Bian, N. Pan, Z. Luan, X. Sui, W. Fan et al., Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem. Int. Ed. 133, 20456–20462 (2021). https://doi.org/10.1002/ange.202108549
J. Chen, W. Xin, W. Chen, X. Zhao, Y. Qian et al., Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Cent. Sci. 7, 1486–1492 (2021). https://doi.org/10.1021/acscentsci.1c00633
L. Ding, M. Zheng, D. Xiao, Z. Zhao, J. Xue et al., Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion. Angew. Chem. Int. Ed. 61, e202206152 (2022). https://doi.org/10.1002/anie.202206152
Z. Man, J. Safaei, Z. Zhang, Y. Wang, D. Zhou et al., Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 143, 16206–16216 (2021). https://doi.org/10.1021/jacs.1c07392
J. Safaei, Y. Gao, M. Hosseinpour, X. Zhang, Y. Sun et al., Vacancy engineering for high-efficiency nanofluidic osmotic energy generation. J. Am. Chem. Soc. 145, 2669–2678 (2023). https://doi.org/10.1021/jacs.2c12936
N. Sheng, S. Chen, M. Zhang, Z. Wu, Q. Liang et al., TEMPO-oxidized bacterial cellulose nanofibers/graphene oxide fibers for osmotic energy conversion. ACS Appl. Mater. Interfaces 13, 22416–22425 (2021). https://doi.org/10.1021/acsami.1c03192
Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). https://doi.org/10.1038/s41467-019-10885-8
Y. Zhao, J. Wang, X.-Y. Kong, W. Xin, T. Zhou et al., Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Natl. Sci. Rev. 7, 1349–1359 (2020). https://doi.org/10.1093/nsr/nwaa057
J. Zhou, J. Hao, R. Wu, L. Su, J. Wang et al., Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high-efficient blue energy generation. Adv. Funct. Mater. 32, 2209767 (2022). https://doi.org/10.1002/adfm.202209767
S. Chen, C. Zhu, W. Xian, X. Liu, X. Liu et al., Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J. Am. Chem. Soc. 143, 9415–9422 (2021). https://doi.org/10.1021/jacs.1c02090
Z. Wu, P. Ji, B. Wang, N. Sheng, M. Zhang et al., Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting. Nano Energy 80, 105554 (2021). https://doi.org/10.1016/j.nanoen.2020.105554
Z. Wu, T. Zhang, B. Wang, P. Ji, N. Sheng et al., Scalable bacterial cellulose biofilms with improved ion transport for high osmotic power generation. Nano Energy 88, 106275 (2021). https://doi.org/10.1016/j.nanoen.2021.106275
L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei et al., Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 132, 8798–8804 (2020). https://doi.org/10.1002/ange.201915993
F. Hashemifar, A. Esfandiar, Oppositely charged MXene fibers as a highly efficient osmotic power generator from sea and river water. J. Mater. Chem. A 10, 24915–24926 (2022). https://doi.org/10.1039/D2TA06557F
J. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen et al., Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017). https://doi.org/10.1002/adfm.201603623
N. Sheng, M. Zhang, Q. Song, H. Zhang, S. Chen et al., Enhanced salinity gradient energy harvesting with oppositely charged bacterial cellulose-based composite membranes. Nano Energy 101, 107548 (2022). https://doi.org/10.1016/j.nanoen.2022.107548
Q.-Y. Wu, C. Wang, R. Wang, C. Chen, J. Gao et al., Salinity-gradient power generation with ionized wood membranes. Adv. Energy Mater. 10, 1902590 (2020). https://doi.org/10.1002/aenm.201902590
M. Zhang, N. Sheng, Q. Song, H. Zhang, S. Chen et al., Enhanced selective ion transport by assembling nanofibers to membrane pairs with channel-like nanopores for osmotic energy harvesting. Nano Energy 103, 107786 (2022). https://doi.org/10.1016/j.nanoen.2022.107786
W. Zhao, Y. Wang, M. Han, J. Xu, L. Han et al., Osmotic energy generation with mechanically robust and oppositely charged cellulose nanocrystal intercalating GO membranes. Nano Energy 98, 107291 (2022). https://doi.org/10.1016/j.nanoen.2022.107291
B. Zhou, Z. Lin, Z. Xie, X. Fu, Z. Yuan et al., Scalable fabrication of regenerated cellulose nanohybrid membranes integrating opposite charges and aligned nanochannels for continuous osmotic energy harvesting. Nano Energy 115, 108693 (2023). https://doi.org/10.1016/j.nanoen.2023.108693