Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications
Corresponding Author: Hong Liu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 71
Abstract
Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations. Recently, the development of electronic skin (E-skin) for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems, advanced robotics, artificial intelligence, and human–machine interfaces. Tactile sense is one of the most important senses of human skin that has attracted special attention. The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene, the most celebrated two-dimensional material, in electronic tactile sensing devices. With a special emphasis on the works achieved since 2016, this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods, device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials. This review emphasizes on: (1) the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials; (2) state-of-the-art protocols recently developed for high-performance tactile sensing, including representative examples; and (3) perspectives and current challenges for graphene-based tactile sensors in E-skin applications. A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin.
Highlights:
1 Tremendous progress has been advanced by research into graphene and its derivatives with great benefits toward low-cost, portable, and real-time tactile sensors/electronic skin.
2 The review presented herein direct future efforts aimed at high-quality graphene-based tactile sensors and their implications for the wider scientific community.
3 The paper also are informative regarding some basic and crucial issues regarding graphene and its derivatives, such as charge-transport principles, doping/trapping behaviors, correlations between structure/morphology and properties/functions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chen, K. Jiang, Z. Lou, D. Chen, G. Shen, Recent developments in graphene-based tactile sensors and e-skins. Adv. Mater. Technol. 3(2), 1700248 (2018). https://doi.org/10.1002/admt.201700248
- L. Huang, D. Santiago, P. Loyselle, L. Dai, Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 14(43), e1800879 (2018). https://doi.org/10.1002/smll.201800879
- Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan, Van der waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
- L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
- Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3(8), 1500343 (2016). https://doi.org/10.1002/advs.201500343
- G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13(3), 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6
- X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
- X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2(9), 17046 (2017). https://doi.org/10.1038/natrevmats.2017.46
- J. Zhang, B. Zhao, T. Zhou, Z. Yang, Quantum anomalous hall effect in real materials. Chin. Phys. B 25(11), 117308 (2016). https://doi.org/10.1088/1674-1056/25/11/117308
- W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29(6), 201603610 (2017). https://doi.org/10.1002/adma.201603610
- E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9(40), 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
- P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a review. Sensors 17(10), 2161 (2017). https://doi.org/10.3390/s17102161
- R.K.L. Tan, S.P. Reeves, N. Hashemi, D.G. Thomas, E. Kavak, R. Montazami, N.N. Hashemi, Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5(34), 17777–17803 (2017). https://doi.org/10.1039/c7ta05759h
- H. Yang, T. Xue, F. Li, W. Liu, Y. Song, Graphene: diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800574
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- S. Lin, Y. Lu, J. Xu, S. Feng, J. Li, High performance graphene/semiconductor van der waals heterostructure optoelectronic devices. Nano Energy 40, 122–148 (2017). https://doi.org/10.1016/j.nanoen.2017.07.036
- D. Li, W.Y. Lai, Y.Z. Zhang, W. Huang, Printable transparent conductive films for flexible electronics. Adv. Mater. 30(10), 1704738 (2018). https://doi.org/10.1002/adma.201704738
- G.X. Ni, L. Wang, M.D. Goldflam, M. Wagner, Z. Fei et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10(4), 244–247 (2016). https://doi.org/10.1038/nphoton.2016.45
- Z. Zhu, I. Murtaza, H. Meng, W. Huang, Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Adv. 7(28), 17387–17397 (2017). https://doi.org/10.1039/c6ra27674a
- Z. Tu, G. Guday, M. Adeli, R. Haag, Multivalent interactions between 2D nanomaterials and biointerfaces. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706709
- K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H.Y. Nyein, K. Takei, A. Javey, Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28(22), 4397–4414 (2016). https://doi.org/10.1002/adma.201504958
- F. Torrisi, T. Carey, Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018). https://doi.org/10.1016/j.nantod.2018.10.009
- B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017). https://doi.org/10.1002/advs.201700107
- V.T. Dang, D.D. Nguyen, T.T. Cao, P.H. Le, D.L. Tran, N.M. Phan, V.C. Nguyen, Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv. Nat. Sci. Nanosci. Nanotechnol. 7(3), 033002 (2016). https://doi.org/10.1088/2043-6262/7/3/033002
- K. Ghosal, K. Sarkar, Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 4(8), 2653–2703 (2018). https://doi.org/10.1021/acsbiomaterials.8b00376
- L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Strom, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (RGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017). https://doi.org/10.1039/c7nr02943h
- J. Liu, J. Dong, T. Zhang, Q. Peng, Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control Release 286, 64–73 (2018). https://doi.org/10.1016/j.jconrel.2018.07.034
- M. Pelin, S. Sosa, M. Prato, A. Tubaro, Occupational exposure to graphene based nanomaterials: risk assessment. Nanoscale 10(34), 15894–15903 (2018). https://doi.org/10.1039/c8nr04950e
- S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
- T.-H. Han, H. Kim, S.-J. Kwon, T.-W. Lee, Graphene-based flexible electronic devices. Mater. Sci. Eng. 118, 1–43 (2017). https://doi.org/10.1016/j.mser.2017.05.001
- Y. Xu, J. Liu, Graphene as transparent electrodes: fabrication and new emerging applications. Small 12(11), 1400–1419 (2016). https://doi.org/10.1002/smll.201502988
- H. He, W. Fu, H. Wang, H. Wang, C. Jin, H.J. Fan, Z. Liu, Silica-modified SnO2-graphene “slime” for self-enhanced li-ion battery anode. Nano Energy 34, 449–455 (2017). https://doi.org/10.1016/j.nanoen.2017.03.017
- G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong et al., The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46(15), 4417–4449 (2017). https://doi.org/10.1039/c7cs00256d
- Y. Zheng, H. Wang, S. Hou, D. Xia, Lithographically defined graphene patterns. Adv. Mater. Technol. 2(5), 1600237 (2017). https://doi.org/10.1002/admt.201600237
- A. Cabrero-Vilatela, J.A. Alexander-Webber, A.A. Sagade, A.I. Aria, P. Braeuninger-Weimer, M.B. Martin, R.S. Weatherup, S. Hofmann, Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology 28(48), 485201 (2017). https://doi.org/10.1088/1361-6528/aa940c
- A. Khan, S.M. Islam, S. Ahmed, R.R. Kumar, M.R. Habib et al., Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 5(11), 1800050 (2018). https://doi.org/10.1002/advs.201800050
- L. Lin, B. Deng, J.Y. Sun, H.L. Peng, Z.F. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118(18), 9281–9343 (2018). https://doi.org/10.1021/acs.chemrev.8b00325
- M.A. Azam, N.N. Zulkapli, N. Dorah, R.N.A.R. Seman, M.H. Ani et al., Review—critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices. ECS J. Solid State Sci. Technol. 6(6), M3035–M3048 (2017). https://doi.org/10.1149/2.0031706jss
- M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-micro Lett. 9(1), 3 (2017). https://doi.org/10.1007/s40820-016-0106-4
- N. Kurra, Q. Jiang, P. Nayak, H.N. Alshareef, Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 24, 81–102 (2019). https://doi.org/10.1016/j.nantod.2018.12.003
- S. Luo, J. Yang, X. Song, X. Zhou, L. Yu et al., Tunable-sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron. 145, 29–33 (2018). https://doi.org/10.1016/j.sse.2018.04.003
- C. Berger, R. Phillips, A. Centeno, A. Zurutuza, A. Vijayaraghavan, Capacitive pressure sensing with suspended graphene-polymer heterostructure membranes. Nanoscale 9(44), 17439–17449 (2017). https://doi.org/10.1039/c7nr04621a
- K. Takei, T. Toshitake, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010). https://doi.org/10.1038/nmat2835
- S.-H. Shin, S. Ji, S. Choi, K.-H. Pyo, B. Wan, Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Mater. 8, 14950 (2017). https://doi.org/10.1038/ncomms14950
- A. Nakamura, T. Hamanishi, S. Kawakami, M. Takeda, A piezo-resistive graphene strain sensor with a hollow cylindrical geometry. Mater. Sci. Eng. B 219, 20–27 (2017). https://doi.org/10.1016/j.mseb.2017.02.012
- S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
- S. Sun, L. Guo, X. Chang, Y. Liu, S. Niu, Y. Lei, T. Liu, X. Hu, A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. J. Mater. Sci. 54(9), 7048–7061 (2019). https://doi.org/10.1007/s10853-019-03354-6
- G. Gao, B. Wan, X. Liu, Q. Sun, X. Yang, L. Wang, C. Pan, Z.L. Wang, Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 30(13), 1705088 (2018). https://doi.org/10.1002/adma.201705088
- Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All RGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017). https://doi.org/10.1016/j.nanoen.2017.03.039
- Z. He, W. Chen, B. Liang, C. Liu, L. Yang et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/acsami.8b01050
- S. Pyo, J. Choi, J. Kim, Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric. Adv. Electron. Mater. 4(1), 1700427 (2018). https://doi.org/10.1002/aelm.201700427
- L. Zhao, F. Qiang, S.W. Dai, S.C. Shen, Y.Z. Huang et al., Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale 11(21), 10229–10238 (2019). https://doi.org/10.1039/c9nr02672j
- D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim, J.H. Cho, Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
- H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, J. Xiong, Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 9(1), 3916 (2019). https://doi.org/10.1038/s41598-019-40828-8
- S. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, L. Sun, Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon 114, 209–216 (2017). https://doi.org/10.1016/j.carbon.2016.12.023
- H. Kou, L. Zhang, Q. Tan, G. Liu, W. Lv, F. Lu, H. Dong, J. Xiong, Wireless flexible pressure sensor based on micro-patterned graphene/PDMS composite. Sens. Actuator A 277, 150–156 (2018). https://doi.org/10.1016/j.sna.2018.05.015
- M. Xu, J. Qi, F. Li, X. Liao, S. Liu, Y. Zhang, Ultra-thin, transparent and flexible tactile sensors based on graphene films with excellent antiinterference. RSC Adv. 7, 30506 (2017). https://doi.org/10.1039/c7ra04239f
- Y.F. Fu, Y.Q. Li, Y.F. Liu, P. Huang, N. Hu, S.Y. Fu, High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl. Mater. Interfaces 10(41), 35503–35509 (2018). https://doi.org/10.1021/acsami.8b09424
- F. Yin, X. Li, H. Peng, F. Li, K. Yang, W. Yuan, A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals. Sens. Actuator B 285, 179–185 (2019). https://doi.org/10.1016/j.snb.2019.01.063
- M. Li, C. Wu, S. Zhao, T. Deng, J. Wang, Z. Liu, L. Wang, G. Wang, Pressure sensing element based on the Bn–graphene–bn heterostructure. Appl. Phys. Lett. 112(14), 143502 (2018). https://doi.org/10.1063/1.5017079
- M. Xu, J. Qi, F. Li, Y. Zhang, Transparent and flexible tactile sensors based on graphene films designed for smart panels. J. Mater. Sci. 53(13), 9589–9597 (2018). https://doi.org/10.1007/s10853-018-2216-5
- X. Lu, J. Yang, L. Qi, W. Bao, L. Zhao, R. Chen, High sensitivity flexible electronic skin based on graphene film. Sensors 19(4), 794 (2019). https://doi.org/10.3390/s19040794
- M. Haniff, S.M. Hafiz, N.M. Huang, S.A. Rahman, K.A.A. Wahid, M.I. Syono, I.A. Azid, Piezoresistive effect in plasma-doping of graphene sheet for high-performance flexible pressure sensing application. ACS Appl. Mater. Interfaces 9(17), 15192–15201 (2017). https://doi.org/10.1021/acsami.7b02833
- S. Chun, Y. Choi, W. Park, All-graphene strain sensor on soft substrate. Carbon 116, 753–759 (2017). https://doi.org/10.1016/j.carbon.2017.02.058
- X. Meng, M. Li, Z. Kang, X. Zhang, J. Xiao, Mechanics of self-folding of single-layer graphene. J. Phys. D-Appl. Phys. 46(5), 055308 (2013). https://doi.org/10.1088/0022-3727/46/5/055308
- W. Liu, J. Sun, L. Xu, S. Zhu, X. Zhou et al., Understanding the noble metal modifying effect on In2O3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple disease. Nanoscale Horiz. (2019). https://doi.org/10.1039/c9nh00404a
- W. Chen, X. Gui, B. Liang, R. Yang, Y. Zheng, C. Zhao, X. Li, H. Zhu, Z. Tang, Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane. ACS Appl. Mater. Interfaces 9(28), 24111–24117 (2017). https://doi.org/10.1021/acsami.7b05515
- Y.F. Yang, L.Q. Tao, Y. Pang, H. Tian, Z.Y. Ju et al., An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 10(24), 11524–11530 (2018). https://doi.org/10.1039/c8nr02652a
- J. Zhang, L.J. Zhou, N.M. Zhang, Z.X. Zhao, S.L. Dong, Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale 10(16), 7387–7395 (2018). https://doi.org/10.1039/c7nr09149d
- Z. Yue, X. Ye, S. Liu, Y. Zhu, H. Jiang, Z. Wan, Y. Lin, C. Jia, Towards ultra-wide operation range and high sensitivity: graphene film based pressure sensors for fingertips. Biosens. Bioelectron. 139, 111296 (2019). https://doi.org/10.1016/j.bios.2019.05.001
- Y. Zhu, H. Cai, H. Ding, N. Pan, X. Wang, Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 11(6), 6195–6200 (2019). https://doi.org/10.1021/acsami.8b17085
- Y.J. Yun, J. Ju, J.H. Lee, S.-H. Moon, S.-J. Park, Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27(33), 1701513 (2017). https://doi.org/10.1002/adfm.201701513
- B.-X. Zhang, Z.-L. Hou, W. Yan, Q.-L. Zhao, K.-T. Zhan, Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors. Carbon 125, 199–206 (2017). https://doi.org/10.1016/j.carbon.2017.09.055
- G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang, X. Dong, A flexible pressure sensor based on RGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10(21), 10033–10040 (2018). https://doi.org/10.1039/c8nr02813c
- M.I. Tsui, M.F. Islam, Creep-and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over wide pressure range. Nanoscale 9(3), 1128–1135 (2017). https://doi.org/10.1039/c6nr07432d
- Z. Ma, A. Wei, J. Ma, L. Shao, H. Jiang, D. Dong, Z. Ji, Q. Wang, S. Kang, Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 10(15), 7116–7126 (2018). https://doi.org/10.1039/c8nr00004b
- S. Chun, A. Hong, Y. Choi, C. Ha, W. Park, A tactile sensor using a conductive graphene-sponge composite. Nanoscale 8(17), 9185–9192 (2016). https://doi.org/10.1039/c6nr00774k
- S.J. Kim, W. Song, Y. Yi, B.K. Min, S. Mondal, K.-S. An, C.-G. Choi, High durability and waterproofing RGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 10(4), 3921–3928 (2018). https://doi.org/10.1021/acsami.7b15386
- Q. Mi, Q. Wang, S. Zang, G. Mao, J. Zhang, X. Ren, Rgo-coated elastic fibres as wearable strain sensors for full-scale detection of human motions. Smart Mater. Struct. 27(1), 015014 (2018). https://doi.org/10.1088/1361-665X/aa9aff
- A. Rinaldi, A. Tamburrano, M. Fortunato, M.S. Sarto, A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16(12), 2148 (2016). https://doi.org/10.3390/s16122148
- M.S. Manjunath, N. Nagarjuna, G. Uma, M. Umapathy, M.M. Nayak, K. Rajanna, Design, fabrication and testing of reduced graphene oxide strain gauge based pressure sensor with increased sensitivity. Microsyst. Technol. 24(7), 2969–2981 (2018). https://doi.org/10.1007/s00542-018-3782-9
- Y. Liu, L.-Q. Tao, D.-Y. Wang, T.-Y. Zhang, Y. Yang, T.-L. Ren, Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett. 110(12), 123508 (2017). https://doi.org/10.1063/1.4978374
- F. Pan, S.-M. Chen, Y. Li, Z. Tao, J. Ye et al., 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv. Funct. Mater. 28(40), 1803221 (2018). https://doi.org/10.1002/adfm.201803221
- Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang, T.L. Ren, Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172
- W. Li, J. Guo, D. Fan, 3D graphite-polymer flexible strain sensors with ultrasensitivity and durability for real-time human vital sign monitoring and musical instrument education. Adv. Mater. Technol. 2(6), 1700070 (2017). https://doi.org/10.1002/admt.201700070
- G. Hassan, J. Bae, A. Hassan, S. Ali, C.H. Lee, Y. Choi, Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Compos. Pt. A-Appl. Sci. Manuf. 107, 519–528 (2018). https://doi.org/10.1016/j.compositesa.2018.01.031
- Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018). https://doi.org/10.1016/j.carbon.2017.10.034
- Z. Zeng, S.I. SeyedShahabadi, B. Che, Y. Zhang, C. Zhao, X. Lu, Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale 9(44), 17396–17404 (2017). https://doi.org/10.1039/c7nr05106a
- Y. Lu, M. Tian, X. Sun, N. Pan, F. Chen, S. Zhu, X. Zhang, S. Chen, Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. Pt. A-Appl. Sci. Manuf. 117, 202–210 (2019). https://doi.org/10.1016/j.compositesa.2018.11.023
- J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6(19), 9074–9080 (2018). https://doi.org/10.1039/c7ta11348j
- R. Xu, H. Zhang, Y. Cai, J. Ruan, K. Qu et al., Flexible and wearable 3D graphene sensor with 141 khz frequency signal response capability. Appl. Phys. Lett. 111(10), 103501 (2017). https://doi.org/10.1063/1.5001472
- Z. Wang, Q. Zhang, Y. Yue, J. Xu, W. Xu, X. Sun, Y. Chen, J. Jiang, Y. Liu, 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity. Nanotechnology 30(34), 345501 (2019). https://doi.org/10.1088/1361-6528/ab1287
- H. Xu, Y.F. Liu, J.X. Xiang, M.K. Zhang, Y.J. Zhao, Z.Y. Xie, Z.Z. Gu, Multifunctional wearable sensor based on graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4), 2090–2098 (2018). https://doi.org/10.1039/c7nr07225b
- D. Zhang, C. Jiang, J. Tong, X. Zong, W. Hu, Flexible strain sensor based on layer-by-layer self-assembled graphene/polymer nanocomposite membrane and its sensing properties. J. Electron. Mater. 47(4), 2263–2270 (2018). https://doi.org/10.1007/s11664-017-6052-1
- C. Lou, S. Wang, T. Liang, C. Pang, L. Huang, M. Run, X. Liu, A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis. Materials 10(9), 1068 (2017). https://doi.org/10.3390/ma10091068
- J. Huang, H. Wang, Z. Li, X. Wu, J. Wang, S. Yang, Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 7(24), 7386–7394 (2019). https://doi.org/10.1039/c9tc01659g
- S.J. Kim, S. Mondal, B.K. Min, C.G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 10(42), 36377–36384 (2018). https://doi.org/10.1021/acsami.8b11233
- L. Sheng, Y. Liang, L.L. Jiang, Q. Wang, T. Wei, L.T. Qu, Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25(41), 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960
- Q. Zheng, X. Liu, H. Xu, M.-S. Cheung, Y.-W. Choi et al., Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horiz. 3(1), 35–44 (2018). https://doi.org/10.1039/c7nh00147a
- X. Zang, X. Wang, Z. Yang, X. Wang, R. Li, J. Chen, J. Ji, M. Xue, Unprecedented sensitivity towards pressure enabled by graphene foam. Nanoscale 9(48), 19346–19352 (2017). https://doi.org/10.1039/c7nr05175a
- L. Lv, P. Zhang, T. Xu, L. Qu, Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 9(27), 22885–22892 (2017). https://doi.org/10.1021/acsami.7b07153
- P. Zhang, L. Lv, Z. Cheng, Y. Liang, Q. Zhou, Y. Zhao, L. Qu, Superelastic, macroporous polystyrene-mediated graphene aerogels for active pressure sensing. Chem. Asian J. 11(7), 1071–1075 (2016). https://doi.org/10.1002/asia.201600038
- M. Dragoman, L. Ghimpu, C. Obreja, A. Dinescu, I. Plesco, D. Dragoman, T. Braniste, I. Tiginyanu, Ultra-lightweight pressure sensor based on graphene aerogel decorated with piezoelectric nanocrystalline films. Nanotechnology 27(47), 475203 (2016). https://doi.org/10.1088/0957-4484/27/47/475203
- I. Plesco, M. Dragoman, J. Strobel, L. Ghimpu, F. Schütt et al., Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film. Superlattices Microstruct. 117, 418–422 (2018). https://doi.org/10.1016/j.spmi.2018.03.064
- L. Yang, Y. Liu, C.D.M. Filipe, D. Ljubic, Y. Luo, H. Zhu, J. Yan, S. Zhu, Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyhipe foam for pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4318–4327 (2019). https://doi.org/10.1021/acsami.8b17020
- L. Zhu, Y.C. Wang, D.Q. Mei, X. Wu, Highly sensitive and flexible tactile sensor based on porous graphene sponges for distributed tactile sensing in monitoring human motions. J. Microelectromech. Syst. 28(1), 154–163 (2019). https://doi.org/10.1109/JMEMS.2018.2881181
- K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, Evidence for van der waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99(19), 12252–12256 (2002). https://doi.org/10.1073/pnas.192252799
- G.Y. Bae, S.W. Pak, D. Kim, G. Lee, D.G. Kim, Y. Chung, K. Cho, Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28(26), 5300–5306 (2016). https://doi.org/10.1002/adma.201600408
- S. Kundu, R. Sriramdas, K. Rafsanjani Amin, A. Bid, R. Pratap, N. Ravishankar, Crumpled sheets of reduced graphene oxide as a highly sensitive, robust and versatile strain/pressure sensor. Nanoscale 9(27), 9581–9588 (2017). https://doi.org/10.1039/c7nr02415k
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
- J. Jia, G. Huang, J. Deng, K. Pan, Skin-inspired flexible and high-sensitivity pressure sensors based on RGO films with continuous-gradient wrinkles. Nanoscale 11(10), 4258–4266 (2019). https://doi.org/10.1039/c8nr08503j
- K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11(2), 1124–1134 (2017). https://doi.org/10.1007/s12274-017-1731-z
- S. Chun, Y. Choi, D.I. Suh, G.Y. Bae, S. Hyun, W. Park, A tactile sensor using single layer graphene for surface texture recognition. Nanoscale 9(29), 10248–10255 (2017). https://doi.org/10.1039/c7nr03748a
- Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018). https://doi.org/10.1002/aelm.201800252
- T.-H. Chang, Y. Tian, C. Li, X. Gu, K. Li et al., Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 11(10), 10226–10236 (2019). https://doi.org/10.1021/acsami.9b00166
- S. Zhao, L. Guo, J. Li, N. Li, G. Zhang et al., Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond. Small (2017). https://doi.org/10.1002/smll.201700944
- J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7(11), 6317–6324 (2015). https://doi.org/10.1021/acsami.5b00695
- C. Sungwoo, S. Wonkyeong, D.W. Kim, J. Lee, H. Min et al., Water-resistant and skin-adhesive wearable electronics using graphene fabric sensor with octopus-inspired microsuckers. ACS Appl. Mater. Interfaces 11, 16951–16957 (2019). https://doi.org/10.1021/acsami.9b04206
- Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016). https://doi.org/10.1021/acsnano.6b03813
- M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27(9), 1606066 (2017). https://doi.org/10.1002/adfm.201606066
- X. Jing, H.-Y. Mi, X.-F. Peng, L.-S. Turng, Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 136, 63–72 (2018). https://doi.org/10.1016/j.carbon.2018.04.065
- Y. Ma, M. Yu, J. Liu, X. Li, S. Li, Ultralight interconnected graphene-amorphous carbon hierarchical foam with mechanical resiliency for high sensitivity and durable strain sensors. ACS Appl. Mater. Interfaces 9(32), 27127–27134 (2017). https://doi.org/10.1021/acsami.7b05636
- F. Zhang, S. Wu, S. Peng, Z. Sha, C.H. Wang, Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos. Sci. Technol. 172, 7–16 (2019). https://doi.org/10.1016/j.compscitech.2018.12.031
- Y. Wang, Y. Wang, Y. Yang, Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 8(22), 1800961 (2018). https://doi.org/10.1002/aenm.201800961
- Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). https://doi.org/10.1016/j.nanoen.2016.02.053
- P. Costa, J. Nunes-Pereira, J. Oliveira, J. Silva, J.A. Moreira et al., High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos. Sci. Technol. 153, 241–252 (2017). https://doi.org/10.1016/j.compscitech.2017.11.001
- Y.F. Ai, T.H. Hsu, D.C. Wu, L. Lee, J.-H. Chen et al., An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles. J. Mater. Chem. C 6(20), 5514–5520 (2018). https://doi.org/10.1039/C8TC01153B
- S. Kim, Y. Dong, M.M. Hossain, S. Gorman, I. Towfeeq et al., Piezoresistive graphene/P(VDF-TRFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl. Mater. Interfaces 11(17), 16006–16017 (2019). https://doi.org/10.1021/acsami.9b01964
- S. Lin, X. Zhao, X. Jiang, A. Wu, H. Ding et al., Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small 15(19), e1900848 (2019). https://doi.org/10.1002/smll.201900848
- S. Il Ahn, Y.W. Kim, S.E. Lee, M. Kim, K.K. Choi, J.C. Park, Graphene-coated microballs for a hyper-sensitive vacuum sensor. Sci. Rep. 9(1), 4910 (2019). https://doi.org/10.1038/s41598-019-41413-9
- J. Kim, L.J. Cote, J.X. Huang, Two dimensional soft material: new faces of graphene oxide. Acc. Chem. Res. 45(8), 1356–1364 (2012). https://doi.org/10.1021/ar300047s
- R. Scaffaro, A. Maio, G. Lo Re, A. Parisi, A. Busacca, Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Compos. Sci. Technol. 156, 166–176 (2018). https://doi.org/10.1016/j.compscitech.2018.01.008
- S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, J. Naik, D.J.M. Kumar, High mechanical and pressure sensitive dielectric properties of graphene oxide doped PVA nanocomposites. RSC Adv. 6(81), 77977–77986 (2016). https://doi.org/10.1039/c6ra16026c
- W. Liu, N. Liu, Y. Yue, J. Rao, F. Cheng, J. Su, Z. Liu, Y. Gao, Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14(15), e1704149 (2018). https://doi.org/10.1002/smll.201704149
- L. Zhao, B. Jiang, Y. Huang, Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor. J. Mater. Sci. 54(7), 5472–5483 (2018). https://doi.org/10.1007/s10853-018-03233-6
- X. Ye, Z. Yuan, H. Tai, W. Li, X. Du, Y. Jiang, A wearable and highly sensitive strain sensor based on a polyethylenimine–RGO layered nanocomposite thin film. J. Mater. Chem. C 5(31), 7746–7752 (2017). https://doi.org/10.1039/c7tc01872j
- W. Liu, X. Zhang, G. Wei, Z. Su, Reduced graphene oxide-based double network polymeric hydrogels for pressure and temperature sensing. Sensors 18(9), 3162 (2018). https://doi.org/10.3390/s18093162
- M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z.A. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. Technol. 25(42), 5997–6037 (2013). https://doi.org/10.1002/adma.201302240
- P. Sahatiya, S. Badhulika, Wireless, smart, human motion monitoring using solution processed fabrication of graphene-MoS2 transistors on paper. Adv. Electron. Mater. 4(6), 1700388 (2018). https://doi.org/10.1002/aelm.201700388
- M. Li, F.S. Yang, Y.C. Hsiao, C.Y. Lin, H.M. Wu et al., Low-voltage operational, low-power consuming, and high sensitive tactile switch based on 2D layered InSe tribotronics. Adv. Funct. Mater. 29(19), 1809119 (2019). https://doi.org/10.1002/adfm.201809119
- T.H. Chang, K. Li, H. Yang, P.Y. Chen, Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Adv. Mater. 30(47), e1802418 (2018). https://doi.org/10.1002/adma.201802418
- T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su et al., Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett. 19(3), 1494–1503 (2019). https://doi.org/10.1021/acs.nanolett.8b04099
- J. Deng, X. Kuang, R. Liu, W. Ding, A.C. Wang et al., Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 30(14), e1705918 (2018). https://doi.org/10.1002/adma.201705918
- Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin et al., Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
- U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29(1), 1603544 (2017). https://doi.org/10.1002/adma.201603544
- N. Yogeswaran, W.T.S. Gupta, F. Liu, V. Vinciguerra, L. Lorenzelli, R. Dahiya, Piezoelectric graphene field effect transistor pressure sensors for tactile sensing. Appl. Phys. Lett. 133(1), 014102 (2018). https://doi.org/10.1063/1.5030545
- H.J. Hwang, S.-Y. Kim, S.C. Kang, B. Allouche, J.H. Yang, B.H. Lee, Piezoelectrically modulated touch pressure sensor using a graphene barristor. Jpn. J. Appl. Phys. 58, SBBH03 (2019). https://doi.org/10.7567/1347-4065/aafc99
- Q. Zhang, T. Jiang, D. Ho, S. Qin, X. Yang, J.H. Cho, Q. Sun, Z.L. Wang, Transparent and self-powered multistage sensation matrix for mechanosensation application. ACS Nano 12(1), 254–262 (2018). https://doi.org/10.1021/acsnano.7b06126
- Y. Lee, J. Kim, B. Jang, S. Kim, B.K. Sharma, J.-H. Kim, J.-H. Ahn, Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019). https://doi.org/10.1016/j.nanoen.2019.05.039
- R.F. Tiefenauer, T. Dalgaty, T. Keplinger, T. Tian, C.J. Shih, J. Voros, M. Aramesh, Monolayer graphene coupled to a flexible plasmonic nanograting for ultrasensitive strain monitoring. Small 14(28), e1801187 (2018). https://doi.org/10.1002/smll.201801187
References
S. Chen, K. Jiang, Z. Lou, D. Chen, G. Shen, Recent developments in graphene-based tactile sensors and e-skins. Adv. Mater. Technol. 3(2), 1700248 (2018). https://doi.org/10.1002/admt.201700248
L. Huang, D. Santiago, P. Loyselle, L. Dai, Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 14(43), e1800879 (2018). https://doi.org/10.1002/smll.201800879
Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan, Van der waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3(8), 1500343 (2016). https://doi.org/10.1002/advs.201500343
G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13(3), 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6
X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2(9), 17046 (2017). https://doi.org/10.1038/natrevmats.2017.46
J. Zhang, B. Zhao, T. Zhou, Z. Yang, Quantum anomalous hall effect in real materials. Chin. Phys. B 25(11), 117308 (2016). https://doi.org/10.1088/1674-1056/25/11/117308
W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29(6), 201603610 (2017). https://doi.org/10.1002/adma.201603610
E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9(40), 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a review. Sensors 17(10), 2161 (2017). https://doi.org/10.3390/s17102161
R.K.L. Tan, S.P. Reeves, N. Hashemi, D.G. Thomas, E. Kavak, R. Montazami, N.N. Hashemi, Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5(34), 17777–17803 (2017). https://doi.org/10.1039/c7ta05759h
H. Yang, T. Xue, F. Li, W. Liu, Y. Song, Graphene: diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800574
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
S. Lin, Y. Lu, J. Xu, S. Feng, J. Li, High performance graphene/semiconductor van der waals heterostructure optoelectronic devices. Nano Energy 40, 122–148 (2017). https://doi.org/10.1016/j.nanoen.2017.07.036
D. Li, W.Y. Lai, Y.Z. Zhang, W. Huang, Printable transparent conductive films for flexible electronics. Adv. Mater. 30(10), 1704738 (2018). https://doi.org/10.1002/adma.201704738
G.X. Ni, L. Wang, M.D. Goldflam, M. Wagner, Z. Fei et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10(4), 244–247 (2016). https://doi.org/10.1038/nphoton.2016.45
Z. Zhu, I. Murtaza, H. Meng, W. Huang, Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Adv. 7(28), 17387–17397 (2017). https://doi.org/10.1039/c6ra27674a
Z. Tu, G. Guday, M. Adeli, R. Haag, Multivalent interactions between 2D nanomaterials and biointerfaces. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706709
K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H.Y. Nyein, K. Takei, A. Javey, Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28(22), 4397–4414 (2016). https://doi.org/10.1002/adma.201504958
F. Torrisi, T. Carey, Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018). https://doi.org/10.1016/j.nantod.2018.10.009
B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017). https://doi.org/10.1002/advs.201700107
V.T. Dang, D.D. Nguyen, T.T. Cao, P.H. Le, D.L. Tran, N.M. Phan, V.C. Nguyen, Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv. Nat. Sci. Nanosci. Nanotechnol. 7(3), 033002 (2016). https://doi.org/10.1088/2043-6262/7/3/033002
K. Ghosal, K. Sarkar, Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 4(8), 2653–2703 (2018). https://doi.org/10.1021/acsbiomaterials.8b00376
L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Strom, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (RGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017). https://doi.org/10.1039/c7nr02943h
J. Liu, J. Dong, T. Zhang, Q. Peng, Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control Release 286, 64–73 (2018). https://doi.org/10.1016/j.jconrel.2018.07.034
M. Pelin, S. Sosa, M. Prato, A. Tubaro, Occupational exposure to graphene based nanomaterials: risk assessment. Nanoscale 10(34), 15894–15903 (2018). https://doi.org/10.1039/c8nr04950e
S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
T.-H. Han, H. Kim, S.-J. Kwon, T.-W. Lee, Graphene-based flexible electronic devices. Mater. Sci. Eng. 118, 1–43 (2017). https://doi.org/10.1016/j.mser.2017.05.001
Y. Xu, J. Liu, Graphene as transparent electrodes: fabrication and new emerging applications. Small 12(11), 1400–1419 (2016). https://doi.org/10.1002/smll.201502988
H. He, W. Fu, H. Wang, H. Wang, C. Jin, H.J. Fan, Z. Liu, Silica-modified SnO2-graphene “slime” for self-enhanced li-ion battery anode. Nano Energy 34, 449–455 (2017). https://doi.org/10.1016/j.nanoen.2017.03.017
G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong et al., The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46(15), 4417–4449 (2017). https://doi.org/10.1039/c7cs00256d
Y. Zheng, H. Wang, S. Hou, D. Xia, Lithographically defined graphene patterns. Adv. Mater. Technol. 2(5), 1600237 (2017). https://doi.org/10.1002/admt.201600237
A. Cabrero-Vilatela, J.A. Alexander-Webber, A.A. Sagade, A.I. Aria, P. Braeuninger-Weimer, M.B. Martin, R.S. Weatherup, S. Hofmann, Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology 28(48), 485201 (2017). https://doi.org/10.1088/1361-6528/aa940c
A. Khan, S.M. Islam, S. Ahmed, R.R. Kumar, M.R. Habib et al., Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 5(11), 1800050 (2018). https://doi.org/10.1002/advs.201800050
L. Lin, B. Deng, J.Y. Sun, H.L. Peng, Z.F. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118(18), 9281–9343 (2018). https://doi.org/10.1021/acs.chemrev.8b00325
M.A. Azam, N.N. Zulkapli, N. Dorah, R.N.A.R. Seman, M.H. Ani et al., Review—critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices. ECS J. Solid State Sci. Technol. 6(6), M3035–M3048 (2017). https://doi.org/10.1149/2.0031706jss
M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-micro Lett. 9(1), 3 (2017). https://doi.org/10.1007/s40820-016-0106-4
N. Kurra, Q. Jiang, P. Nayak, H.N. Alshareef, Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 24, 81–102 (2019). https://doi.org/10.1016/j.nantod.2018.12.003
S. Luo, J. Yang, X. Song, X. Zhou, L. Yu et al., Tunable-sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron. 145, 29–33 (2018). https://doi.org/10.1016/j.sse.2018.04.003
C. Berger, R. Phillips, A. Centeno, A. Zurutuza, A. Vijayaraghavan, Capacitive pressure sensing with suspended graphene-polymer heterostructure membranes. Nanoscale 9(44), 17439–17449 (2017). https://doi.org/10.1039/c7nr04621a
K. Takei, T. Toshitake, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010). https://doi.org/10.1038/nmat2835
S.-H. Shin, S. Ji, S. Choi, K.-H. Pyo, B. Wan, Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Mater. 8, 14950 (2017). https://doi.org/10.1038/ncomms14950
A. Nakamura, T. Hamanishi, S. Kawakami, M. Takeda, A piezo-resistive graphene strain sensor with a hollow cylindrical geometry. Mater. Sci. Eng. B 219, 20–27 (2017). https://doi.org/10.1016/j.mseb.2017.02.012
S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
S. Sun, L. Guo, X. Chang, Y. Liu, S. Niu, Y. Lei, T. Liu, X. Hu, A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. J. Mater. Sci. 54(9), 7048–7061 (2019). https://doi.org/10.1007/s10853-019-03354-6
G. Gao, B. Wan, X. Liu, Q. Sun, X. Yang, L. Wang, C. Pan, Z.L. Wang, Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 30(13), 1705088 (2018). https://doi.org/10.1002/adma.201705088
Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All RGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017). https://doi.org/10.1016/j.nanoen.2017.03.039
Z. He, W. Chen, B. Liang, C. Liu, L. Yang et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/acsami.8b01050
S. Pyo, J. Choi, J. Kim, Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric. Adv. Electron. Mater. 4(1), 1700427 (2018). https://doi.org/10.1002/aelm.201700427
L. Zhao, F. Qiang, S.W. Dai, S.C. Shen, Y.Z. Huang et al., Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale 11(21), 10229–10238 (2019). https://doi.org/10.1039/c9nr02672j
D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim, J.H. Cho, Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, J. Xiong, Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 9(1), 3916 (2019). https://doi.org/10.1038/s41598-019-40828-8
S. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, L. Sun, Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon 114, 209–216 (2017). https://doi.org/10.1016/j.carbon.2016.12.023
H. Kou, L. Zhang, Q. Tan, G. Liu, W. Lv, F. Lu, H. Dong, J. Xiong, Wireless flexible pressure sensor based on micro-patterned graphene/PDMS composite. Sens. Actuator A 277, 150–156 (2018). https://doi.org/10.1016/j.sna.2018.05.015
M. Xu, J. Qi, F. Li, X. Liao, S. Liu, Y. Zhang, Ultra-thin, transparent and flexible tactile sensors based on graphene films with excellent antiinterference. RSC Adv. 7, 30506 (2017). https://doi.org/10.1039/c7ra04239f
Y.F. Fu, Y.Q. Li, Y.F. Liu, P. Huang, N. Hu, S.Y. Fu, High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl. Mater. Interfaces 10(41), 35503–35509 (2018). https://doi.org/10.1021/acsami.8b09424
F. Yin, X. Li, H. Peng, F. Li, K. Yang, W. Yuan, A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals. Sens. Actuator B 285, 179–185 (2019). https://doi.org/10.1016/j.snb.2019.01.063
M. Li, C. Wu, S. Zhao, T. Deng, J. Wang, Z. Liu, L. Wang, G. Wang, Pressure sensing element based on the Bn–graphene–bn heterostructure. Appl. Phys. Lett. 112(14), 143502 (2018). https://doi.org/10.1063/1.5017079
M. Xu, J. Qi, F. Li, Y. Zhang, Transparent and flexible tactile sensors based on graphene films designed for smart panels. J. Mater. Sci. 53(13), 9589–9597 (2018). https://doi.org/10.1007/s10853-018-2216-5
X. Lu, J. Yang, L. Qi, W. Bao, L. Zhao, R. Chen, High sensitivity flexible electronic skin based on graphene film. Sensors 19(4), 794 (2019). https://doi.org/10.3390/s19040794
M. Haniff, S.M. Hafiz, N.M. Huang, S.A. Rahman, K.A.A. Wahid, M.I. Syono, I.A. Azid, Piezoresistive effect in plasma-doping of graphene sheet for high-performance flexible pressure sensing application. ACS Appl. Mater. Interfaces 9(17), 15192–15201 (2017). https://doi.org/10.1021/acsami.7b02833
S. Chun, Y. Choi, W. Park, All-graphene strain sensor on soft substrate. Carbon 116, 753–759 (2017). https://doi.org/10.1016/j.carbon.2017.02.058
X. Meng, M. Li, Z. Kang, X. Zhang, J. Xiao, Mechanics of self-folding of single-layer graphene. J. Phys. D-Appl. Phys. 46(5), 055308 (2013). https://doi.org/10.1088/0022-3727/46/5/055308
W. Liu, J. Sun, L. Xu, S. Zhu, X. Zhou et al., Understanding the noble metal modifying effect on In2O3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple disease. Nanoscale Horiz. (2019). https://doi.org/10.1039/c9nh00404a
W. Chen, X. Gui, B. Liang, R. Yang, Y. Zheng, C. Zhao, X. Li, H. Zhu, Z. Tang, Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane. ACS Appl. Mater. Interfaces 9(28), 24111–24117 (2017). https://doi.org/10.1021/acsami.7b05515
Y.F. Yang, L.Q. Tao, Y. Pang, H. Tian, Z.Y. Ju et al., An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 10(24), 11524–11530 (2018). https://doi.org/10.1039/c8nr02652a
J. Zhang, L.J. Zhou, N.M. Zhang, Z.X. Zhao, S.L. Dong, Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale 10(16), 7387–7395 (2018). https://doi.org/10.1039/c7nr09149d
Z. Yue, X. Ye, S. Liu, Y. Zhu, H. Jiang, Z. Wan, Y. Lin, C. Jia, Towards ultra-wide operation range and high sensitivity: graphene film based pressure sensors for fingertips. Biosens. Bioelectron. 139, 111296 (2019). https://doi.org/10.1016/j.bios.2019.05.001
Y. Zhu, H. Cai, H. Ding, N. Pan, X. Wang, Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 11(6), 6195–6200 (2019). https://doi.org/10.1021/acsami.8b17085
Y.J. Yun, J. Ju, J.H. Lee, S.-H. Moon, S.-J. Park, Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27(33), 1701513 (2017). https://doi.org/10.1002/adfm.201701513
B.-X. Zhang, Z.-L. Hou, W. Yan, Q.-L. Zhao, K.-T. Zhan, Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors. Carbon 125, 199–206 (2017). https://doi.org/10.1016/j.carbon.2017.09.055
G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang, X. Dong, A flexible pressure sensor based on RGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10(21), 10033–10040 (2018). https://doi.org/10.1039/c8nr02813c
M.I. Tsui, M.F. Islam, Creep-and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over wide pressure range. Nanoscale 9(3), 1128–1135 (2017). https://doi.org/10.1039/c6nr07432d
Z. Ma, A. Wei, J. Ma, L. Shao, H. Jiang, D. Dong, Z. Ji, Q. Wang, S. Kang, Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 10(15), 7116–7126 (2018). https://doi.org/10.1039/c8nr00004b
S. Chun, A. Hong, Y. Choi, C. Ha, W. Park, A tactile sensor using a conductive graphene-sponge composite. Nanoscale 8(17), 9185–9192 (2016). https://doi.org/10.1039/c6nr00774k
S.J. Kim, W. Song, Y. Yi, B.K. Min, S. Mondal, K.-S. An, C.-G. Choi, High durability and waterproofing RGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 10(4), 3921–3928 (2018). https://doi.org/10.1021/acsami.7b15386
Q. Mi, Q. Wang, S. Zang, G. Mao, J. Zhang, X. Ren, Rgo-coated elastic fibres as wearable strain sensors for full-scale detection of human motions. Smart Mater. Struct. 27(1), 015014 (2018). https://doi.org/10.1088/1361-665X/aa9aff
A. Rinaldi, A. Tamburrano, M. Fortunato, M.S. Sarto, A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16(12), 2148 (2016). https://doi.org/10.3390/s16122148
M.S. Manjunath, N. Nagarjuna, G. Uma, M. Umapathy, M.M. Nayak, K. Rajanna, Design, fabrication and testing of reduced graphene oxide strain gauge based pressure sensor with increased sensitivity. Microsyst. Technol. 24(7), 2969–2981 (2018). https://doi.org/10.1007/s00542-018-3782-9
Y. Liu, L.-Q. Tao, D.-Y. Wang, T.-Y. Zhang, Y. Yang, T.-L. Ren, Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett. 110(12), 123508 (2017). https://doi.org/10.1063/1.4978374
F. Pan, S.-M. Chen, Y. Li, Z. Tao, J. Ye et al., 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv. Funct. Mater. 28(40), 1803221 (2018). https://doi.org/10.1002/adfm.201803221
Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang, T.L. Ren, Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172
W. Li, J. Guo, D. Fan, 3D graphite-polymer flexible strain sensors with ultrasensitivity and durability for real-time human vital sign monitoring and musical instrument education. Adv. Mater. Technol. 2(6), 1700070 (2017). https://doi.org/10.1002/admt.201700070
G. Hassan, J. Bae, A. Hassan, S. Ali, C.H. Lee, Y. Choi, Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Compos. Pt. A-Appl. Sci. Manuf. 107, 519–528 (2018). https://doi.org/10.1016/j.compositesa.2018.01.031
Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018). https://doi.org/10.1016/j.carbon.2017.10.034
Z. Zeng, S.I. SeyedShahabadi, B. Che, Y. Zhang, C. Zhao, X. Lu, Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale 9(44), 17396–17404 (2017). https://doi.org/10.1039/c7nr05106a
Y. Lu, M. Tian, X. Sun, N. Pan, F. Chen, S. Zhu, X. Zhang, S. Chen, Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. Pt. A-Appl. Sci. Manuf. 117, 202–210 (2019). https://doi.org/10.1016/j.compositesa.2018.11.023
J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6(19), 9074–9080 (2018). https://doi.org/10.1039/c7ta11348j
R. Xu, H. Zhang, Y. Cai, J. Ruan, K. Qu et al., Flexible and wearable 3D graphene sensor with 141 khz frequency signal response capability. Appl. Phys. Lett. 111(10), 103501 (2017). https://doi.org/10.1063/1.5001472
Z. Wang, Q. Zhang, Y. Yue, J. Xu, W. Xu, X. Sun, Y. Chen, J. Jiang, Y. Liu, 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity. Nanotechnology 30(34), 345501 (2019). https://doi.org/10.1088/1361-6528/ab1287
H. Xu, Y.F. Liu, J.X. Xiang, M.K. Zhang, Y.J. Zhao, Z.Y. Xie, Z.Z. Gu, Multifunctional wearable sensor based on graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4), 2090–2098 (2018). https://doi.org/10.1039/c7nr07225b
D. Zhang, C. Jiang, J. Tong, X. Zong, W. Hu, Flexible strain sensor based on layer-by-layer self-assembled graphene/polymer nanocomposite membrane and its sensing properties. J. Electron. Mater. 47(4), 2263–2270 (2018). https://doi.org/10.1007/s11664-017-6052-1
C. Lou, S. Wang, T. Liang, C. Pang, L. Huang, M. Run, X. Liu, A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis. Materials 10(9), 1068 (2017). https://doi.org/10.3390/ma10091068
J. Huang, H. Wang, Z. Li, X. Wu, J. Wang, S. Yang, Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 7(24), 7386–7394 (2019). https://doi.org/10.1039/c9tc01659g
S.J. Kim, S. Mondal, B.K. Min, C.G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 10(42), 36377–36384 (2018). https://doi.org/10.1021/acsami.8b11233
L. Sheng, Y. Liang, L.L. Jiang, Q. Wang, T. Wei, L.T. Qu, Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25(41), 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960
Q. Zheng, X. Liu, H. Xu, M.-S. Cheung, Y.-W. Choi et al., Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horiz. 3(1), 35–44 (2018). https://doi.org/10.1039/c7nh00147a
X. Zang, X. Wang, Z. Yang, X. Wang, R. Li, J. Chen, J. Ji, M. Xue, Unprecedented sensitivity towards pressure enabled by graphene foam. Nanoscale 9(48), 19346–19352 (2017). https://doi.org/10.1039/c7nr05175a
L. Lv, P. Zhang, T. Xu, L. Qu, Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 9(27), 22885–22892 (2017). https://doi.org/10.1021/acsami.7b07153
P. Zhang, L. Lv, Z. Cheng, Y. Liang, Q. Zhou, Y. Zhao, L. Qu, Superelastic, macroporous polystyrene-mediated graphene aerogels for active pressure sensing. Chem. Asian J. 11(7), 1071–1075 (2016). https://doi.org/10.1002/asia.201600038
M. Dragoman, L. Ghimpu, C. Obreja, A. Dinescu, I. Plesco, D. Dragoman, T. Braniste, I. Tiginyanu, Ultra-lightweight pressure sensor based on graphene aerogel decorated with piezoelectric nanocrystalline films. Nanotechnology 27(47), 475203 (2016). https://doi.org/10.1088/0957-4484/27/47/475203
I. Plesco, M. Dragoman, J. Strobel, L. Ghimpu, F. Schütt et al., Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film. Superlattices Microstruct. 117, 418–422 (2018). https://doi.org/10.1016/j.spmi.2018.03.064
L. Yang, Y. Liu, C.D.M. Filipe, D. Ljubic, Y. Luo, H. Zhu, J. Yan, S. Zhu, Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyhipe foam for pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4318–4327 (2019). https://doi.org/10.1021/acsami.8b17020
L. Zhu, Y.C. Wang, D.Q. Mei, X. Wu, Highly sensitive and flexible tactile sensor based on porous graphene sponges for distributed tactile sensing in monitoring human motions. J. Microelectromech. Syst. 28(1), 154–163 (2019). https://doi.org/10.1109/JMEMS.2018.2881181
K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, Evidence for van der waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99(19), 12252–12256 (2002). https://doi.org/10.1073/pnas.192252799
G.Y. Bae, S.W. Pak, D. Kim, G. Lee, D.G. Kim, Y. Chung, K. Cho, Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28(26), 5300–5306 (2016). https://doi.org/10.1002/adma.201600408
S. Kundu, R. Sriramdas, K. Rafsanjani Amin, A. Bid, R. Pratap, N. Ravishankar, Crumpled sheets of reduced graphene oxide as a highly sensitive, robust and versatile strain/pressure sensor. Nanoscale 9(27), 9581–9588 (2017). https://doi.org/10.1039/c7nr02415k
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
J. Jia, G. Huang, J. Deng, K. Pan, Skin-inspired flexible and high-sensitivity pressure sensors based on RGO films with continuous-gradient wrinkles. Nanoscale 11(10), 4258–4266 (2019). https://doi.org/10.1039/c8nr08503j
K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11(2), 1124–1134 (2017). https://doi.org/10.1007/s12274-017-1731-z
S. Chun, Y. Choi, D.I. Suh, G.Y. Bae, S. Hyun, W. Park, A tactile sensor using single layer graphene for surface texture recognition. Nanoscale 9(29), 10248–10255 (2017). https://doi.org/10.1039/c7nr03748a
Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018). https://doi.org/10.1002/aelm.201800252
T.-H. Chang, Y. Tian, C. Li, X. Gu, K. Li et al., Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 11(10), 10226–10236 (2019). https://doi.org/10.1021/acsami.9b00166
S. Zhao, L. Guo, J. Li, N. Li, G. Zhang et al., Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond. Small (2017). https://doi.org/10.1002/smll.201700944
J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7(11), 6317–6324 (2015). https://doi.org/10.1021/acsami.5b00695
C. Sungwoo, S. Wonkyeong, D.W. Kim, J. Lee, H. Min et al., Water-resistant and skin-adhesive wearable electronics using graphene fabric sensor with octopus-inspired microsuckers. ACS Appl. Mater. Interfaces 11, 16951–16957 (2019). https://doi.org/10.1021/acsami.9b04206
Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016). https://doi.org/10.1021/acsnano.6b03813
M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27(9), 1606066 (2017). https://doi.org/10.1002/adfm.201606066
X. Jing, H.-Y. Mi, X.-F. Peng, L.-S. Turng, Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 136, 63–72 (2018). https://doi.org/10.1016/j.carbon.2018.04.065
Y. Ma, M. Yu, J. Liu, X. Li, S. Li, Ultralight interconnected graphene-amorphous carbon hierarchical foam with mechanical resiliency for high sensitivity and durable strain sensors. ACS Appl. Mater. Interfaces 9(32), 27127–27134 (2017). https://doi.org/10.1021/acsami.7b05636
F. Zhang, S. Wu, S. Peng, Z. Sha, C.H. Wang, Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos. Sci. Technol. 172, 7–16 (2019). https://doi.org/10.1016/j.compscitech.2018.12.031
Y. Wang, Y. Wang, Y. Yang, Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 8(22), 1800961 (2018). https://doi.org/10.1002/aenm.201800961
Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). https://doi.org/10.1016/j.nanoen.2016.02.053
P. Costa, J. Nunes-Pereira, J. Oliveira, J. Silva, J.A. Moreira et al., High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos. Sci. Technol. 153, 241–252 (2017). https://doi.org/10.1016/j.compscitech.2017.11.001
Y.F. Ai, T.H. Hsu, D.C. Wu, L. Lee, J.-H. Chen et al., An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles. J. Mater. Chem. C 6(20), 5514–5520 (2018). https://doi.org/10.1039/C8TC01153B
S. Kim, Y. Dong, M.M. Hossain, S. Gorman, I. Towfeeq et al., Piezoresistive graphene/P(VDF-TRFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl. Mater. Interfaces 11(17), 16006–16017 (2019). https://doi.org/10.1021/acsami.9b01964
S. Lin, X. Zhao, X. Jiang, A. Wu, H. Ding et al., Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small 15(19), e1900848 (2019). https://doi.org/10.1002/smll.201900848
S. Il Ahn, Y.W. Kim, S.E. Lee, M. Kim, K.K. Choi, J.C. Park, Graphene-coated microballs for a hyper-sensitive vacuum sensor. Sci. Rep. 9(1), 4910 (2019). https://doi.org/10.1038/s41598-019-41413-9
J. Kim, L.J. Cote, J.X. Huang, Two dimensional soft material: new faces of graphene oxide. Acc. Chem. Res. 45(8), 1356–1364 (2012). https://doi.org/10.1021/ar300047s
R. Scaffaro, A. Maio, G. Lo Re, A. Parisi, A. Busacca, Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Compos. Sci. Technol. 156, 166–176 (2018). https://doi.org/10.1016/j.compscitech.2018.01.008
S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, J. Naik, D.J.M. Kumar, High mechanical and pressure sensitive dielectric properties of graphene oxide doped PVA nanocomposites. RSC Adv. 6(81), 77977–77986 (2016). https://doi.org/10.1039/c6ra16026c
W. Liu, N. Liu, Y. Yue, J. Rao, F. Cheng, J. Su, Z. Liu, Y. Gao, Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14(15), e1704149 (2018). https://doi.org/10.1002/smll.201704149
L. Zhao, B. Jiang, Y. Huang, Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor. J. Mater. Sci. 54(7), 5472–5483 (2018). https://doi.org/10.1007/s10853-018-03233-6
X. Ye, Z. Yuan, H. Tai, W. Li, X. Du, Y. Jiang, A wearable and highly sensitive strain sensor based on a polyethylenimine–RGO layered nanocomposite thin film. J. Mater. Chem. C 5(31), 7746–7752 (2017). https://doi.org/10.1039/c7tc01872j
W. Liu, X. Zhang, G. Wei, Z. Su, Reduced graphene oxide-based double network polymeric hydrogels for pressure and temperature sensing. Sensors 18(9), 3162 (2018). https://doi.org/10.3390/s18093162
M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z.A. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. Technol. 25(42), 5997–6037 (2013). https://doi.org/10.1002/adma.201302240
P. Sahatiya, S. Badhulika, Wireless, smart, human motion monitoring using solution processed fabrication of graphene-MoS2 transistors on paper. Adv. Electron. Mater. 4(6), 1700388 (2018). https://doi.org/10.1002/aelm.201700388
M. Li, F.S. Yang, Y.C. Hsiao, C.Y. Lin, H.M. Wu et al., Low-voltage operational, low-power consuming, and high sensitive tactile switch based on 2D layered InSe tribotronics. Adv. Funct. Mater. 29(19), 1809119 (2019). https://doi.org/10.1002/adfm.201809119
T.H. Chang, K. Li, H. Yang, P.Y. Chen, Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Adv. Mater. 30(47), e1802418 (2018). https://doi.org/10.1002/adma.201802418
T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su et al., Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett. 19(3), 1494–1503 (2019). https://doi.org/10.1021/acs.nanolett.8b04099
J. Deng, X. Kuang, R. Liu, W. Ding, A.C. Wang et al., Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 30(14), e1705918 (2018). https://doi.org/10.1002/adma.201705918
Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin et al., Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29(1), 1603544 (2017). https://doi.org/10.1002/adma.201603544
N. Yogeswaran, W.T.S. Gupta, F. Liu, V. Vinciguerra, L. Lorenzelli, R. Dahiya, Piezoelectric graphene field effect transistor pressure sensors for tactile sensing. Appl. Phys. Lett. 133(1), 014102 (2018). https://doi.org/10.1063/1.5030545
H.J. Hwang, S.-Y. Kim, S.C. Kang, B. Allouche, J.H. Yang, B.H. Lee, Piezoelectrically modulated touch pressure sensor using a graphene barristor. Jpn. J. Appl. Phys. 58, SBBH03 (2019). https://doi.org/10.7567/1347-4065/aafc99
Q. Zhang, T. Jiang, D. Ho, S. Qin, X. Yang, J.H. Cho, Q. Sun, Z.L. Wang, Transparent and self-powered multistage sensation matrix for mechanosensation application. ACS Nano 12(1), 254–262 (2018). https://doi.org/10.1021/acsnano.7b06126
Y. Lee, J. Kim, B. Jang, S. Kim, B.K. Sharma, J.-H. Kim, J.-H. Ahn, Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019). https://doi.org/10.1016/j.nanoen.2019.05.039
R.F. Tiefenauer, T. Dalgaty, T. Keplinger, T. Tian, C.J. Shih, J. Voros, M. Aramesh, Monolayer graphene coupled to a flexible plasmonic nanograting for ultrasensitive strain monitoring. Small 14(28), e1801187 (2018). https://doi.org/10.1002/smll.201801187