Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within “Tubes on Rods” Matrix Toward Enhanced Microwave Absorption
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 47
Abstract
Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption (MA) field. Herein, a three-dimension hierarchical “nanotubes on microrods,” core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworks-based ligand exchange strategy followed by a carbonization treatment with melamine. Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod (Mo2N@CoFe@C/CNT), constructing a special multi-dimension hierarchical MA material. Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite, which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell. Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of − 53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz. The Mo2N@CoFe@C/CNT composites hold the following advantages: (1) hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization, (2) unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss, (3) highly dispersed magnetic CoFe nanoparticles within “tubes on rods” matrix build multi-scale magnetic coupling network and reinforce magnetic response capability, confirmed by the off-axis electron holography.
Highlights:
1 Three-dimension hierarchical core–shell Mo2N@CoFe@C/CNT composites were successfully constructed via a fast MOF-based ligand exchange strategy.
2 Abundant magnetic CoFe nanoparticles suspended within “nanotubes on microrods” matrix exhibited strong magnetic loss capability, confirmed by off-axis electron holography.
3 Hierarchical Mo2N@CoFe@C/CNT composites displayed remarkable microwave absorption value of − 53.5 dB.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
- M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018). https://doi.org/10.1002/smll.201800987
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- X. Liu, Y. Chen, X. Cui, M. Zeng, R. Yu et al., Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 3, 12197–12204 (2015). https://doi.org/10.1039/C5TA01924A
- Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou et al., Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 28, 1704363 (2018). https://doi.org/10.1002/adfm.201704363
- L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10, 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
- L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
- Q. Liu, D. Zhang, T. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93, 013110 (2008). https://doi.org/10.1063/1.2957035
- Z. Song, X. Liu, X. Sun, Y. Li, X. Nie et al., Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance. Carbon 151, 36–45 (2019). https://doi.org/10.1016/j.carbon.2019.05.025
- X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong et al., High-magnetization feco nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 8, 3494–3498 (2016). https://doi.org/10.1021/acsami.5b12203
- L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
- D. Kuang, L. Hou, S. Wang, H. Luo, L. Deng et al., Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon 153, 52–61 (2019). https://doi.org/10.1016/j.carbon.2019.06.105
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7, 5037–5046 (2019). https://doi.org/10.1039/C9TC00771G
- F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011). https://doi.org/10.1021/jp202078p
- J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D
- X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized mxene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12, 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
- K. Zhang, J. Li, F. Wu, M. Sun, Y. Xia et al., Sandwich CoFe2O4/rGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption. ACS Appl. Nano Mater. 2, 315–324 (2019). https://doi.org/10.1021/acsanm.8b01927
- G. Tong, F. Liu, W. Wu, F. Du, J. Guan, Rambutan-like ni/mwcnt heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2, 7373–7382 (2014). https://doi.org/10.1039/C4TA00117F
- Z. Wang, J. Wang, Y. Li, R. Liu, Y. Zhang et al., Multi-interfacial Co@CoNx@C(N) nanocapsules with nitrogen substitutions in graphitic shells for improving microwave absorption properties. J. Alloys Compd. 736, 51–56 (2018). https://doi.org/10.1016/j.jallcom.2017.11.069
- R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
- G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
- Y. Li, R. Liu, X. Pang, X. Zhao, Y. Zhang et al., Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 126, 372–381 (2018). https://doi.org/10.1016/j.carbon.2017.10.040
- J. He, D. Shan, S. Yan, H. Luo, C. Cao, Y. Peng, Magnetic FeCo nanoparticles-decorated Ti3C2 Mxene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 492, 165639 (2019). https://doi.org/10.1016/j.jmmm.2019.165639
- H. Luo, W. Feng, C. Liao, L. Deng, S. Liu et al., Peaked dielectric responses in Ti3C2 Mxene nanosheets enabled composites with efficient microwave absorption. J. Appl. Phys. 123, 104103 (2018). https://doi.org/10.1063/1.5008323
- J. Li, S. Yang, P. Jiao, Q. Peng, W. Yin et al., Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 157, 427–436 (2020). https://doi.org/10.1016/j.carbon.2019.10.074
- M. Ning, J. Li, B. Kuang, C. Wang, D. Su, Y. Zhao, H. Jin, M. Cao, One-step fabrication of n-doped cnts encapsulating M nanoparticles (M = Fe Co, Ni) for efficient microwave absorption. Appl. Surf. Sci. 447, 244–253 (2018). https://doi.org/10.1016/j.apsusc.2018.03.242
- G.J.D.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002)
- Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2d hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8, 2123–2134 (2020). https://doi.org/10.1039/C9TC06526A
- N. Yang, Z.-X. Luo, S.-C. Chen, G. Wu, Y.-Z. Wang, Fe3O4 nanoparticle/n-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 12, 18952–18963 (2020). https://doi.org/10.1021/acsami.0c04185
- X. Yuan, R. Wang, W. Huang, L. Kong, S. Guo et al., Morphology design of co-electrospinning MnO-VN/C nanofibers for enhancing the microwave absorption performances. ACS Appl. Mater. Interfaces 12, 13208–13216 (2020). https://doi.org/10.1021/acsami.9b23310
- W. You, H. Bi, W. She, Y. Zhang, R. Che, Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13, 1602779 (2017). https://doi.org/10.1002/smll.201602779
- H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3, 10232–10241 (2015). https://doi.org/10.1039/C5TC02512E
- Z. Wu, D. Tan, K. Tian, W. Hu, J. Wang et al., Facile preparation of core-shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties. J. Phys. Chem. C 121, 15784–15792 (2017). https://doi.org/10.1021/acs.jpcc.7b04230
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
- T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao et al., Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8, 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264
- T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6, 2447–2454 (2014). https://doi.org/10.1039/C3NR05238A
- C. Chen, Q. Liu, H. Bi, W. You, W. She et al., Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers. Phys. Chem. Chem. Phys. 18, 26712–26718 (2016). https://doi.org/10.1039/C6CP04081K
- M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
- X. Shi, W. You, Y. Zhao, X. Li, Z. Shao et al., Multi-scale magnetic coupling of Fe@SiO2@C-Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 11, 17270–17276 (2019). https://doi.org/10.1039/C9NR06629B
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- N. He, M. Liu, J. Qi, J. Tong, W. Sao et al., Plasmon resonance strategy to enhance permittivity and microwave absorbing performance of Cu/C core-shell nanowires. Chem. Eng. J. 378, 122160 (2019). https://doi.org/10.1016/j.cej.2019.122160
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
- H. Zhang, J. Nai, L. Yu, X.W. Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
- Z. Zhao, J. Ding, R. Zhu, H. Pang, The synthesis and electrochemical applications of core–shell MOFs and their derivatives. J. Mater. Chem. A 7, 15519–15540 (2019). https://doi.org/10.1039/C9TA03833G
- C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong et al., Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J. Mater. Sci. 54, 5412–5423 (2019). https://doi.org/10.1007/s10853-018-03255-0
- W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158
- L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
- Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
- J.-C. Shu, X.-Y. Yang, X.-R. Zhang, X.-Y. Huang, M.-S. Cao et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10, 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
- Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- C. Xu, Q. Li, J. Shen, Z. Yuan, J. Ning et al., A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale 11, 10738–10745 (2019). https://doi.org/10.1039/C9NR02599E
- Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai et al., Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10, 8851–8860 (2016). https://doi.org/10.1021/acsnano.6b04725
- G. Ma, Z. Wang, B. Gao, T. Ding, Q. Zhong et al., Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. J. Mater. Chem. A 3, 14617–14624 (2015). https://doi.org/10.1039/C5TA02851E
- B. Guo, K. Yu, H. Li, H. Song, Y. Zhang et al., Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8, 5517–5525 (2016). https://doi.org/10.1021/acsami.5b10252
- Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu et al., Hierarchical nanorods of MoS2/MoP heterojunction for efficient electrocatalytic hydrogen evolution reaction. Small 16, 2002482 (2020). https://doi.org/10.1002/smll.202002482
- X. Shi, A. Wu, H. Yan, L. Zhang, C. Tian et al., A “MOFs plus MOFs” strategy toward Co-Mo2N tubes for efficient electrocatalytic overall water splitting. J. Mater. Chem. A 6, 20100–20109 (2018). https://doi.org/10.1039/C8TA07906D
- C. Huang, Q. Ruan, H. Song, Y. Luo, H. Bai et al., Vertical kinetically oriented MoS2–Mo2N heterostructures on carbon cloth: a highly efficient hydrogen evolution electrocatalyst. Sustain. Energ. Fuels 4, 2201–2207 (2020). https://doi.org/10.1039/D0SE00144A
- B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013). https://doi.org/10.1021/ja4081056
- S. Yang, Y. Zhang, S. Wang, J. Shi, X. Liu et al., Rational construction of MoS2/Mo2N/C hierarchical porous tubular nanostructures for enhanced lithium storage. J. Mater. Chem. A 7, 23886–23894 (2019). https://doi.org/10.1039/C9TA04516C
- C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16, 2001686 (2020). https://doi.org/10.1002/smll.202001686
- Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
- M.-Q. Ning, M.-M. Lu, J.-B. Li, Z. Chen, Y.-K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7, 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
- L. Liu, Y. Wang, F. Yan, C. Zhu, B. Geng et al., Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc–air batteries. Small Methods 4, 1900571 (2020). https://doi.org/10.1002/smtd.201900571
- Y. Lu, X. Zhang, X. Mao, Y. Huang, Engineering FeCo alloy@N-doped carbon layers by directly pyrolyzing prussian blue analogue: new peroxidase mimetic for chemiluminescence glucose biosensing. J. Mater. Chem. B 7, 4661–4668 (2019). https://doi.org/10.1039/C9TB00797K
- C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li et al., Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7, 1602420 (2017). https://doi.org/10.1002/aenm.201602420
- L. Yang, S. Feng, G. Xu, B. Wei, L. Zhang, Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries. ACS Sustain. Chem. Eng. 7, 5462–5475 (2019). https://doi.org/10.1021/acssuschemeng.8b06624
- X. Li, W. You, L. Wang, J. Liu, Z. Wu et al., Self-assembly-magnetized mxene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11, 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
References
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018). https://doi.org/10.1002/smll.201800987
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
X. Liu, Y. Chen, X. Cui, M. Zeng, R. Yu et al., Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 3, 12197–12204 (2015). https://doi.org/10.1039/C5TA01924A
Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou et al., Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 28, 1704363 (2018). https://doi.org/10.1002/adfm.201704363
L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10, 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
Q. Liu, D. Zhang, T. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93, 013110 (2008). https://doi.org/10.1063/1.2957035
Z. Song, X. Liu, X. Sun, Y. Li, X. Nie et al., Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance. Carbon 151, 36–45 (2019). https://doi.org/10.1016/j.carbon.2019.05.025
X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong et al., High-magnetization feco nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 8, 3494–3498 (2016). https://doi.org/10.1021/acsami.5b12203
L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
D. Kuang, L. Hou, S. Wang, H. Luo, L. Deng et al., Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon 153, 52–61 (2019). https://doi.org/10.1016/j.carbon.2019.06.105
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7, 5037–5046 (2019). https://doi.org/10.1039/C9TC00771G
F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011). https://doi.org/10.1021/jp202078p
J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D
X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized mxene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12, 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
K. Zhang, J. Li, F. Wu, M. Sun, Y. Xia et al., Sandwich CoFe2O4/rGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption. ACS Appl. Nano Mater. 2, 315–324 (2019). https://doi.org/10.1021/acsanm.8b01927
G. Tong, F. Liu, W. Wu, F. Du, J. Guan, Rambutan-like ni/mwcnt heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2, 7373–7382 (2014). https://doi.org/10.1039/C4TA00117F
Z. Wang, J. Wang, Y. Li, R. Liu, Y. Zhang et al., Multi-interfacial Co@CoNx@C(N) nanocapsules with nitrogen substitutions in graphitic shells for improving microwave absorption properties. J. Alloys Compd. 736, 51–56 (2018). https://doi.org/10.1016/j.jallcom.2017.11.069
R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
Y. Li, R. Liu, X. Pang, X. Zhao, Y. Zhang et al., Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 126, 372–381 (2018). https://doi.org/10.1016/j.carbon.2017.10.040
J. He, D. Shan, S. Yan, H. Luo, C. Cao, Y. Peng, Magnetic FeCo nanoparticles-decorated Ti3C2 Mxene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 492, 165639 (2019). https://doi.org/10.1016/j.jmmm.2019.165639
H. Luo, W. Feng, C. Liao, L. Deng, S. Liu et al., Peaked dielectric responses in Ti3C2 Mxene nanosheets enabled composites with efficient microwave absorption. J. Appl. Phys. 123, 104103 (2018). https://doi.org/10.1063/1.5008323
J. Li, S. Yang, P. Jiao, Q. Peng, W. Yin et al., Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 157, 427–436 (2020). https://doi.org/10.1016/j.carbon.2019.10.074
M. Ning, J. Li, B. Kuang, C. Wang, D. Su, Y. Zhao, H. Jin, M. Cao, One-step fabrication of n-doped cnts encapsulating M nanoparticles (M = Fe Co, Ni) for efficient microwave absorption. Appl. Surf. Sci. 447, 244–253 (2018). https://doi.org/10.1016/j.apsusc.2018.03.242
G.J.D.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002)
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2d hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8, 2123–2134 (2020). https://doi.org/10.1039/C9TC06526A
N. Yang, Z.-X. Luo, S.-C. Chen, G. Wu, Y.-Z. Wang, Fe3O4 nanoparticle/n-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 12, 18952–18963 (2020). https://doi.org/10.1021/acsami.0c04185
X. Yuan, R. Wang, W. Huang, L. Kong, S. Guo et al., Morphology design of co-electrospinning MnO-VN/C nanofibers for enhancing the microwave absorption performances. ACS Appl. Mater. Interfaces 12, 13208–13216 (2020). https://doi.org/10.1021/acsami.9b23310
W. You, H. Bi, W. She, Y. Zhang, R. Che, Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13, 1602779 (2017). https://doi.org/10.1002/smll.201602779
H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3, 10232–10241 (2015). https://doi.org/10.1039/C5TC02512E
Z. Wu, D. Tan, K. Tian, W. Hu, J. Wang et al., Facile preparation of core-shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties. J. Phys. Chem. C 121, 15784–15792 (2017). https://doi.org/10.1021/acs.jpcc.7b04230
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao et al., Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8, 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264
T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6, 2447–2454 (2014). https://doi.org/10.1039/C3NR05238A
C. Chen, Q. Liu, H. Bi, W. You, W. She et al., Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers. Phys. Chem. Chem. Phys. 18, 26712–26718 (2016). https://doi.org/10.1039/C6CP04081K
M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
X. Shi, W. You, Y. Zhao, X. Li, Z. Shao et al., Multi-scale magnetic coupling of Fe@SiO2@C-Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 11, 17270–17276 (2019). https://doi.org/10.1039/C9NR06629B
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
N. He, M. Liu, J. Qi, J. Tong, W. Sao et al., Plasmon resonance strategy to enhance permittivity and microwave absorbing performance of Cu/C core-shell nanowires. Chem. Eng. J. 378, 122160 (2019). https://doi.org/10.1016/j.cej.2019.122160
Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
H. Zhang, J. Nai, L. Yu, X.W. Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
Z. Zhao, J. Ding, R. Zhu, H. Pang, The synthesis and electrochemical applications of core–shell MOFs and their derivatives. J. Mater. Chem. A 7, 15519–15540 (2019). https://doi.org/10.1039/C9TA03833G
C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong et al., Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J. Mater. Sci. 54, 5412–5423 (2019). https://doi.org/10.1007/s10853-018-03255-0
W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
J.-C. Shu, X.-Y. Yang, X.-R. Zhang, X.-Y. Huang, M.-S. Cao et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10, 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
C. Xu, Q. Li, J. Shen, Z. Yuan, J. Ning et al., A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale 11, 10738–10745 (2019). https://doi.org/10.1039/C9NR02599E
Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai et al., Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10, 8851–8860 (2016). https://doi.org/10.1021/acsnano.6b04725
G. Ma, Z. Wang, B. Gao, T. Ding, Q. Zhong et al., Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. J. Mater. Chem. A 3, 14617–14624 (2015). https://doi.org/10.1039/C5TA02851E
B. Guo, K. Yu, H. Li, H. Song, Y. Zhang et al., Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8, 5517–5525 (2016). https://doi.org/10.1021/acsami.5b10252
Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu et al., Hierarchical nanorods of MoS2/MoP heterojunction for efficient electrocatalytic hydrogen evolution reaction. Small 16, 2002482 (2020). https://doi.org/10.1002/smll.202002482
X. Shi, A. Wu, H. Yan, L. Zhang, C. Tian et al., A “MOFs plus MOFs” strategy toward Co-Mo2N tubes for efficient electrocatalytic overall water splitting. J. Mater. Chem. A 6, 20100–20109 (2018). https://doi.org/10.1039/C8TA07906D
C. Huang, Q. Ruan, H. Song, Y. Luo, H. Bai et al., Vertical kinetically oriented MoS2–Mo2N heterostructures on carbon cloth: a highly efficient hydrogen evolution electrocatalyst. Sustain. Energ. Fuels 4, 2201–2207 (2020). https://doi.org/10.1039/D0SE00144A
B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013). https://doi.org/10.1021/ja4081056
S. Yang, Y. Zhang, S. Wang, J. Shi, X. Liu et al., Rational construction of MoS2/Mo2N/C hierarchical porous tubular nanostructures for enhanced lithium storage. J. Mater. Chem. A 7, 23886–23894 (2019). https://doi.org/10.1039/C9TA04516C
C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16, 2001686 (2020). https://doi.org/10.1002/smll.202001686
Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
M.-Q. Ning, M.-M. Lu, J.-B. Li, Z. Chen, Y.-K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7, 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
L. Liu, Y. Wang, F. Yan, C. Zhu, B. Geng et al., Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc–air batteries. Small Methods 4, 1900571 (2020). https://doi.org/10.1002/smtd.201900571
Y. Lu, X. Zhang, X. Mao, Y. Huang, Engineering FeCo alloy@N-doped carbon layers by directly pyrolyzing prussian blue analogue: new peroxidase mimetic for chemiluminescence glucose biosensing. J. Mater. Chem. B 7, 4661–4668 (2019). https://doi.org/10.1039/C9TB00797K
C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li et al., Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7, 1602420 (2017). https://doi.org/10.1002/aenm.201602420
L. Yang, S. Feng, G. Xu, B. Wei, L. Zhang, Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries. ACS Sustain. Chem. Eng. 7, 5462–5475 (2019). https://doi.org/10.1021/acssuschemeng.8b06624
X. Li, W. You, L. Wang, J. Liu, Z. Wu et al., Self-assembly-magnetized mxene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11, 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861