From VIB- to VB-Group Transition Metal Disulfides: Structure Engineering Modulation for Superior Electromagnetic Wave Absorption
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 29
Abstract
The laminated transition metal disulfides (TMDs), which are well known as typical two-dimensional (2D) semiconductive materials, possess a unique layered structure, leading to their wide-spread applications in various fields, such as catalysis, energy storage, sensing, etc. In recent years, a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption (EMA) has been carried out. Therefore, it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application. In this review, recent advances in the development of electromagnetic wave (EMW) absorbers based on TMDs, ranging from the VIB group to the VB group are summarized. Their compositions, microstructures, electronic properties, and synthesis methods are presented in detail. Particularly, the modulation of structure engineering from the aspects of heterostructures, defects, morphologies and phases are systematically summarized, focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance. Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
Highlights:
1 A systematic summary of current research trends in the development of transition metal disulfides (TMDs) electromagnetic wave (EMW) absorption materials.
2 In-depth comparisons on the structures, preparation methods, application merits of VIB- and VB-group TMDs.
3 Structure engineering modulation of TMDs in achieving superior EMW absorption is outlined from the viewpoints of heterostructures, defects, morphologies, and phases.
4 Exclusive insights into the challenges, strategies, and opportunities in the design of EMW absorption materials with outstanding performance are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Hoang Huy, Y. Ahn, J. Hur, Recent advances in transition metal dichalcogenide cathode materials for aqueous rechargeable multivalent metal-ion batteries. Nanomaterials 11(6), 1517 (2021). https://doi.org/10.3390/nano11061517
- J.C. Shu, Y.L. Zhang, Y. Qin, M.S. Cao, Oxidative molecular layer deposition tailoring eco-mimetic nanoarchitecture to manipulate electromagnetic attenuation and self-powered energy conversion. Nano-Micro Lett. 15(1), 142 (2023). https://doi.org/10.1007/s40820-023-01112-7
- S.Q. Zhu, J.C. Shu, M.S. Cao, Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14(19), 7322–7331 (2022). https://doi.org/10.1039/D2NR01024K
- J.C. Shu, M.S. Cao, Y.L. Zhang, W.Q. Cao, Heterodimensional structure switching multispectral stealth and multimedia interaction devices. Adv. Sci. 10(26), 2302361 (2023). https://doi.org/10.1002/advs.202302361
- J.Y. Cheng, H.B. Zhang, M.Q. Ning, H. Raza, D.Q. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- J.Y. Cheng, H.B. Zhang, Y.F. Xiong, L.F. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017
- Z.X. Zhou, X.Y. Yang, D.Q. Zhang, H.B. Zhang, J.Y. Cheng et al., Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Adv. Compos. Hybrid Mater. 5(3), 2317–2327 (2022). https://doi.org/10.1007/s42114-022-00416-3
- D.Q. Zhang, H.B. Zhang, J.Y. Cheng, H. Raza, T.T. Liu et al., Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 8(17), 5923–5933 (2020). https://doi.org/10.1039/D0TC00763C
- D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- D.Q. Zhang, T.T. Liu, J.C. Shu, S. Liang, X.X. Wang et al., Self-assembly construction of WS2 –rGO architecture with green EMI shielding. ACS Appl. Mater. Interfaces 11(30), 26807–26816 (2019). https://doi.org/10.1021/acsami.9b06509
- Y. Li, Y.H. Jin, J.Y. Cheng, Y.R. Fu, J. Wang et al., Achieving superior electromagnetic wave absorbers with 2D/3D heterogeneous structures through the confinement effect of reduced graphene oxides. Carbon 213, 118245 (2023). https://doi.org/10.1016/j.carbon.2023.118245
- M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
- J. Li, D. Zhou, P.J. Wang, C. Du, W.F. Liu et al., Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558
- M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 3(2), 90–204 (2018). https://doi.org/10.1039/C7NH00137A
- M. Wu, H.C. Wang, X.H. Liang, D.H. Wang, Efficient and tunable microwave absorbers of the flower-like 1T/2H-MoS2 with hollow nanostructures. J. Alloys Compd. 933, 167763 (2023). https://doi.org/10.1016/j.jallcom.2022.167763
- H.B. Zhang, J.Y. Cheng, H.H. Wang, Z.H. Huang, Q.B. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6 48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- M. Wu, Y. Zheng, X.H. Liang, Q.Q. Huang, X.Y. Xu et al., MoS2 nanostructures with the 1T phase for electromagnetic wave absorption. ACS Appl. Nano Mater. 4(10), 11042–11051 (2021). https://doi.org/10.1021/acsanm.1c02488
- J. Yan, Y. Huang, X.Y. Zhang, X. Gong, C. Chen et al., MoS2-decorated/integrated carbon fiber: phase engineering well-regulated microwave absorber. Nano-Micro Lett. 13(1), 114 (2021). https://doi.org/10.1007/s40820-021-00646-y
- M.Q. Ning, P.H. Jiang, W. Ding, X.B. Zhu, G.G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229
- C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98-OP120 (2012). https://doi.org/10.1002/adma.201200674
- H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7(8), 1801318 (2019). https://doi.org/10.1002/adom.201801318
- X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13(1), 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
- W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764
- W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61(2), 201–204 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.048
- J. Qiao, X. Zhang, C. Liu, L.F. Lyu, Z. Wang et al., Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. Part B Eng. 200, 108343 (2020). https://doi.org/10.1016/j.compositesb.2020.108343
- M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanops. Appl. Phys. Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248
- D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2702–2712 (2015). https://doi.org/10.1039/C5CS00151J
- S.M. Wang, J.Z. Zhang, D.W. He, Y. Zhang, L.P. Wang et al., Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature. J. Phys. Chem. Solids 75(1), 100–104 (2014). https://doi.org/10.1016/j.jpcs.2013.09.001
- J.C. Wildervanck, F. Jellinek, Preparation and crystallinity of molybdenum and tungsten sulfides. Z. Für. Anorg. Allg. Chem. 328(5–6), 309–318 (1964). https://doi.org/10.1002/zaac.19643280514
- G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M.W. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). https://doi.org/10.1021/nn302422x
- S.J. Sandoval, D. Yang, R.F. Frindt, J.C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B 44(8), 3955 (1991). https://doi.org/10.1103/PhysRevB.44.3955
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
- A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach et al., New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115(50), 24586–24591 (2011). https://doi.org/10.1021/jp2076325
- X. Sun, J. Dai, Y. Guo, C. Wu, F. Hu et al., Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 6(14), 8359–8367 (2014). https://doi.org/10.1039/C4NR01894J
- C. Liu, R.F. Frindt, Anisotropic optical-absorption studies of NbS2 single-layer suspensions aligned in a magnetic field. Phys. Rev. B 31(6), 4086 (1985). https://doi.org/10.1103/PhysRevB.31.4086
- X. Wang, J. Lin, Y. Zhu, C. Luo, K. Suenaga et al., Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 9(43), 16607–16611 (2017). https://doi.org/10.1039/C7NR05572B
- A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011). https://doi.org/10.1103/PhysRevB.83.245213
- W. Ge, K. Kawahara, M. Tsuji, H. Ago, Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 5(13), 5773–5778 (2013). https://doi.org/10.1039/C3NR00723E
- Y.G. Zhou, Z.G. Wang, P. Yang, X.T. Zu, L. Yang et al., Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 6(11), 9727–9736 (2012). https://doi.org/10.1021/nn303198w
- J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969). https://doi.org/10.1080/00018736900101307
- Y.Y. Liu, J.J. Wu, K.P. Hackenberg, J. Zhang, Y.M. Wang et al., Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2(9), 1–7 (2017). https://doi.org/10.1038/nenergy.2017.127
- J.U. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X.J. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18(12), 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
- P. Gnanasekar, D. Periyanagounder, P. Varadhan, J.H. He, J. Kulandaivel, Highly efficient and stable photoelectrochemical hydrogen evolution with 2D-NbS2/Si nanowire heterojunction. ACS Appl. Mater. Interfaces 11(47), 44179–44185 (2019). https://doi.org/10.1021/acsami.9b14713
- P. Zhang, C. Bian, J.F. Ye, N.Y. Cheng, X.G. Wang et al., Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors. Sci. China Mater. 63(8), 1548–1559 (2020). https://doi.org/10.1007/s40843-020-1355-2
- R. Bianco, I. Errea, L. Monacelli, M. Calandra, F. Mauri, Quantum enhancement of charge density wave in NbS2 in the two-dimensional limit. Nano Lett. 19(5), 3098–3103 (2019). https://doi.org/10.1021/acs.nanolett.9b00504
- H. Wang, J.C. Si, T.Y. Zhang, Y. Li, B. Yang et al., Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B Environ. 270, 118892 (2020). https://doi.org/10.1016/j.apcatb.2020.118892
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J.H. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- H.P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser et al., Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109(3), 035503 (2012). https://doi.org/10.1103/PhysRevLett.109.035503
- H.Y. Nan, Z.L. Wang, W.H. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
- S. Kc, R.C. Longo, R.M. Wallace, K.J. Cho, Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 117(13), 135301 (2015). https://doi.org/10.1063/1.4916536
- H.Y. Nan, Z.T. Wu, J. Jiang, A. Zafar, Y.M. You et al., Improving the electrical performance of MoS2 by mild oxygen plasma treatment. J. Phys. Appl. Phys. 50(15), 154001 (2017). https://doi.org/10.1088/1361-6463/aa5c6a
- A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554–561 (2013). https://doi.org/10.1038/nmat3633
- Z.H. Zhang, X.L. Zou, V.H. Crespi, B.I. Yakobson, Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7(12), 10475–10481 (2013). https://doi.org/10.1021/nn4052887
- W. Zhou, X.L. Zou, S. Najmaei, Z. Liu, Y.M. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
- S. Najmaei, M. Amani, M.L. Chin, Z. Liu, A.G. Birdwell et al., Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8(8), 7930–7937 (2014). https://doi.org/10.1021/nn501701a
- V.P. Pham, G.Y. Yeom, Recent advances in doping of molybdenum disulfide: industrial applications and future prospects. Adv. Mater. 28(41), 9024–9059 (2016). https://doi.org/10.1002/adma.201506402
- Z.M. Wei, B. Li, C.X. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2(11), 1800094 (2018). https://doi.org/10.1002/smtd.201800094
- D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, J.X. Chai, T.T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanops. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
- J. Yin, J. Jin, H.H. Lin, Z.Y. Yin, J.Y. Li et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7(10), 1903070 (2020). https://doi.org/10.1002/advs.201903070
- Z.X. Hu, X. Kong, J. Qiao, B. Normand, W. Ji, Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8(5), 2740–2750 (2016). https://doi.org/10.1039/C5NR06293D
- Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020). https://doi.org/10.1038/s41467-16266-w
- M. Velicky, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12(10), 10463–10472 (2018). https://doi.org/10.1021/acsnano.8b06101
- M. Velický, G.E. Donnelly, W.R. Hendren, W.J.I. DeBenedetti, M.A. Hines et al., The intricate love affairs between mos 2 and metallic substrates. Adv. Mater. Interfaces 7(23), 2001324 (2020). https://doi.org/10.1002/admi.202001324
- A.C. Johnston, S.I. Khondaker, Can metals other than au be used for large area exfoliation of MoS2 monolayers? Adv. Mater. Interfaces 9(13), 2200106 (2022). https://doi.org/10.1002/admi.202200106
- Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee et al., Approaching the schottky–mott limit in van der waals metal–semiconductor junctions. Nature 557(7707), 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
- X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55(31), 8816–8838 (2016). https://doi.org/10.1002/anie.201509933
- A. Ambrosi, Z. Sofer, M. Pumera, 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51(40), 8450–8453 (2015). https://doi.org/10.1039/C5CC00803D
- M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li et al., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
- D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13(12), 6222–6227 (2013). https://doi.org/10.1021/nl403661s
- Y.A. Eshete, N. Ling, S. Kim, D. Kim, G. Hwang et al., Vertical heterophase for electrical, electrochemical, and mechanical manipulations of layered MoTe2. Adv. Funct. Mater. 29(40), 1904504 (2019). https://doi.org/10.1002/adfm.201904504
- A.Y.S. Eng, A. Ambrosi, Z. Sofer, P. Simek, M. Pumera, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8(12), 12185–12198 (2014). https://doi.org/10.1021/nn503832j
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 123(47), 11289–11293 (2011). https://doi.org/10.1002/anie.201106004
- L. Wang, Z. Xu, W. Wang, X. Bai, Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136(18), 6693–6697 (2014). https://doi.org/10.1021/ja501686w
- H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. 110(49), 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110
- Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu et al., Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138(25), 7965–7972 (2016). https://doi.org/10.1021/jacs.6b03714
- Y. Yin, J. Han, X. Zhang, Y. Zhang, J. Zhou et al., Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Adv. 4(62), 32690–32697 (2014). https://doi.org/10.1039/C4RA06036A
- Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/nmat4091
- X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary : hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26(14), 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
- W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
- L. Fu, Y. Sun, N. Wu, R.G. Mendes, L. Chen et al., Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10(2), 2063–2070 (2016). https://doi.org/10.1021/acsnano.5b06254
- M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang et al., An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6(1), 5982 (2015). https://doi.org/10.1038/ncomms6982
- M.R. Gao, M.K. Chan, Y. Sun, Edge-terminated molybdenum disulfide with a 94-å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 6(1), 7493 (2015). https://doi.org/10.1038/ncomms8493
- S. Xu, Z. Lei, P. Wu, Facile preparation of 3D MoS2/MoSe2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3(31), 16337–16347 (2015). https://doi.org/10.1039/C5TA02637G
- H. Lin, Q. Zhu, D. Shu, D. Lin, J. Xu et al., Growth of environmentally stable transition metal selenide films. Nat. Mater. 18(6), 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8
- W. Zhang, X. Zhang, H. Wu, H. Yan, S. Qi, Impact of morphology and dielectric property on the microwave absorbing performance of MoS2 -based materials. J. Alloys Compd. 751, 34–42 (2018). https://doi.org/10.1016/j.jallcom.2018.04.111
- Z. Feng, P. Yang, G. Wen, H. Li, Y. Liu et al., One-step synthesis of MoS2 nanops with different morphologies for electromagnetic wave absorption. Appl. Surf. Sci. 502, 144129 (2020). https://doi.org/10.1016/j.apsusc.2019.144129
- F. Wu, Y.L. Xia, M.X. Sun, A.M. Xie, Two-dimensional (2D) few-layers WS2 nanosheets: an ideal nanomaterials with tunable electromagnetic absorption performance. Appl. Phys. Lett. 113(5), 052906 (2018). https://doi.org/10.1063/1.5040274
- M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7(38), 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
- Y. Xiao, M.Y. Zhou, J.L. Liu, J. Xu, L. Fu, Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62(6), 759–775 (2019). https://doi.org/10.1007/s40843-018-9398-1
- H.H. Wang, H.B. Zhang, J.Y. Cheng, T.T. Liu, D.Q. Zhang et al., Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. J. Materiomics 9(3), 492–501 (2023). https://doi.org/10.1016/j.jmat.2022.12.003
- Z.G. Gao, Z.H. Ma, D. Lan, Z.H. Zhao, L.M. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- M.Q. Ning, Q.K. Man, G.G. Tan, Z.K. Lei, J.B. Li et al., Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 12(18), 20785–20796 (2020). https://doi.org/10.1021/acsami.9b20433
- L.L. Xu, J.Q. Tao, X.F. Zhang, Z.J. Yao, B. Wei et al., Hollow C@MoS2 nanospheres for microwave absorption. ACS Appl. Nano Mater. 4(10), 11199–11209 (2021). https://doi.org/10.1021/acsanm.1c02715
- F. Pan, Z.C. Liu, B.W. Deng, Y.Y. Dong, X.J. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13(1), 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- C.X. Hou, J.Y. Cheng, H.B. Zhang, Z.H. Lu, X.Y. Yang et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 577, 151939 (2022). https://doi.org/10.1016/j.apsusc.2021.151939
- X.X. Wang, W.L. Zhang, X.Q. Ji, B.Q. Zhang, M.X. Yu et al., 2D MoS2/graphene composites with excellent full Ku band microwave absorption. RSC Adv. 6(108), 106187–106193 (2016). https://doi.org/10.1039/C6RA22817H
- D.Q. Zhang, Y.X. Jia, J.Y. Cheng, S.M. Chen, J.X. Chai et al., High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloys Compd. 758, 62–71 (2018). https://doi.org/10.1016/j.jallcom.2018.05.130
- Z.C. Liu, F. Pan, B.W. Deng, Z. Xiang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.carbon.2020.12.019
- D.Q. Zhang, J.X. Chai, J.Y. Cheng, Y.X. Jia, X.Y. Yang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
- M.Q. Ning, B.Y. Kuang, Z.L. Hou, L. Wang, J.B. Li et al., Layer by layer 2D MoS2/rGO hybrids: an optimized microwave absorber for high-efficient microwave absorption. Appl. Surf. Sci. 470, 899–907 (2019). https://doi.org/10.1016/j.apsusc.2018.11.195
- M.X. Piao, Z.N. Yang, F. Liu, J. Chu, X. Wang et al., Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber. J. Alloys Compd. 815, 152335 (2020). https://doi.org/10.1016/j.jallcom.2019.152335
- D.Q. Zhang, H.H. Wang, J.Y. Cheng, C.Y. Han, X.Y. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li et al., Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J. Alloys Compd. 869, 159365 (2021). https://doi.org/10.1016/j.jallcom.2021.159365
- Z.H. Liu, Y.H. Cui, Q. Li, Q.Y. Zhang, B.L. Zhang, Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 607, 633–644 (2022). https://doi.org/10.1016/j.jcis.2021.09.009
- H.D. Ren, S. Wang, X.M. Zhang, Y. Liu, L.B. Kong et al., Broadband electromagnetic absorption of Ti3C2Tx MXene/WS2 composite via constructing two-dimensional heterostructure. J. Am. Ceram. Soc. 104(11), 5537–5546 (2021). https://doi.org/10.1111/jace.17959
- W.L. Zhang, D.G. Jiang, X.X. Wang, B.N. Hao, Y.D. Liu et al., Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis. J. Phys. Chem. C 121(9), 4989–4998 (2017). https://doi.org/10.1021/acs.jpcc.6b11656
- J.L. Ma, H.D. Ren, Z.Y. Liu, J. Zhou, Y.Q. Wang et al., Embedded MoS2-pani nanocomposites with advanced microwave absorption performance. Compos. Sci. Technol. 198, 108239 (2020). https://doi.org/10.1016/j.compscitech.2020.108239
- L.X. Gai, Y.M. Zhao, G.L. Song, Q.D. An, Z. Xiao et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Part Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965
- Z.L. Zhang, Z.L. Wang, L.Y. Heng, S. Wang, X.Q. Chen et al., Improving the electromagnetic wave absorption properties of the layered MoS2 by cladding with Ni nanops. J. Phys. Soc. Jpn. 87(5), 054402 (2018). https://doi.org/10.7566/JPSJ.87.054402
- J.J. Pan, X. Sun, T. Wang, Z.T. Zhu, Y.P. He et al., Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl. Surf. Sci. 457, 271–279 (2018). https://doi.org/10.1016/j.apsusc.2018.06.263
- C.H. Zhou, C. Wu, M. Yan, Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth. ACS Appl. Nano Mater. 1(9), 5179–5187 (2018). https://doi.org/10.1021/acsanm.8b01203
- J.L. Liu, H.S. Liang, H.J. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part Appl. Sci. Manuf. 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760
- J.X. Chai, J.Y. Cheng, D.Q. Zhang, Y.F. Xiong, X.Y. Yang et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanops functionalized MoS2 nanosheets. J. Alloys Compd. 829, 154531 (2020). https://doi.org/10.1016/j.jallcom.2020.154531
- D.Q. Zhang, T.T. Liu, M. Zhang, H.B. Zhang, X.Y. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
- Z.H. Huang, J.Y. Cheng, H.B. Zhang, Y.F. Xiong, Z.X. Zhou et al., High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from s-band to Ku-band. J. Mater. Sci. Technol. 107, 155–164 (2022). https://doi.org/10.1016/j.jmst.2021.08.005
- J.J. Dai, H.B. Yang, B. Wen, H.W. Zhou, L. Wang et al., Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Appl. Surf. Sci. 479, 1226–1235 (2019). https://doi.org/10.1016/j.apsusc.2019.02.049
- M.Q. Wang, Y. Lin, H.B. Yang, Y. Qiu, S. Wang, A novel plate-like BaFe12O19@MoS2 core-shell structure composite with excellent microwave absorbing properties. J. Alloys Compd. 817, 153265 (2020). https://doi.org/10.1016/j.jallcom.2019.153265
- L.L. Long, E. Yang, X.S. Qi, R. Xie, Z.C. Bai et al., Core@shell structured flower-like Co0.6Fe2.4O4@MoS2 nanocomposites: a strong absorption and broadband electromagnetic wave absorber. J. Mater. Chem. C 7, 8975–8981 (2019). https://doi.org/10.1039/C9TC02140J
- X.Y. Wang, T. Zhu, S.C. Chang, Y.K. Lu, W.B. Mi et al., 3D nest-like architecture of core–shell CoFe2O4 @1T/2T-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
- Y. Wang, X.C. Di, Y.Q. Fu, X.M. Wu, J.T. Cao, Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci. 587, 561–573 (2021). https://doi.org/10.1016/j.jcis.2020.11.013
- J.K. Liu, Z.R. Jia, W.H. Zhou, X.H. Liu, C.H. Zhang et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 429, 132253 (2022). https://doi.org/10.1016/j.cej.2021.132253
- X. Ding, Y. Huang, S.P. Li, N. Zhang, J. Wang, FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. J. Alloys Compd. 689, 208–217 (2016). https://doi.org/10.1016/j.jallcom.2016.07.312
- J. Li, D. Zhou, M.S. Fu, P.J. Wang, J.Z. Su et al., Coral-like polypyrrole/LiFe5O8/MoS2 nanocomposites for high-efficiency microwave absorbers. ACS Appl. Nano Mater. 5(6), 7944–7953 (2022). https://doi.org/10.1021/acsanm.2c01022
- R.G. Yu, Y.H. Xia, X.Y. Pei, D. Liu, S. Liu et al., Micro-flower like core-shell structured ZnCo@C@1T-2H-MoS2 composites for broadband electromagnetic wave absorption and photothermal performance. J. Colloid Interface Sci. 622, 261–271 (2022). https://doi.org/10.1016/j.jcis.2022.01.179
- Y.F. Zhang, Y.L. Li, M.M. Wei, D.T. Yang, Q.Y. Zhang et al., Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: preparation and microwave absorbing properties. J. Mater. Sci. Technol. 128, 148–159 (2022). https://doi.org/10.1016/j.jmst.2022.04.026
- X.L. Chen, T. Shi, G.L. Wu, Y. Lu, Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid Interface Sci. 572, 227–235 (2020). https://doi.org/10.1016/j.jcis.2020.03.089
- W. Uddin, S.U. Rehman, M.A. Aslam, S.U. Rehman, M.Z. Wu et al., Enhanced microwave absorption from the magnetic-dielectric interface: a hybrid rGO@Ni-doped-MoS2. Mater. Res. Bull. 130, 110943 (2020). https://doi.org/10.1016/j.materresbull.2020.110943
- Y. Wang, Y.B. Chen, X.M. Wu, W.Z. Zhang, C.Y. Luo et al., Fabrication of MoS2-graphene modified with Fe3O4 ps and its enhanced microwave absorption performance. Adv. Powder Technol. 29(3), 744–750 (2018). https://doi.org/10.1016/j.apt.2017.12.016
- M.Q. Ning, Z.K. Lei, G.G. Tan, Q.K. Man, J.B. Li et al., Dumbbell-like Fe3O4@n-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 13(39), 47061–47071 (2021). https://doi.org/10.1021/acsami.1c13852
- E. Yang, X.S. Qi, R. Xie, Z.C. Bai, Y. Jiang et al., Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018). https://doi.org/10.1016/j.apsusc.2018.02.175
- W.D. Zhang, X. Zhang, Y. Zheng, C. Guo, M.Y. Yang et al., Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 1(10), 5865–5875 (2018). https://doi.org/10.1021/acsanm.8b01452
- X. Sun, Y.H. Pu, F. Wu, J.Z. He, G. Deng et al., 0D–1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 423, 130132 (2021). https://doi.org/10.1016/j.cej.2021.130132
- C.Y. Wang, Y.Y. Ma, Z.H. Qin, J.J. Wang, B. Zhong, Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance. Appl. Surf. Sci. 569, 150812 (2021). https://doi.org/10.1016/j.apsusc.2021.150812
- M. Chang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B Eng. 225, 109306 (2021). https://doi.org/10.1016/j.compositesb.2021.109306
- J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- F. Liu, W.J. Wu, Y.S. Bai, S.H. Chae, Q.Y. Li et al., Disassembling 2D van der waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367(6480), 903–906 (2020). https://doi.org/10.1126/science.aba1416
References
V. Hoang Huy, Y. Ahn, J. Hur, Recent advances in transition metal dichalcogenide cathode materials for aqueous rechargeable multivalent metal-ion batteries. Nanomaterials 11(6), 1517 (2021). https://doi.org/10.3390/nano11061517
J.C. Shu, Y.L. Zhang, Y. Qin, M.S. Cao, Oxidative molecular layer deposition tailoring eco-mimetic nanoarchitecture to manipulate electromagnetic attenuation and self-powered energy conversion. Nano-Micro Lett. 15(1), 142 (2023). https://doi.org/10.1007/s40820-023-01112-7
S.Q. Zhu, J.C. Shu, M.S. Cao, Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14(19), 7322–7331 (2022). https://doi.org/10.1039/D2NR01024K
J.C. Shu, M.S. Cao, Y.L. Zhang, W.Q. Cao, Heterodimensional structure switching multispectral stealth and multimedia interaction devices. Adv. Sci. 10(26), 2302361 (2023). https://doi.org/10.1002/advs.202302361
J.Y. Cheng, H.B. Zhang, M.Q. Ning, H. Raza, D.Q. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
J.Y. Cheng, H.B. Zhang, Y.F. Xiong, L.F. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017
Z.X. Zhou, X.Y. Yang, D.Q. Zhang, H.B. Zhang, J.Y. Cheng et al., Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Adv. Compos. Hybrid Mater. 5(3), 2317–2327 (2022). https://doi.org/10.1007/s42114-022-00416-3
D.Q. Zhang, H.B. Zhang, J.Y. Cheng, H. Raza, T.T. Liu et al., Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 8(17), 5923–5933 (2020). https://doi.org/10.1039/D0TC00763C
D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
D.Q. Zhang, T.T. Liu, J.C. Shu, S. Liang, X.X. Wang et al., Self-assembly construction of WS2 –rGO architecture with green EMI shielding. ACS Appl. Mater. Interfaces 11(30), 26807–26816 (2019). https://doi.org/10.1021/acsami.9b06509
Y. Li, Y.H. Jin, J.Y. Cheng, Y.R. Fu, J. Wang et al., Achieving superior electromagnetic wave absorbers with 2D/3D heterogeneous structures through the confinement effect of reduced graphene oxides. Carbon 213, 118245 (2023). https://doi.org/10.1016/j.carbon.2023.118245
M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
J. Li, D. Zhou, P.J. Wang, C. Du, W.F. Liu et al., Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558
M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 3(2), 90–204 (2018). https://doi.org/10.1039/C7NH00137A
M. Wu, H.C. Wang, X.H. Liang, D.H. Wang, Efficient and tunable microwave absorbers of the flower-like 1T/2H-MoS2 with hollow nanostructures. J. Alloys Compd. 933, 167763 (2023). https://doi.org/10.1016/j.jallcom.2022.167763
H.B. Zhang, J.Y. Cheng, H.H. Wang, Z.H. Huang, Q.B. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6 48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
M. Wu, Y. Zheng, X.H. Liang, Q.Q. Huang, X.Y. Xu et al., MoS2 nanostructures with the 1T phase for electromagnetic wave absorption. ACS Appl. Nano Mater. 4(10), 11042–11051 (2021). https://doi.org/10.1021/acsanm.1c02488
J. Yan, Y. Huang, X.Y. Zhang, X. Gong, C. Chen et al., MoS2-decorated/integrated carbon fiber: phase engineering well-regulated microwave absorber. Nano-Micro Lett. 13(1), 114 (2021). https://doi.org/10.1007/s40820-021-00646-y
M.Q. Ning, P.H. Jiang, W. Ding, X.B. Zhu, G.G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229
C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98-OP120 (2012). https://doi.org/10.1002/adma.201200674
H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7(8), 1801318 (2019). https://doi.org/10.1002/adom.201801318
X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13(1), 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764
W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61(2), 201–204 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.048
J. Qiao, X. Zhang, C. Liu, L.F. Lyu, Z. Wang et al., Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. Part B Eng. 200, 108343 (2020). https://doi.org/10.1016/j.compositesb.2020.108343
M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanops. Appl. Phys. Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248
D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2702–2712 (2015). https://doi.org/10.1039/C5CS00151J
S.M. Wang, J.Z. Zhang, D.W. He, Y. Zhang, L.P. Wang et al., Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature. J. Phys. Chem. Solids 75(1), 100–104 (2014). https://doi.org/10.1016/j.jpcs.2013.09.001
J.C. Wildervanck, F. Jellinek, Preparation and crystallinity of molybdenum and tungsten sulfides. Z. Für. Anorg. Allg. Chem. 328(5–6), 309–318 (1964). https://doi.org/10.1002/zaac.19643280514
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M.W. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). https://doi.org/10.1021/nn302422x
S.J. Sandoval, D. Yang, R.F. Frindt, J.C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B 44(8), 3955 (1991). https://doi.org/10.1103/PhysRevB.44.3955
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach et al., New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115(50), 24586–24591 (2011). https://doi.org/10.1021/jp2076325
X. Sun, J. Dai, Y. Guo, C. Wu, F. Hu et al., Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 6(14), 8359–8367 (2014). https://doi.org/10.1039/C4NR01894J
C. Liu, R.F. Frindt, Anisotropic optical-absorption studies of NbS2 single-layer suspensions aligned in a magnetic field. Phys. Rev. B 31(6), 4086 (1985). https://doi.org/10.1103/PhysRevB.31.4086
X. Wang, J. Lin, Y. Zhu, C. Luo, K. Suenaga et al., Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 9(43), 16607–16611 (2017). https://doi.org/10.1039/C7NR05572B
A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011). https://doi.org/10.1103/PhysRevB.83.245213
W. Ge, K. Kawahara, M. Tsuji, H. Ago, Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 5(13), 5773–5778 (2013). https://doi.org/10.1039/C3NR00723E
Y.G. Zhou, Z.G. Wang, P. Yang, X.T. Zu, L. Yang et al., Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 6(11), 9727–9736 (2012). https://doi.org/10.1021/nn303198w
J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969). https://doi.org/10.1080/00018736900101307
Y.Y. Liu, J.J. Wu, K.P. Hackenberg, J. Zhang, Y.M. Wang et al., Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2(9), 1–7 (2017). https://doi.org/10.1038/nenergy.2017.127
J.U. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X.J. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18(12), 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
P. Gnanasekar, D. Periyanagounder, P. Varadhan, J.H. He, J. Kulandaivel, Highly efficient and stable photoelectrochemical hydrogen evolution with 2D-NbS2/Si nanowire heterojunction. ACS Appl. Mater. Interfaces 11(47), 44179–44185 (2019). https://doi.org/10.1021/acsami.9b14713
P. Zhang, C. Bian, J.F. Ye, N.Y. Cheng, X.G. Wang et al., Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors. Sci. China Mater. 63(8), 1548–1559 (2020). https://doi.org/10.1007/s40843-020-1355-2
R. Bianco, I. Errea, L. Monacelli, M. Calandra, F. Mauri, Quantum enhancement of charge density wave in NbS2 in the two-dimensional limit. Nano Lett. 19(5), 3098–3103 (2019). https://doi.org/10.1021/acs.nanolett.9b00504
H. Wang, J.C. Si, T.Y. Zhang, Y. Li, B. Yang et al., Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B Environ. 270, 118892 (2020). https://doi.org/10.1016/j.apcatb.2020.118892
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J.H. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
H.P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser et al., Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109(3), 035503 (2012). https://doi.org/10.1103/PhysRevLett.109.035503
H.Y. Nan, Z.L. Wang, W.H. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
S. Kc, R.C. Longo, R.M. Wallace, K.J. Cho, Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 117(13), 135301 (2015). https://doi.org/10.1063/1.4916536
H.Y. Nan, Z.T. Wu, J. Jiang, A. Zafar, Y.M. You et al., Improving the electrical performance of MoS2 by mild oxygen plasma treatment. J. Phys. Appl. Phys. 50(15), 154001 (2017). https://doi.org/10.1088/1361-6463/aa5c6a
A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554–561 (2013). https://doi.org/10.1038/nmat3633
Z.H. Zhang, X.L. Zou, V.H. Crespi, B.I. Yakobson, Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7(12), 10475–10481 (2013). https://doi.org/10.1021/nn4052887
W. Zhou, X.L. Zou, S. Najmaei, Z. Liu, Y.M. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
S. Najmaei, M. Amani, M.L. Chin, Z. Liu, A.G. Birdwell et al., Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8(8), 7930–7937 (2014). https://doi.org/10.1021/nn501701a
V.P. Pham, G.Y. Yeom, Recent advances in doping of molybdenum disulfide: industrial applications and future prospects. Adv. Mater. 28(41), 9024–9059 (2016). https://doi.org/10.1002/adma.201506402
Z.M. Wei, B. Li, C.X. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2(11), 1800094 (2018). https://doi.org/10.1002/smtd.201800094
D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, J.X. Chai, T.T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanops. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
J. Yin, J. Jin, H.H. Lin, Z.Y. Yin, J.Y. Li et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7(10), 1903070 (2020). https://doi.org/10.1002/advs.201903070
Z.X. Hu, X. Kong, J. Qiao, B. Normand, W. Ji, Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8(5), 2740–2750 (2016). https://doi.org/10.1039/C5NR06293D
Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020). https://doi.org/10.1038/s41467-16266-w
M. Velicky, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12(10), 10463–10472 (2018). https://doi.org/10.1021/acsnano.8b06101
M. Velický, G.E. Donnelly, W.R. Hendren, W.J.I. DeBenedetti, M.A. Hines et al., The intricate love affairs between mos 2 and metallic substrates. Adv. Mater. Interfaces 7(23), 2001324 (2020). https://doi.org/10.1002/admi.202001324
A.C. Johnston, S.I. Khondaker, Can metals other than au be used for large area exfoliation of MoS2 monolayers? Adv. Mater. Interfaces 9(13), 2200106 (2022). https://doi.org/10.1002/admi.202200106
Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee et al., Approaching the schottky–mott limit in van der waals metal–semiconductor junctions. Nature 557(7707), 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55(31), 8816–8838 (2016). https://doi.org/10.1002/anie.201509933
A. Ambrosi, Z. Sofer, M. Pumera, 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51(40), 8450–8453 (2015). https://doi.org/10.1039/C5CC00803D
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li et al., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13(12), 6222–6227 (2013). https://doi.org/10.1021/nl403661s
Y.A. Eshete, N. Ling, S. Kim, D. Kim, G. Hwang et al., Vertical heterophase for electrical, electrochemical, and mechanical manipulations of layered MoTe2. Adv. Funct. Mater. 29(40), 1904504 (2019). https://doi.org/10.1002/adfm.201904504
A.Y.S. Eng, A. Ambrosi, Z. Sofer, P. Simek, M. Pumera, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8(12), 12185–12198 (2014). https://doi.org/10.1021/nn503832j
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 123(47), 11289–11293 (2011). https://doi.org/10.1002/anie.201106004
L. Wang, Z. Xu, W. Wang, X. Bai, Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136(18), 6693–6697 (2014). https://doi.org/10.1021/ja501686w
H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. 110(49), 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110
Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu et al., Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138(25), 7965–7972 (2016). https://doi.org/10.1021/jacs.6b03714
Y. Yin, J. Han, X. Zhang, Y. Zhang, J. Zhou et al., Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Adv. 4(62), 32690–32697 (2014). https://doi.org/10.1039/C4RA06036A
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/nmat4091
X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary : hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26(14), 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
L. Fu, Y. Sun, N. Wu, R.G. Mendes, L. Chen et al., Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10(2), 2063–2070 (2016). https://doi.org/10.1021/acsnano.5b06254
M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang et al., An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6(1), 5982 (2015). https://doi.org/10.1038/ncomms6982
M.R. Gao, M.K. Chan, Y. Sun, Edge-terminated molybdenum disulfide with a 94-å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 6(1), 7493 (2015). https://doi.org/10.1038/ncomms8493
S. Xu, Z. Lei, P. Wu, Facile preparation of 3D MoS2/MoSe2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3(31), 16337–16347 (2015). https://doi.org/10.1039/C5TA02637G
H. Lin, Q. Zhu, D. Shu, D. Lin, J. Xu et al., Growth of environmentally stable transition metal selenide films. Nat. Mater. 18(6), 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8
W. Zhang, X. Zhang, H. Wu, H. Yan, S. Qi, Impact of morphology and dielectric property on the microwave absorbing performance of MoS2 -based materials. J. Alloys Compd. 751, 34–42 (2018). https://doi.org/10.1016/j.jallcom.2018.04.111
Z. Feng, P. Yang, G. Wen, H. Li, Y. Liu et al., One-step synthesis of MoS2 nanops with different morphologies for electromagnetic wave absorption. Appl. Surf. Sci. 502, 144129 (2020). https://doi.org/10.1016/j.apsusc.2019.144129
F. Wu, Y.L. Xia, M.X. Sun, A.M. Xie, Two-dimensional (2D) few-layers WS2 nanosheets: an ideal nanomaterials with tunable electromagnetic absorption performance. Appl. Phys. Lett. 113(5), 052906 (2018). https://doi.org/10.1063/1.5040274
M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7(38), 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J
Y. Xiao, M.Y. Zhou, J.L. Liu, J. Xu, L. Fu, Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62(6), 759–775 (2019). https://doi.org/10.1007/s40843-018-9398-1
H.H. Wang, H.B. Zhang, J.Y. Cheng, T.T. Liu, D.Q. Zhang et al., Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. J. Materiomics 9(3), 492–501 (2023). https://doi.org/10.1016/j.jmat.2022.12.003
Z.G. Gao, Z.H. Ma, D. Lan, Z.H. Zhao, L.M. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
M.Q. Ning, Q.K. Man, G.G. Tan, Z.K. Lei, J.B. Li et al., Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 12(18), 20785–20796 (2020). https://doi.org/10.1021/acsami.9b20433
L.L. Xu, J.Q. Tao, X.F. Zhang, Z.J. Yao, B. Wei et al., Hollow C@MoS2 nanospheres for microwave absorption. ACS Appl. Nano Mater. 4(10), 11199–11209 (2021). https://doi.org/10.1021/acsanm.1c02715
F. Pan, Z.C. Liu, B.W. Deng, Y.Y. Dong, X.J. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13(1), 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
C.X. Hou, J.Y. Cheng, H.B. Zhang, Z.H. Lu, X.Y. Yang et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 577, 151939 (2022). https://doi.org/10.1016/j.apsusc.2021.151939
X.X. Wang, W.L. Zhang, X.Q. Ji, B.Q. Zhang, M.X. Yu et al., 2D MoS2/graphene composites with excellent full Ku band microwave absorption. RSC Adv. 6(108), 106187–106193 (2016). https://doi.org/10.1039/C6RA22817H
D.Q. Zhang, Y.X. Jia, J.Y. Cheng, S.M. Chen, J.X. Chai et al., High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloys Compd. 758, 62–71 (2018). https://doi.org/10.1016/j.jallcom.2018.05.130
Z.C. Liu, F. Pan, B.W. Deng, Z. Xiang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.carbon.2020.12.019
D.Q. Zhang, J.X. Chai, J.Y. Cheng, Y.X. Jia, X.Y. Yang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
M.Q. Ning, B.Y. Kuang, Z.L. Hou, L. Wang, J.B. Li et al., Layer by layer 2D MoS2/rGO hybrids: an optimized microwave absorber for high-efficient microwave absorption. Appl. Surf. Sci. 470, 899–907 (2019). https://doi.org/10.1016/j.apsusc.2018.11.195
M.X. Piao, Z.N. Yang, F. Liu, J. Chu, X. Wang et al., Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber. J. Alloys Compd. 815, 152335 (2020). https://doi.org/10.1016/j.jallcom.2019.152335
D.Q. Zhang, H.H. Wang, J.Y. Cheng, C.Y. Han, X.Y. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li et al., Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J. Alloys Compd. 869, 159365 (2021). https://doi.org/10.1016/j.jallcom.2021.159365
Z.H. Liu, Y.H. Cui, Q. Li, Q.Y. Zhang, B.L. Zhang, Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 607, 633–644 (2022). https://doi.org/10.1016/j.jcis.2021.09.009
H.D. Ren, S. Wang, X.M. Zhang, Y. Liu, L.B. Kong et al., Broadband electromagnetic absorption of Ti3C2Tx MXene/WS2 composite via constructing two-dimensional heterostructure. J. Am. Ceram. Soc. 104(11), 5537–5546 (2021). https://doi.org/10.1111/jace.17959
W.L. Zhang, D.G. Jiang, X.X. Wang, B.N. Hao, Y.D. Liu et al., Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis. J. Phys. Chem. C 121(9), 4989–4998 (2017). https://doi.org/10.1021/acs.jpcc.6b11656
J.L. Ma, H.D. Ren, Z.Y. Liu, J. Zhou, Y.Q. Wang et al., Embedded MoS2-pani nanocomposites with advanced microwave absorption performance. Compos. Sci. Technol. 198, 108239 (2020). https://doi.org/10.1016/j.compscitech.2020.108239
L.X. Gai, Y.M. Zhao, G.L. Song, Q.D. An, Z. Xiao et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Part Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965
Z.L. Zhang, Z.L. Wang, L.Y. Heng, S. Wang, X.Q. Chen et al., Improving the electromagnetic wave absorption properties of the layered MoS2 by cladding with Ni nanops. J. Phys. Soc. Jpn. 87(5), 054402 (2018). https://doi.org/10.7566/JPSJ.87.054402
J.J. Pan, X. Sun, T. Wang, Z.T. Zhu, Y.P. He et al., Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl. Surf. Sci. 457, 271–279 (2018). https://doi.org/10.1016/j.apsusc.2018.06.263
C.H. Zhou, C. Wu, M. Yan, Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth. ACS Appl. Nano Mater. 1(9), 5179–5187 (2018). https://doi.org/10.1021/acsanm.8b01203
J.L. Liu, H.S. Liang, H.J. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part Appl. Sci. Manuf. 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760
J.X. Chai, J.Y. Cheng, D.Q. Zhang, Y.F. Xiong, X.Y. Yang et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanops functionalized MoS2 nanosheets. J. Alloys Compd. 829, 154531 (2020). https://doi.org/10.1016/j.jallcom.2020.154531
D.Q. Zhang, T.T. Liu, M. Zhang, H.B. Zhang, X.Y. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
Z.H. Huang, J.Y. Cheng, H.B. Zhang, Y.F. Xiong, Z.X. Zhou et al., High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from s-band to Ku-band. J. Mater. Sci. Technol. 107, 155–164 (2022). https://doi.org/10.1016/j.jmst.2021.08.005
J.J. Dai, H.B. Yang, B. Wen, H.W. Zhou, L. Wang et al., Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Appl. Surf. Sci. 479, 1226–1235 (2019). https://doi.org/10.1016/j.apsusc.2019.02.049
M.Q. Wang, Y. Lin, H.B. Yang, Y. Qiu, S. Wang, A novel plate-like BaFe12O19@MoS2 core-shell structure composite with excellent microwave absorbing properties. J. Alloys Compd. 817, 153265 (2020). https://doi.org/10.1016/j.jallcom.2019.153265
L.L. Long, E. Yang, X.S. Qi, R. Xie, Z.C. Bai et al., Core@shell structured flower-like Co0.6Fe2.4O4@MoS2 nanocomposites: a strong absorption and broadband electromagnetic wave absorber. J. Mater. Chem. C 7, 8975–8981 (2019). https://doi.org/10.1039/C9TC02140J
X.Y. Wang, T. Zhu, S.C. Chang, Y.K. Lu, W.B. Mi et al., 3D nest-like architecture of core–shell CoFe2O4 @1T/2T-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
Y. Wang, X.C. Di, Y.Q. Fu, X.M. Wu, J.T. Cao, Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci. 587, 561–573 (2021). https://doi.org/10.1016/j.jcis.2020.11.013
J.K. Liu, Z.R. Jia, W.H. Zhou, X.H. Liu, C.H. Zhang et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 429, 132253 (2022). https://doi.org/10.1016/j.cej.2021.132253
X. Ding, Y. Huang, S.P. Li, N. Zhang, J. Wang, FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. J. Alloys Compd. 689, 208–217 (2016). https://doi.org/10.1016/j.jallcom.2016.07.312
J. Li, D. Zhou, M.S. Fu, P.J. Wang, J.Z. Su et al., Coral-like polypyrrole/LiFe5O8/MoS2 nanocomposites for high-efficiency microwave absorbers. ACS Appl. Nano Mater. 5(6), 7944–7953 (2022). https://doi.org/10.1021/acsanm.2c01022
R.G. Yu, Y.H. Xia, X.Y. Pei, D. Liu, S. Liu et al., Micro-flower like core-shell structured ZnCo@C@1T-2H-MoS2 composites for broadband electromagnetic wave absorption and photothermal performance. J. Colloid Interface Sci. 622, 261–271 (2022). https://doi.org/10.1016/j.jcis.2022.01.179
Y.F. Zhang, Y.L. Li, M.M. Wei, D.T. Yang, Q.Y. Zhang et al., Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: preparation and microwave absorbing properties. J. Mater. Sci. Technol. 128, 148–159 (2022). https://doi.org/10.1016/j.jmst.2022.04.026
X.L. Chen, T. Shi, G.L. Wu, Y. Lu, Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid Interface Sci. 572, 227–235 (2020). https://doi.org/10.1016/j.jcis.2020.03.089
W. Uddin, S.U. Rehman, M.A. Aslam, S.U. Rehman, M.Z. Wu et al., Enhanced microwave absorption from the magnetic-dielectric interface: a hybrid rGO@Ni-doped-MoS2. Mater. Res. Bull. 130, 110943 (2020). https://doi.org/10.1016/j.materresbull.2020.110943
Y. Wang, Y.B. Chen, X.M. Wu, W.Z. Zhang, C.Y. Luo et al., Fabrication of MoS2-graphene modified with Fe3O4 ps and its enhanced microwave absorption performance. Adv. Powder Technol. 29(3), 744–750 (2018). https://doi.org/10.1016/j.apt.2017.12.016
M.Q. Ning, Z.K. Lei, G.G. Tan, Q.K. Man, J.B. Li et al., Dumbbell-like Fe3O4@n-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 13(39), 47061–47071 (2021). https://doi.org/10.1021/acsami.1c13852
E. Yang, X.S. Qi, R. Xie, Z.C. Bai, Y. Jiang et al., Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018). https://doi.org/10.1016/j.apsusc.2018.02.175
W.D. Zhang, X. Zhang, Y. Zheng, C. Guo, M.Y. Yang et al., Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 1(10), 5865–5875 (2018). https://doi.org/10.1021/acsanm.8b01452
X. Sun, Y.H. Pu, F. Wu, J.Z. He, G. Deng et al., 0D–1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 423, 130132 (2021). https://doi.org/10.1016/j.cej.2021.130132
C.Y. Wang, Y.Y. Ma, Z.H. Qin, J.J. Wang, B. Zhong, Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance. Appl. Surf. Sci. 569, 150812 (2021). https://doi.org/10.1016/j.apsusc.2021.150812
M. Chang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B Eng. 225, 109306 (2021). https://doi.org/10.1016/j.compositesb.2021.109306
J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
F. Liu, W.J. Wu, Y.S. Bai, S.H. Chae, Q.Y. Li et al., Disassembling 2D van der waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367(6480), 903–906 (2020). https://doi.org/10.1126/science.aba1416