Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 80
Abstract
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
Highlights:
1 Detailed summary of current trends in the advancement of flexible EMI shielding materials.
2 The theoretical shielding mechanisms and the latest concept of "green shielding" index (gs) are outlined.
3 Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions.
4 Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Alsop, Number of wireless local area network (WLAN) connected devices worldwide from 2016 to 2021. (2020). https://www.statista.com/statistics/802706/world-wlan-connected-device/
- R. Baan, Y. Grosse, B. Lauby-Secretan, F.E. Ghissassi, V. Bouvard et al., Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12(7), 624–626 (2011). https://doi.org/10.1016/s1470-2045(11)70147-4
- H. Danker-Hopfe, H. Dorn, T. Bolz, A. Peter, M.L. Hansen et al., Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspective. Environ. Res. 145, 50–60 (2016). https://doi.org/10.1016/j.envres.2015.11.011
- L. Liu, H. Deng, X. Tang, Y. Lu, J. Zhou et al., Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. PNAS 118(31), e2105838118 (2021). https://doi.org/10.1073/pnas.2105838118
- S. Shahin, S. Banerjee, V. Swarup, S.P. Singh, C.M. Chaturvedi, From the cover: 2. 45-GHz microwave radiation impairs hippocampal learning and spatial memory: involvement of local stress mechanism-induced suppression of iGluR/ERK/CREB signaling. Toxicol. Sci. 161(2), 349–374 (2018)
- R. Bogers, A.V. Gils, S. Clahsen, W. Vercruijsse, I.V. Kamp et al., Individual variation in temporal relationships between exposure to radiofrequency electromagnetic fields and non-specific physical symptoms: a new approach in studying ‘electrosensitivity.’ Environ. Int. 121, 297–307 (2018). https://doi.org/10.1016/j.envint.2018.08.064
- L. Falcioni, L. Bua, E. Tibaldi, M. Lauriola, L.D. Angelis et al., Report of final results regarding brain and heart tumors in sprague-dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ. Res. 165, 496–503 (2018)
- S.L. Smith-Roe, M.E. Wyde, M.D. Stout, J.W. Winters, C.A. Hobbs et al., Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ. Mol. Mutagen. 61(2), 276–290 (2020). https://doi.org/10.1002/em.22343
- The 3GPP specification. https://www.3gpp.org/DynaReport/38-series.htm
- Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017). https://doi.org/10.1016/j.carbon.2016.12.092
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9(1), 809–818 (2017). https://doi.org/10.1021/acsami.6b11989
- W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
- W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang et al., Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93, 151–160 (2015). https://doi.org/10.1016/j.carbon.2015.05.033
- Y.J. Tan, J. Li, Y. Gao, J. Li, S. Guo et al., A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 458, 236–244 (2018). https://doi.org/10.1016/j.apsusc.2018.07.107
- C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98–OP120 (2012)
- Q. Zhou, X. Yin, F. Ye, R. Mo, Z. Tang et al., Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. J. Appl. Phys. A 125(2), 131 (2019). https://doi.org/10.1007/s00339-019-2430-2
- M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
- S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana et al., Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J. Mater. Sci. Mater. Electron. 29(12), 10177–10189 (2018). https://doi.org/10.1007/s10854-018-9068-2
- M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang et al., Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6(7), 3796–3803 (2014). https://doi.org/10.1039/C3NR06092F
- S.T. Hsiao, C.C.M. Ma, W.H. Liao, Y.S. Wang, S.M. Li et al., Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 6(13), 10667–10678 (2014). https://doi.org/10.1021/am502412q
- C. Cui, C. Xiang, L. Geng, X. Lai, R. Guo et al., Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloys Compd. 788, 1246–1255 (2019). https://doi.org/10.1016/j.jallcom.2019.02.294
- W.L. Song, J. Wang, L.Z. Fan, Y. Li, C.Y. Wang et al., Interfacial engineering of carbon nanofiber–graphene–carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfaces 6(13), 10516–10523 (2014). https://doi.org/10.1021/am502103u
- R. Li, H. Lin, P. Lan, J. Gao, Y. Huang et al., Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers 10(12), 1319 (2018)
- K.R. Sahu, U. De, Polymer composites for flexible electromagnetic shields. Macromol. Symp. 381(1), 1800097 (2018). https://doi.org/10.1002/masy.201800097
- Y. Wang, F.Q. Gu, L.J. Ni, K. Liang, K. Marcus et al., Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale 9(46), 18318–18325 (2017). https://doi.org/10.1039/C7NR05951E
- K. Sushmita, G. Madras, S. Bose, Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS Omega 5(10), 4705–4718 (2020). https://doi.org/10.1021/acsomega.9b03641
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- D.Q. Zhang, T.T. Liu, J.C. Shu, S. Liang, X.X. Wang et al., Self-assembly construction of WS2–rGO architecture with green EMI shielding. ACS Appl. Mater. Interfaces 11(30), 26807–26816 (2019). https://doi.org/10.1021/acsami.9b06509
- D. Zhang, T. Liu, J. Cheng, J. Chai, X. Yang et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology 30(44), 445708 (2019). https://doi.org/10.1088/1361-6528/ab35fa
- D. Zhang, S. Liang, J. Chai, T. Liu, X. Yang et al., Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids. 134, 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
- D. Zhang, X. Yang, J. Cheng, M. Lu, B. Zhao et al., Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites. J. Nanomater. 2013, 591893 (2013). https://doi.org/10.1155/2013/591893
- D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, Electromagnetic and microwave absorbing properties of magnetite nanops decorated carbon nanotubes/polyaniline multiphase heterostructures. J. Mater. Sci. 49(20), 7221–7230 (2014). https://doi.org/10.1007/s10853-014-8429-3
- J. Chai, J. Cheng, D. Zhang, Y. Xiong, X. Yang et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanops functionalized MoS2 nanosheets. J. Alloys Compd. 829, 154531 (2020). https://doi.org/10.1016/j.jallcom.2020.154531
- R. Xiong, K. Hu, A.M. Grant, R. Ma, W. Xu et al., Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Opt. Mater. 28(7), 1501–1509 (2016). https://doi.org/10.1002/adma.201504438
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics. (2021). https://doi.org/10.1016/j.jmat.2021.09.003
- D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanops. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
- D. Zhang, J. Chai, J. Cheng, Y. Jia, X. Yang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
- J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017
- M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
- S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014). https://doi.org/10.1016/j.carbon.2013.10.070
- M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7), 1738–1746 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
- W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li et al., Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014). https://doi.org/10.1016/j.carbon.2014.05.014
- S. Lin, J. Liu, Q. Wang, D. Zu, H. Wang et al., Highly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shielding. Adv. Mater. Technol. 5(2), 1900761 (2020). https://doi.org/10.1002/admt.201900761
- X. Liu, Z. Yu, R. Ishikawa, L. Chen, X. Liu et al., Single-source-precursor derived rGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness. Acta Mater. 130, 83–93 (2017). https://doi.org/10.1016/j.actamat.2017.03.031
- M. Han, X. Yin, X. Li, B. Anasori, L. Zhang et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9(23), 20038–20045 (2017)
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015)
- E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu et al., Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133, 316–322 (2018). https://doi.org/10.1016/j.carbon.2018.03.023
- T.K. Gupta, B.P. Singh, R.B. Mathur, S.R. Dhakate, Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6(2), 842–851 (2014). https://doi.org/10.1039/C3NR04565J
- Y. Hong, C. Lee, C. Jeong, D. Lee, K. Kim et al., Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74(2), 1098–1102 (2003). https://doi.org/10.1063/1.1532540
- A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur et al., Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50(10), 3868–3875 (2012). https://doi.org/10.1016/j.carbon.2012.04.030
- S. Lu, J. Shao, K. Ma, D. Chen, X. Wang et al., Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 136, 387–394 (2018). https://doi.org/10.1016/j.carbon.2018.04.086
- N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
- X.M. Bian, L. Liu, H.B. Li, C.Y. Wang, Q. Xie et al., Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanops: flexible hierarchical magnetic textile composites for strong electromagnetic shielding. Nanotechnology 28(4), 045710 (2016). https://doi.org/10.1088/1361-6528/28/4/045710
- Y. Li, B. Wang, X. Sui, H. Xu, L. Zhang et al., Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815–3823 (2017). https://doi.org/10.1007/s10570-017-1373-z
- B. Wang, W. Li, J. Deng, Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization. J. Mater. Sci. 52(8), 4575–4586 (2017). https://doi.org/10.1007/s10853-016-0702-1
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- D. Zhang, T. Liu, M. Zhang, H. Zhang, X. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
- Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d
- B. Liu, J. Cheng, H.Q. Peng, D. Chen, X. Cui et al., In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 7(2), 775–782 (2019). https://doi.org/10.1039/C8TA09800J
- H. Wang, Y. Dai, W. Gong, D. Geng, S. Ma et al., Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 102(22), 223113 (2013). https://doi.org/10.1063/1.4809675
- W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764
- W.L. Song, M. Cao, Z. Hou, J. Yuan, X. Fang, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61(2), 201–204 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.048
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- G. Tong, W. Wu, J. Guan, H. Qian, J. Yuan et al., Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties. J. Alloys Compd. 509(11), 4320–4326 (2011). https://doi.org/10.1016/j.jallcom.2011.01.058
- L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6), 3157–3164 (2014). https://doi.org/10.1039/C3NR05313J
- Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
- D. Zhang, J. Cheng, J. Chai, J. Deng, R. Ren et al., Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. J. Alloys Compd. 740, 1067–1076 (2018). https://doi.org/10.1016/j.jallcom.2018.01.081
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- Y. Cheng, H. Zhao, H. Lv, T. Shi, G. Ji et al., Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 6(1), 1900796 (2020). https://doi.org/10.1002/aelm.201900796
- Y. Cheng, P. Hu, S. Zhou, L. Yan, B. Sun et al., Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 132, 430–443 (2018). https://doi.org/10.1016/j.carbon.2018.02.084
- C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- C. Zhou, C. Wu, M. Yan, A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem. Eng. J. 370, 988–996 (2019). https://doi.org/10.1016/j.cej.2019.03.295
- M. Peng, F. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021). https://doi.org/10.1063/5.0075019
- Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- B. Zhang, J. Wang, J. Peng, J. Sun, X. Su et al., Double-shell PANS@PANI@Ag hollow microspheres and graphene dispersed in epoxy with enhanced microwave absorption. J. Mater. Sci. Mater. Electron. 30(10), 9785–9797 (2019). https://doi.org/10.1007/s10854-019-01315-y
- B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu et al., Microwave absorption properties of the core/shell-type iron and nickel nanops. J. Magn. Magn. Mater. 320(6), 1106–1111 (2008). https://doi.org/10.1016/j.jmmm.2007.10.030
- S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
- S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11(1), 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6
- J. Liu, W. You, J. Yu, X. Liu, X. Zhang et al., Electron holography of yolk–shell Fe3O4@mSiO2 microspheres for use in microwave absorption. ACS Appl. Nano Mater. 2(2), 910–916 (2019). https://doi.org/10.1021/acsanm.8b02150
- M. Yu, C. Liang, M. Liu, X. Liu, K. Yuan et al., Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2(35), 7275–7283 (2014). https://doi.org/10.1039/C4TC01285B
- Y. Cheng, Z. Li, Y. Li, S. Dai, G. Ji et al., Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
- Y. Deng, L. Zhao, B. Shen, L. Liu, W. Hu, Microwave characterization of submicrometer-sized nickel hollow sphere composites. J. Appl. Phys. 100(1), 014304 (2006). https://doi.org/10.1063/1.2210187
- H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon ps for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
- J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
- H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
- H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3(39), 10232–10241 (2015). https://doi.org/10.1039/C5TC02512E
- J. Hou, L. Zhang, H. Qiu, W. Duan, X. Wang et al., Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres. J. Mater. Sci. Mater. Electron. 28(13), 9279–9288 (2017). https://doi.org/10.1007/s10854-017-6664-5
- K. Raagulan, B.M. Kim, K.Y. Chai, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4), 702 (2020)
- S. Bi, L. Zhang, C. Mu, M. Liu, X. Hu, Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels. Appl. Surf. Sci. 412, 529–536 (2017). https://doi.org/10.1016/j.apsusc.2017.03.293
- L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li et al., Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanop clusters. J. Phys. Chem. C 117(38), 19701–19711 (2013). https://doi.org/10.1021/jp4058498
- M. González, J. Baselga, J. Pozuelo, Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon 147, 27–34 (2019). https://doi.org/10.1016/j.carbon.2019.02.068
- Y. Chen, H. Zhang, G. Zeng, Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure. Carbon 140, 494–503 (2018). https://doi.org/10.1016/j.carbon.2018.09.014
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
- M. Crespo, M. González, A.L. Elías, L.P. Rajukumar, J. Baselga et al., Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi RRL 8(8), 698–704 (2014). https://doi.org/10.1002/pssr.201409151
- R. Bian, R. Lin, G. Wang, G. Lu, W. Zhi et al., 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 10(8), 3621–3625 (2018). https://doi.org/10.1039/C7NR07346A
- S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid–liquid interfaces: From structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- K. Qian, Q. Zhou, H. Wu, J. Fang, M. Miao et al., Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 141, 106229 (2021). https://doi.org/10.1016/j.compositesa.2020.106229
- D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008). https://doi.org/10.1021/cr068112h
- X. Liu, L. Zhang, X. Yin, F. Ye, Y. Liu et al., Flexible thin SiC fiber fabrics using carbon nanotube modification for improving electromagnetic shielding properties. Mater. Des. 104, 68–75 (2016). https://doi.org/10.1016/j.matdes.2016.05.005
- S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang et al., Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259–265 (2019). https://doi.org/10.1016/j.carbon.2019.01.030
- S. Mondal, S. Ganguly, P. Das, D. Khastgir, N.C. Das, Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Compos. B Eng. 119, 41–56 (2017). https://doi.org/10.1016/j.compositesb.2017.03.022
- G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67(7), 1709–1718 (2007). https://doi.org/10.1016/j.compscitech.2006.06.015
- B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- L.C. Jia, Y.K. Li, D.X. Yan, Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121, 267–273 (2017). https://doi.org/10.1016/j.carbon.2017.05.100
- Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11(3), 1011–1020 (2019). https://doi.org/10.1039/C8NR07351A
- D. Feng, P. Liu, Q. Wang, Exploiting the piezo resistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos. A Appl. Sci. Manuf. 124, 105463 (2019). https://doi.org/10.1016/j.compositesa.2019.05.031
- L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/rGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009
- H. Mei, X. Zhao, J. Xia, F. Wei, D. Han et al., Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Mater. Des. 144, 323–330 (2018). https://doi.org/10.1016/j.matdes.2018.02.047
- D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
- X. Sun, X. Liu, X. Shen, Y. Wu, Z. Wang et al., Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding. Compos. A Appl. Sci. Manuf. 85, 199–206 (2016). https://doi.org/10.1016/j.compositesa.2016.03.009
- Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14(27), 1800534 (2018). https://doi.org/10.1002/smll.201800534
- Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7(32), 9820–9829 (2019). https://doi.org/10.1039/C9TC03309B
- D. Hu, X. Huang, S. Li, P. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
- X. Feng, J. Ning, B. Wang, H. Guo, M. Xia et al., Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy 72, 104741 (2020). https://doi.org/10.1016/j.nanoen.2020.104741
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
- P. Li, D. Du, L. Guo, Y. Guo, J. Ouyang, Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J. Mater. Chem. C 4(27), 6525–6532 (2016). https://doi.org/10.1039/C6TC01619G
- B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8(2), 500–509 (2020). https://doi.org/10.1039/C9TC05462F
- N. Das, T. Chaki, D. Khastgir, A. Chakraborty, Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers. J. Appl. Polym. Sci. 80(10), 1601–1608 (2001). https://doi.org/10.1002/app.1253
- J. Cheng, X. Yang, L. Dong, Z. Yuan, W. Wang et al., Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polym. Test. 59, 371–376 (2017). https://doi.org/10.1016/j.polymertesting.2017.02.021
- H. Li, M. Jensen, N. Wang, Y. Chen, Y. Gao et al., CuxS/PAN 3D nanofiber mats as ultra-lightweight and flexible electromagnetic interference shielding materials. Macromol. Mater. Eng. 304(12), 1900482 (2019). https://doi.org/10.1002/mame.201900482
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
- W. Shen, D. Estevez, L. Zhou, P. Xu, F. Qin, Stretchable silver@CNT-poly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalization. Polymer 238, 124413 (2022). https://doi.org/10.1016/j.polymer.2021.124413
- Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
- Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
- J. Li, H. Liu, J. Guo, Z. Hu, Z. Wang et al., Flexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties. J. Mater. Chem. C 5(5), 1095–1105 (2017). https://doi.org/10.1039/C6TC04780G
- A. Chaudhary, S. Teotia, R. Kumar, V. Gupta, S.R. Dhakate et al., Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance. Compos. B Eng. 176, 107123 (2019). https://doi.org/10.1016/j.compositesb.2019.107123
- C. Liang, K. Ruan, Y. Zhang, J. Gu, Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 12(15), 18023–18031 (2020). https://doi.org/10.1021/acsami.0c04482
- J. Luo, L. Wang, X. Huang, B. Li, Z. Guo et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(11), 10883–10894 (2019). https://doi.org/10.1021/acsami.8b22212
- Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- H.C. Chu, Y.C. Chang, Y. Lin, S.H. Chang, W.C. Chang et al., Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl. Mater. Interfaces 8(20), 13009–13017 (2016). https://doi.org/10.1021/acsami.6b02652
- Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(2), 2826–2834 (2020). https://doi.org/10.1021/acsami.9b17513
- S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai et al., Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. npj Electron Flex (2019). https://doi.org/10.1038/s41528-019-0050-8
- M. Panahi-Sarmad, M. Noroozi, M. Abrisham, S. Eghbalinia, F. Teimoury et al., A comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensors. ACS Appl. Electron. Mater. 2(8), 2318–2350 (2020). https://doi.org/10.1021/acsaelm.0c00490
- B. Zhao, X. Zhang, J. Deng, C. Zhang, Y. Li et al., Flexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applications. RSC Adv. 10(3), 1535–1543 (2020). https://doi.org/10.1039/C9RA08679J
- V.T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.G. Choi, MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 393, 124608 (2020). https://doi.org/10.1016/j.cej.2020.124608
- W. Wang, X. Ma, Y. Shao, X. Qi, J. Yang et al., Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 9(8), 5033–5044 (2021). https://doi.org/10.1039/D0TA11040J
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., Coni@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- Q. Liu, X. Xu, W. Xia, R. Che, C. Chen et al., Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 7(5), 1736–1743 (2015). https://doi.org/10.1039/C4NR05547K
- Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang et al., Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233–4240 (2015). https://doi.org/10.1021/am508527s
- D. Zhang, H. Wang, J. Cheng, C. Han, X. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
- Z. Huang, J. Cheng, H. Zhang, Y. Xiong, Z. Zhou et al., High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 107, 155–164 (2022). https://doi.org/10.1016/j.jmst.2021.08.005
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6 48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2021)
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8(4), 479–488 (2019). https://doi.org/10.1007/s40145-019-0328-2
- H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- K. Yuan, R. Che, Q. Cao, Z. Sun, Q. Yue et al., Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 7(9), 5312–5319 (2015). https://doi.org/10.1021/am508683p
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080
- B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9(14), 8896–8949 (2021). https://doi.org/10.1039/D1TA00417D
- L. Wang, M. Huang, X. Qian, L. Liu, W. You et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17(30), 2100970 (2021). https://doi.org/10.1002/smll.202100970
- J. Zhang, Z. Wang, J. Li, Y. Dong, A. He et al., Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 96, 11–20 (2022). https://doi.org/10.1016/j.jmst.2021.05.001
- X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
- C.B. Li, Y.J. Li, Q. Zhao, Y. Luo, G.Y. Yang et al., Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. ACS Appl. Mater. Interfaces 12(27), 30686–30694 (2020). https://doi.org/10.1021/acsami.0c05688
References
T. Alsop, Number of wireless local area network (WLAN) connected devices worldwide from 2016 to 2021. (2020). https://www.statista.com/statistics/802706/world-wlan-connected-device/
R. Baan, Y. Grosse, B. Lauby-Secretan, F.E. Ghissassi, V. Bouvard et al., Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12(7), 624–626 (2011). https://doi.org/10.1016/s1470-2045(11)70147-4
H. Danker-Hopfe, H. Dorn, T. Bolz, A. Peter, M.L. Hansen et al., Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspective. Environ. Res. 145, 50–60 (2016). https://doi.org/10.1016/j.envres.2015.11.011
L. Liu, H. Deng, X. Tang, Y. Lu, J. Zhou et al., Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. PNAS 118(31), e2105838118 (2021). https://doi.org/10.1073/pnas.2105838118
S. Shahin, S. Banerjee, V. Swarup, S.P. Singh, C.M. Chaturvedi, From the cover: 2. 45-GHz microwave radiation impairs hippocampal learning and spatial memory: involvement of local stress mechanism-induced suppression of iGluR/ERK/CREB signaling. Toxicol. Sci. 161(2), 349–374 (2018)
R. Bogers, A.V. Gils, S. Clahsen, W. Vercruijsse, I.V. Kamp et al., Individual variation in temporal relationships between exposure to radiofrequency electromagnetic fields and non-specific physical symptoms: a new approach in studying ‘electrosensitivity.’ Environ. Int. 121, 297–307 (2018). https://doi.org/10.1016/j.envint.2018.08.064
L. Falcioni, L. Bua, E. Tibaldi, M. Lauriola, L.D. Angelis et al., Report of final results regarding brain and heart tumors in sprague-dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ. Res. 165, 496–503 (2018)
S.L. Smith-Roe, M.E. Wyde, M.D. Stout, J.W. Winters, C.A. Hobbs et al., Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ. Mol. Mutagen. 61(2), 276–290 (2020). https://doi.org/10.1002/em.22343
The 3GPP specification. https://www.3gpp.org/DynaReport/38-series.htm
Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017). https://doi.org/10.1016/j.carbon.2016.12.092
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9(1), 809–818 (2017). https://doi.org/10.1021/acsami.6b11989
W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang et al., Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93, 151–160 (2015). https://doi.org/10.1016/j.carbon.2015.05.033
Y.J. Tan, J. Li, Y. Gao, J. Li, S. Guo et al., A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 458, 236–244 (2018). https://doi.org/10.1016/j.apsusc.2018.07.107
C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98–OP120 (2012)
Q. Zhou, X. Yin, F. Ye, R. Mo, Z. Tang et al., Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. J. Appl. Phys. A 125(2), 131 (2019). https://doi.org/10.1007/s00339-019-2430-2
M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana et al., Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J. Mater. Sci. Mater. Electron. 29(12), 10177–10189 (2018). https://doi.org/10.1007/s10854-018-9068-2
M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang et al., Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6(7), 3796–3803 (2014). https://doi.org/10.1039/C3NR06092F
S.T. Hsiao, C.C.M. Ma, W.H. Liao, Y.S. Wang, S.M. Li et al., Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 6(13), 10667–10678 (2014). https://doi.org/10.1021/am502412q
C. Cui, C. Xiang, L. Geng, X. Lai, R. Guo et al., Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloys Compd. 788, 1246–1255 (2019). https://doi.org/10.1016/j.jallcom.2019.02.294
W.L. Song, J. Wang, L.Z. Fan, Y. Li, C.Y. Wang et al., Interfacial engineering of carbon nanofiber–graphene–carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfaces 6(13), 10516–10523 (2014). https://doi.org/10.1021/am502103u
R. Li, H. Lin, P. Lan, J. Gao, Y. Huang et al., Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers 10(12), 1319 (2018)
K.R. Sahu, U. De, Polymer composites for flexible electromagnetic shields. Macromol. Symp. 381(1), 1800097 (2018). https://doi.org/10.1002/masy.201800097
Y. Wang, F.Q. Gu, L.J. Ni, K. Liang, K. Marcus et al., Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale 9(46), 18318–18325 (2017). https://doi.org/10.1039/C7NR05951E
K. Sushmita, G. Madras, S. Bose, Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS Omega 5(10), 4705–4718 (2020). https://doi.org/10.1021/acsomega.9b03641
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
D.Q. Zhang, T.T. Liu, J.C. Shu, S. Liang, X.X. Wang et al., Self-assembly construction of WS2–rGO architecture with green EMI shielding. ACS Appl. Mater. Interfaces 11(30), 26807–26816 (2019). https://doi.org/10.1021/acsami.9b06509
D. Zhang, T. Liu, J. Cheng, J. Chai, X. Yang et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology 30(44), 445708 (2019). https://doi.org/10.1088/1361-6528/ab35fa
D. Zhang, S. Liang, J. Chai, T. Liu, X. Yang et al., Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids. 134, 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
D. Zhang, X. Yang, J. Cheng, M. Lu, B. Zhao et al., Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites. J. Nanomater. 2013, 591893 (2013). https://doi.org/10.1155/2013/591893
D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, Electromagnetic and microwave absorbing properties of magnetite nanops decorated carbon nanotubes/polyaniline multiphase heterostructures. J. Mater. Sci. 49(20), 7221–7230 (2014). https://doi.org/10.1007/s10853-014-8429-3
J. Chai, J. Cheng, D. Zhang, Y. Xiong, X. Yang et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanops functionalized MoS2 nanosheets. J. Alloys Compd. 829, 154531 (2020). https://doi.org/10.1016/j.jallcom.2020.154531
R. Xiong, K. Hu, A.M. Grant, R. Ma, W. Xu et al., Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Opt. Mater. 28(7), 1501–1509 (2016). https://doi.org/10.1002/adma.201504438
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics. (2021). https://doi.org/10.1016/j.jmat.2021.09.003
D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanops. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
D. Zhang, J. Chai, J. Cheng, Y. Jia, X. Yang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017
M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014). https://doi.org/10.1016/j.carbon.2013.10.070
M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7), 1738–1746 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li et al., Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014). https://doi.org/10.1016/j.carbon.2014.05.014
S. Lin, J. Liu, Q. Wang, D. Zu, H. Wang et al., Highly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shielding. Adv. Mater. Technol. 5(2), 1900761 (2020). https://doi.org/10.1002/admt.201900761
X. Liu, Z. Yu, R. Ishikawa, L. Chen, X. Liu et al., Single-source-precursor derived rGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness. Acta Mater. 130, 83–93 (2017). https://doi.org/10.1016/j.actamat.2017.03.031
M. Han, X. Yin, X. Li, B. Anasori, L. Zhang et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9(23), 20038–20045 (2017)
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015)
E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu et al., Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133, 316–322 (2018). https://doi.org/10.1016/j.carbon.2018.03.023
T.K. Gupta, B.P. Singh, R.B. Mathur, S.R. Dhakate, Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6(2), 842–851 (2014). https://doi.org/10.1039/C3NR04565J
Y. Hong, C. Lee, C. Jeong, D. Lee, K. Kim et al., Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74(2), 1098–1102 (2003). https://doi.org/10.1063/1.1532540
A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur et al., Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50(10), 3868–3875 (2012). https://doi.org/10.1016/j.carbon.2012.04.030
S. Lu, J. Shao, K. Ma, D. Chen, X. Wang et al., Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 136, 387–394 (2018). https://doi.org/10.1016/j.carbon.2018.04.086
N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
X.M. Bian, L. Liu, H.B. Li, C.Y. Wang, Q. Xie et al., Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanops: flexible hierarchical magnetic textile composites for strong electromagnetic shielding. Nanotechnology 28(4), 045710 (2016). https://doi.org/10.1088/1361-6528/28/4/045710
Y. Li, B. Wang, X. Sui, H. Xu, L. Zhang et al., Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815–3823 (2017). https://doi.org/10.1007/s10570-017-1373-z
B. Wang, W. Li, J. Deng, Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization. J. Mater. Sci. 52(8), 4575–4586 (2017). https://doi.org/10.1007/s10853-016-0702-1
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
D. Zhang, T. Liu, M. Zhang, H. Zhang, X. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d
B. Liu, J. Cheng, H.Q. Peng, D. Chen, X. Cui et al., In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 7(2), 775–782 (2019). https://doi.org/10.1039/C8TA09800J
H. Wang, Y. Dai, W. Gong, D. Geng, S. Ma et al., Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 102(22), 223113 (2013). https://doi.org/10.1063/1.4809675
W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764
W.L. Song, M. Cao, Z. Hou, J. Yuan, X. Fang, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61(2), 201–204 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.048
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
G. Tong, W. Wu, J. Guan, H. Qian, J. Yuan et al., Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties. J. Alloys Compd. 509(11), 4320–4326 (2011). https://doi.org/10.1016/j.jallcom.2011.01.058
L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6), 3157–3164 (2014). https://doi.org/10.1039/C3NR05313J
Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
D. Zhang, J. Cheng, J. Chai, J. Deng, R. Ren et al., Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. J. Alloys Compd. 740, 1067–1076 (2018). https://doi.org/10.1016/j.jallcom.2018.01.081
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
Y. Cheng, H. Zhao, H. Lv, T. Shi, G. Ji et al., Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 6(1), 1900796 (2020). https://doi.org/10.1002/aelm.201900796
Y. Cheng, P. Hu, S. Zhou, L. Yan, B. Sun et al., Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 132, 430–443 (2018). https://doi.org/10.1016/j.carbon.2018.02.084
C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
C. Zhou, C. Wu, M. Yan, A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem. Eng. J. 370, 988–996 (2019). https://doi.org/10.1016/j.cej.2019.03.295
M. Peng, F. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021). https://doi.org/10.1063/5.0075019
Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
B. Zhang, J. Wang, J. Peng, J. Sun, X. Su et al., Double-shell PANS@PANI@Ag hollow microspheres and graphene dispersed in epoxy with enhanced microwave absorption. J. Mater. Sci. Mater. Electron. 30(10), 9785–9797 (2019). https://doi.org/10.1007/s10854-019-01315-y
B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu et al., Microwave absorption properties of the core/shell-type iron and nickel nanops. J. Magn. Magn. Mater. 320(6), 1106–1111 (2008). https://doi.org/10.1016/j.jmmm.2007.10.030
S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11(1), 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6
J. Liu, W. You, J. Yu, X. Liu, X. Zhang et al., Electron holography of yolk–shell Fe3O4@mSiO2 microspheres for use in microwave absorption. ACS Appl. Nano Mater. 2(2), 910–916 (2019). https://doi.org/10.1021/acsanm.8b02150
M. Yu, C. Liang, M. Liu, X. Liu, K. Yuan et al., Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2(35), 7275–7283 (2014). https://doi.org/10.1039/C4TC01285B
Y. Cheng, Z. Li, Y. Li, S. Dai, G. Ji et al., Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
Y. Deng, L. Zhao, B. Shen, L. Liu, W. Hu, Microwave characterization of submicrometer-sized nickel hollow sphere composites. J. Appl. Phys. 100(1), 014304 (2006). https://doi.org/10.1063/1.2210187
H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon ps for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3(39), 10232–10241 (2015). https://doi.org/10.1039/C5TC02512E
J. Hou, L. Zhang, H. Qiu, W. Duan, X. Wang et al., Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres. J. Mater. Sci. Mater. Electron. 28(13), 9279–9288 (2017). https://doi.org/10.1007/s10854-017-6664-5
K. Raagulan, B.M. Kim, K.Y. Chai, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4), 702 (2020)
S. Bi, L. Zhang, C. Mu, M. Liu, X. Hu, Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels. Appl. Surf. Sci. 412, 529–536 (2017). https://doi.org/10.1016/j.apsusc.2017.03.293
L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li et al., Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanop clusters. J. Phys. Chem. C 117(38), 19701–19711 (2013). https://doi.org/10.1021/jp4058498
M. González, J. Baselga, J. Pozuelo, Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon 147, 27–34 (2019). https://doi.org/10.1016/j.carbon.2019.02.068
Y. Chen, H. Zhang, G. Zeng, Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure. Carbon 140, 494–503 (2018). https://doi.org/10.1016/j.carbon.2018.09.014
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
M. Crespo, M. González, A.L. Elías, L.P. Rajukumar, J. Baselga et al., Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi RRL 8(8), 698–704 (2014). https://doi.org/10.1002/pssr.201409151
R. Bian, R. Lin, G. Wang, G. Lu, W. Zhi et al., 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 10(8), 3621–3625 (2018). https://doi.org/10.1039/C7NR07346A
S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid–liquid interfaces: From structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
K. Qian, Q. Zhou, H. Wu, J. Fang, M. Miao et al., Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 141, 106229 (2021). https://doi.org/10.1016/j.compositesa.2020.106229
D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008). https://doi.org/10.1021/cr068112h
X. Liu, L. Zhang, X. Yin, F. Ye, Y. Liu et al., Flexible thin SiC fiber fabrics using carbon nanotube modification for improving electromagnetic shielding properties. Mater. Des. 104, 68–75 (2016). https://doi.org/10.1016/j.matdes.2016.05.005
S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang et al., Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259–265 (2019). https://doi.org/10.1016/j.carbon.2019.01.030
S. Mondal, S. Ganguly, P. Das, D. Khastgir, N.C. Das, Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Compos. B Eng. 119, 41–56 (2017). https://doi.org/10.1016/j.compositesb.2017.03.022
G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67(7), 1709–1718 (2007). https://doi.org/10.1016/j.compscitech.2006.06.015
B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
L.C. Jia, Y.K. Li, D.X. Yan, Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121, 267–273 (2017). https://doi.org/10.1016/j.carbon.2017.05.100
Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11(3), 1011–1020 (2019). https://doi.org/10.1039/C8NR07351A
D. Feng, P. Liu, Q. Wang, Exploiting the piezo resistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos. A Appl. Sci. Manuf. 124, 105463 (2019). https://doi.org/10.1016/j.compositesa.2019.05.031
L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/rGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009
H. Mei, X. Zhao, J. Xia, F. Wei, D. Han et al., Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Mater. Des. 144, 323–330 (2018). https://doi.org/10.1016/j.matdes.2018.02.047
D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
X. Sun, X. Liu, X. Shen, Y. Wu, Z. Wang et al., Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding. Compos. A Appl. Sci. Manuf. 85, 199–206 (2016). https://doi.org/10.1016/j.compositesa.2016.03.009
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14(27), 1800534 (2018). https://doi.org/10.1002/smll.201800534
Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7(32), 9820–9829 (2019). https://doi.org/10.1039/C9TC03309B
D. Hu, X. Huang, S. Li, P. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
X. Feng, J. Ning, B. Wang, H. Guo, M. Xia et al., Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy 72, 104741 (2020). https://doi.org/10.1016/j.nanoen.2020.104741
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
P. Li, D. Du, L. Guo, Y. Guo, J. Ouyang, Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J. Mater. Chem. C 4(27), 6525–6532 (2016). https://doi.org/10.1039/C6TC01619G
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8(2), 500–509 (2020). https://doi.org/10.1039/C9TC05462F
N. Das, T. Chaki, D. Khastgir, A. Chakraborty, Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers. J. Appl. Polym. Sci. 80(10), 1601–1608 (2001). https://doi.org/10.1002/app.1253
J. Cheng, X. Yang, L. Dong, Z. Yuan, W. Wang et al., Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polym. Test. 59, 371–376 (2017). https://doi.org/10.1016/j.polymertesting.2017.02.021
H. Li, M. Jensen, N. Wang, Y. Chen, Y. Gao et al., CuxS/PAN 3D nanofiber mats as ultra-lightweight and flexible electromagnetic interference shielding materials. Macromol. Mater. Eng. 304(12), 1900482 (2019). https://doi.org/10.1002/mame.201900482
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
W. Shen, D. Estevez, L. Zhou, P. Xu, F. Qin, Stretchable silver@CNT-poly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalization. Polymer 238, 124413 (2022). https://doi.org/10.1016/j.polymer.2021.124413
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
J. Li, H. Liu, J. Guo, Z. Hu, Z. Wang et al., Flexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties. J. Mater. Chem. C 5(5), 1095–1105 (2017). https://doi.org/10.1039/C6TC04780G
A. Chaudhary, S. Teotia, R. Kumar, V. Gupta, S.R. Dhakate et al., Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance. Compos. B Eng. 176, 107123 (2019). https://doi.org/10.1016/j.compositesb.2019.107123
C. Liang, K. Ruan, Y. Zhang, J. Gu, Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 12(15), 18023–18031 (2020). https://doi.org/10.1021/acsami.0c04482
J. Luo, L. Wang, X. Huang, B. Li, Z. Guo et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(11), 10883–10894 (2019). https://doi.org/10.1021/acsami.8b22212
Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
H.C. Chu, Y.C. Chang, Y. Lin, S.H. Chang, W.C. Chang et al., Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl. Mater. Interfaces 8(20), 13009–13017 (2016). https://doi.org/10.1021/acsami.6b02652
Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(2), 2826–2834 (2020). https://doi.org/10.1021/acsami.9b17513
S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai et al., Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. npj Electron Flex (2019). https://doi.org/10.1038/s41528-019-0050-8
M. Panahi-Sarmad, M. Noroozi, M. Abrisham, S. Eghbalinia, F. Teimoury et al., A comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensors. ACS Appl. Electron. Mater. 2(8), 2318–2350 (2020). https://doi.org/10.1021/acsaelm.0c00490
B. Zhao, X. Zhang, J. Deng, C. Zhang, Y. Li et al., Flexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applications. RSC Adv. 10(3), 1535–1543 (2020). https://doi.org/10.1039/C9RA08679J
V.T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.G. Choi, MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 393, 124608 (2020). https://doi.org/10.1016/j.cej.2020.124608
W. Wang, X. Ma, Y. Shao, X. Qi, J. Yang et al., Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 9(8), 5033–5044 (2021). https://doi.org/10.1039/D0TA11040J
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., Coni@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
Q. Liu, X. Xu, W. Xia, R. Che, C. Chen et al., Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 7(5), 1736–1743 (2015). https://doi.org/10.1039/C4NR05547K
Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang et al., Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233–4240 (2015). https://doi.org/10.1021/am508527s
D. Zhang, H. Wang, J. Cheng, C. Han, X. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
Z. Huang, J. Cheng, H. Zhang, Y. Xiong, Z. Zhou et al., High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 107, 155–164 (2022). https://doi.org/10.1016/j.jmst.2021.08.005
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6 48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2021)
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8(4), 479–488 (2019). https://doi.org/10.1007/s40145-019-0328-2
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
K. Yuan, R. Che, Q. Cao, Z. Sun, Q. Yue et al., Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 7(9), 5312–5319 (2015). https://doi.org/10.1021/am508683p
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080
B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9(14), 8896–8949 (2021). https://doi.org/10.1039/D1TA00417D
L. Wang, M. Huang, X. Qian, L. Liu, W. You et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17(30), 2100970 (2021). https://doi.org/10.1002/smll.202100970
J. Zhang, Z. Wang, J. Li, Y. Dong, A. He et al., Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 96, 11–20 (2022). https://doi.org/10.1016/j.jmst.2021.05.001
X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
C.B. Li, Y.J. Li, Q. Zhao, Y. Luo, G.Y. Yang et al., Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. ACS Appl. Mater. Interfaces 12(27), 30686–30694 (2020). https://doi.org/10.1021/acsami.0c05688