“Zero-Strain” NiNb2O6 Fibers for All-Climate Lithium Storage
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 15
Abstract
Niobates are promising all-climate Li+-storage anode material due to their fast charge transport, large specific capacities, and resistance to electrolyte reaction. However, their moderate unit-cell-volume expansion (generally 5%–10%) during Li+ storage causes unsatisfactory long-term cyclability. Here, “zero-strain” NiNb2O6 fibers are explored as a new anode material with comprehensively good electrochemical properties. During Li+ storage, the expansion of electrochemical inactive NiO6 octahedra almost fully offsets the shrinkage of active NbO6 octahedra through reversible O movement. Such superior volume-accommodation capability of the NiO6 layers guarantees the “zero-strain” behavior of NiNb2O6 in a broad temperature range (0.53%//0.51%//0.74% at 25// − 10//60 °C), leading to the excellent cyclability of the NiNb2O6 fibers (92.8%//99.2% // 91.1% capacity retention after 1000//2000//1000 cycles at 10C and 25// − 10//60 °C). This NiNb2O6 material further exhibits a large reversible capacity (300//184//318 mAh g−1 at 0.1C and 25// − 10//60 °C) and outstanding rate performance (10 to 0.5C capacity percentage of 64.3%//50.0%//65.4% at 25// − 10//60 °C). Therefore, the NiNb2O6 fibers are especially suitable for large-capacity, fast-charging, long-life, and all-climate lithium-ion batteries.
Highlights:
1 “Zero-strain” NiNb2O6 fibers with nanosized primary particles are explored as an all-climate anode material with comprehensively good Li+-storage properties.
2 The almost completely opposite volume changes of electrochemical inactive NiO6 octahedra and active NbO6 octahedra are achieved through reversible O movement, leading to the “zero-strain” behavior of NiNb2O6 with minor unit-cell-volume change and excellent cyclability in a broad temperature range.
3 The gained insight can provide guide for the exploration of high-performance energy-storage materials working at harsh temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- T.M.M. Heenan, I. Mombrini, A. Llewellyn, S. Checchia, C. Tan et al., Mapping internal temperatures during high-rate battery applications. Nature 617, 507–512 (2023). https://doi.org/10.1038/s41586-023-05913-z
- T. Liu, J. Liu, L. Li, L. Yu, J. Diao et al., Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022). https://doi.org/10.1038/s41586-022-04689-y
- C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
- G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16, 150 (2024). https://doi.org/10.1007/s40820-024-01363-y
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
- J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between –40 and 60 °C. Adv. Energy Mater. 10, 1904152 (2020). https://doi.org/10.1002/aenm.201904152
- M.-T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
- S.R. Sivakkumar, J.Y. Nerkar, A.G. Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim. Acta 55, 3330–3335 (2010). https://doi.org/10.1016/j.electacta.2010.01.059
- T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-Mehrens, Temperature dependent ageing mechanisms in lithium-ion batteries–a post-mortem study. J. Power. Sources 262, 129–135 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.112
- C. Lv, C. Lin, X.S. Zhao, Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv. Energy Mater. 12, 2102550 (2022). https://doi.org/10.1002/aenm.202102550
- S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
- A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
- B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 98, 1–71 (2015). https://doi.org/10.1016/j.mser.2015.10.001
- G. Zhu, K. Wen, W. Lv, X. Zhou, Y. Liang et al., Materials insights into low-temperature performances of lithium-ion batteries. J. Power. Sources 300, 29–40 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.056
- E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, T. Kallio, Effect of Li4Ti5O12 p size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J. Phys. Chem. C 119, 2277–2283 (2015). https://doi.org/10.1021/jp509428c
- W. Wang, Q. Zhang, T. Jiang, S. Li, J. Gao et al., Conductive LaCeNb6O18 with a very open A-site-cation-deficient perovskite structure: a fast- and stable-charging Li+-storage anode compound in a wide temperature range. Adv. Energy Mater. 12, 2200656 (2022). https://doi.org/10.1002/aenm.202200656
- S. Li, J. Gao, Y. Ou, X. Liu, L. Yang et al., Temperature effects on electrochemical energy-storage materials: a case study of yttrium niobate porous microspheres. Small 19, e2303763 (2023). https://doi.org/10.1002/smll.202303763
- P. Cui, P. Zhang, X. Chen, X. Chen, T. Wan et al., Oxygen defect and Cl–doped modulated TiNb2O7 compound with high rate performance in lithium-ion batteries. ACS Appl. Mater. Interfaces 15, 43745–43755 (2023). https://doi.org/10.1021/acsami.3c08524
- M. Su, M. Li, X. Long, Y. Lei, X. Chen et al., Insight into the effect of Cu2+ doping on CuxNb2–xO5–3/2x for high-power lithium-ion batteries. ACS Sustain. Chem. Eng. 11, 14761–14772 (2023). https://doi.org/10.1021/acssuschemeng.3c04461
- K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018). https://doi.org/10.1038/s41586-018-0347-0
- J.M. Sieffert, C.J. Lang, S. Bazylevych, S. Jia, E. McCalla, The Nb–Ti–W–O system as safe high-power anodes for Li-ion batteries. J. Mater. Chem. A 12, 1429–1437 (2024). https://doi.org/10.1039/D3TA06224D
- Z. Wu, G. Liang, W. Kong Pang, J. Zou, W. Zhang et al., Structural distortion in the Wadsley-Roth niobium molybdenum oxide phase triggering extraordinarily stable battery performance. Angew. Chem. Int. Ed. 63, e202317941 (2024). https://doi.org/10.1002/anie.202317941
- Y. Ahn, T. Li, S. Huang, Y. Ding, S. Hwang et al., Mixed-phase niobium oxide as a durable and ultra-fast charging anode for high-power lithium-ion batteries. Adv. Funct. Mater. 34, 2310853 (2024). https://doi.org/10.1002/adfm.202310853
- X. Ding, J. Lin, H. Huang, B. Zhao, X. Xiong, Competitive redox chemistries in vanadium niobium oxide for ultrafast and durable lithium storage. Nano-Micro Lett. 15, 195 (2023). https://doi.org/10.1007/s40820-023-01172-9
- W. Wu, M. Liu, Y. Pei, W. Li, W. Lin et al., Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy Mater. 12, 2201130 (2022). https://doi.org/10.1002/aenm.202201130
- M. Wang, Z. Yao, Q. Li, Y. Hu, X. Yin et al., Fast and extensive intercalation chemistry in Wadsley-Roth phase based high-capacity electrodes. J. Energy Chem. 69, 601–611 (2022). https://doi.org/10.1016/j.jechem.2022.02.014
- Y. Yang, J. Huang, Z. Cao, Z. Lv, D. Wu et al., Synchronous manipulation of ion and electron transfer in Wadsley-Roth phase Ti-Nb oxides for fast-charging lithium-ion batteries. Adv. Sci. 9, e2104530 (2022). https://doi.org/10.1002/advs.202104530
- M. Su, M. Li, K. He, T. Wan, X. Chen et al., Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries. Chem. Eng. J. 455, 140802 (2023). https://doi.org/10.1016/j.cej.2022.140802
- Q. Fu, X. Zhu, R. Li, G. Liang, L. Luo et al., A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Storage Mater. 30, 401–411 (2020). https://doi.org/10.1016/j.ensm.2020.05.012
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
- Q. Deng, Y. Fu, C. Zhu, Y. Yu, Niobium-based oxides toward advanced electrochemical energy storage: recent advances and challenges. Small 15, e1804884 (2019). https://doi.org/10.1002/smll.201804884
- Q. Zhang, S. Ma, W. Wang, S. Gao, Y. Ou et al., “Zero-strain” K2SrV4O12 as a high-temperature friendly Li+-storage material. Energy Storage Mater. 52, 637–645 (2022). https://doi.org/10.1016/j.ensm.2022.08.023
- G. Liang, L. Yang, Q. Han, G. Chen, C. Lin et al., Conductive Li3.08Cr0.02Si0.09V0.9O4 anode material: novel “zero-strain” characteristic and superior electrochemical Li+ storage. Adv. Energy Mater. 10, 1904267 (2020). https://doi.org/10.1002/aenm.201904267
- T.-T. Wei, P. Peng, Y.-R. Ji, Y.-R. Zhu, T.-F. Yi et al., Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–410 (2022). https://doi.org/10.1016/j.jechem.2022.04.017
- R. Xia, K. Zhao, L.-Y. Kuo, L. Zhang, D.M. Cunha et al., Nickel niobate anodes for high rate lithium-ion batteries. Adv. Energy Mater. 12, 2102972 (2022). https://doi.org/10.1002/aenm.202102972
- B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/s0021889801002242
- W. Huang, C. Yang, N. Miao, C. Lin, W. Xu et al., A novel temperature-dependent electrochemical system for electrode materials for time resolved X-ray diffraction. Scr. Mater. 211, 114529 (2022). https://doi.org/10.1016/j.scriptamat.2022.114529
- N. Muralidharan, C.N. Brock, A.P. Cohn, D. Schauben, R.E. Carter et al., Tunable mechanochemistry of lithium battery electrodes. ACS Nano 11, 6243–6251 (2017). https://doi.org/10.1021/acsnano.7b02404
- J. Kim, S.H. Jo, S. Bhavaraju, A. Eccleston, S.O. Kang, Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte. J. Electroanal. Chem. 759, 201–206 (2015). https://doi.org/10.1016/j.jelechem.2015.11.022
- C.-H. Shen, R. Gundakaram, R.-S. Liu, H.-S. Sheu, Absence of phase transformation at low temperature in Co-doped LiMn2O4 samples. J. Chem. Soc. Dalton Trans. 1, 37–40 (2001). https://doi.org/10.1039/B007120J
- J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12. J. Power. Sources 159, 1340–1345 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.039
- F. Huang, J. Ma, H. Xia, Y. Huang, L. Zhao et al., Capacity loss mechanism of the Li4Ti5O12 microsphere anode of lithium-ion batteries at high temperature and rate cycling conditions. ACS Appl. Mater. Interfaces 11, 37357–37364 (2019). https://doi.org/10.1021/acsami.9b14119
- X. Zhu, J. Xu, Y. Luo, Q. Fu, G. Liang et al., MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J. Mater. Chem. A 7, 6522–6532 (2019). https://doi.org/10.1039/C9TA00309F
- S. Li, J. Gao, Y. Ou, W. Wang, Q. Zhang et al., A general strategy to enhance the electrochemical activity and energy density of energy-storage materials through using sintering aids with redox activity: a case study of Mo4Nb26O77. J. Mater. Chem. A 10, 19953–19962 (2022). https://doi.org/10.1039/D2TA02169B
- Q. Fu, R. Li, X. Zhu, G. Liang, L. Luo et al., Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J. Mater. Chem. A 7, 19862–19871 (2019). https://doi.org/10.1039/c9ta04644e
- M. Liang, Y. Huang, Y. Lin, G. Liang, C. Huang et al., Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage. J. Mater. Sci. Technol. 83, 66–74 (2021). https://doi.org/10.1016/j.jmst.2020.12.018
- Y. De Luna, N. Bensalah, Mechanochemical synthesis of orthorhombic nickel niobate (NiNb2O6) as a robust and fast charging anode material for lithium-ion batteries. ACS Appl. Energy Mater. 5, 7443–7457 (2022). https://doi.org/10.1021/acsaem.2c00935
- A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, vol. 38, 2nd edn. (Wiley, New York, 2001), pp. 1364–1365. https://doi.org/10.1023/A:1021637209564
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- L. Yan, X. Rui, G. Chen, W. Xu, G. Zou et al., Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8, 8443–8465 (2016). https://doi.org/10.1039/c6nr01340f
- H. Jiang, H. Zhang, L. Chen, Y. Hu, C. Li, Nanospace-confinement synthesis: designing high-energy anode materials toward ultrastable lithium-ion batteries. Small 16, e2002351 (2020). https://doi.org/10.1002/smll.202002351
- L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011). https://doi.org/10.1039/C0EE00699H
- Z. Li, M. Han, P. Yu, J. Lin, J. Yu, Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 16, 98 (2024). https://doi.org/10.1007/s40820-023-01308-x
- Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15, 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
- J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
References
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
T.M.M. Heenan, I. Mombrini, A. Llewellyn, S. Checchia, C. Tan et al., Mapping internal temperatures during high-rate battery applications. Nature 617, 507–512 (2023). https://doi.org/10.1038/s41586-023-05913-z
T. Liu, J. Liu, L. Li, L. Yu, J. Diao et al., Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022). https://doi.org/10.1038/s41586-022-04689-y
C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16, 150 (2024). https://doi.org/10.1007/s40820-024-01363-y
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between –40 and 60 °C. Adv. Energy Mater. 10, 1904152 (2020). https://doi.org/10.1002/aenm.201904152
M.-T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
S.R. Sivakkumar, J.Y. Nerkar, A.G. Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim. Acta 55, 3330–3335 (2010). https://doi.org/10.1016/j.electacta.2010.01.059
T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-Mehrens, Temperature dependent ageing mechanisms in lithium-ion batteries–a post-mortem study. J. Power. Sources 262, 129–135 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.112
C. Lv, C. Lin, X.S. Zhao, Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv. Energy Mater. 12, 2102550 (2022). https://doi.org/10.1002/aenm.202102550
S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 98, 1–71 (2015). https://doi.org/10.1016/j.mser.2015.10.001
G. Zhu, K. Wen, W. Lv, X. Zhou, Y. Liang et al., Materials insights into low-temperature performances of lithium-ion batteries. J. Power. Sources 300, 29–40 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.056
E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, T. Kallio, Effect of Li4Ti5O12 p size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J. Phys. Chem. C 119, 2277–2283 (2015). https://doi.org/10.1021/jp509428c
W. Wang, Q. Zhang, T. Jiang, S. Li, J. Gao et al., Conductive LaCeNb6O18 with a very open A-site-cation-deficient perovskite structure: a fast- and stable-charging Li+-storage anode compound in a wide temperature range. Adv. Energy Mater. 12, 2200656 (2022). https://doi.org/10.1002/aenm.202200656
S. Li, J. Gao, Y. Ou, X. Liu, L. Yang et al., Temperature effects on electrochemical energy-storage materials: a case study of yttrium niobate porous microspheres. Small 19, e2303763 (2023). https://doi.org/10.1002/smll.202303763
P. Cui, P. Zhang, X. Chen, X. Chen, T. Wan et al., Oxygen defect and Cl–doped modulated TiNb2O7 compound with high rate performance in lithium-ion batteries. ACS Appl. Mater. Interfaces 15, 43745–43755 (2023). https://doi.org/10.1021/acsami.3c08524
M. Su, M. Li, X. Long, Y. Lei, X. Chen et al., Insight into the effect of Cu2+ doping on CuxNb2–xO5–3/2x for high-power lithium-ion batteries. ACS Sustain. Chem. Eng. 11, 14761–14772 (2023). https://doi.org/10.1021/acssuschemeng.3c04461
K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018). https://doi.org/10.1038/s41586-018-0347-0
J.M. Sieffert, C.J. Lang, S. Bazylevych, S. Jia, E. McCalla, The Nb–Ti–W–O system as safe high-power anodes for Li-ion batteries. J. Mater. Chem. A 12, 1429–1437 (2024). https://doi.org/10.1039/D3TA06224D
Z. Wu, G. Liang, W. Kong Pang, J. Zou, W. Zhang et al., Structural distortion in the Wadsley-Roth niobium molybdenum oxide phase triggering extraordinarily stable battery performance. Angew. Chem. Int. Ed. 63, e202317941 (2024). https://doi.org/10.1002/anie.202317941
Y. Ahn, T. Li, S. Huang, Y. Ding, S. Hwang et al., Mixed-phase niobium oxide as a durable and ultra-fast charging anode for high-power lithium-ion batteries. Adv. Funct. Mater. 34, 2310853 (2024). https://doi.org/10.1002/adfm.202310853
X. Ding, J. Lin, H. Huang, B. Zhao, X. Xiong, Competitive redox chemistries in vanadium niobium oxide for ultrafast and durable lithium storage. Nano-Micro Lett. 15, 195 (2023). https://doi.org/10.1007/s40820-023-01172-9
W. Wu, M. Liu, Y. Pei, W. Li, W. Lin et al., Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy Mater. 12, 2201130 (2022). https://doi.org/10.1002/aenm.202201130
M. Wang, Z. Yao, Q. Li, Y. Hu, X. Yin et al., Fast and extensive intercalation chemistry in Wadsley-Roth phase based high-capacity electrodes. J. Energy Chem. 69, 601–611 (2022). https://doi.org/10.1016/j.jechem.2022.02.014
Y. Yang, J. Huang, Z. Cao, Z. Lv, D. Wu et al., Synchronous manipulation of ion and electron transfer in Wadsley-Roth phase Ti-Nb oxides for fast-charging lithium-ion batteries. Adv. Sci. 9, e2104530 (2022). https://doi.org/10.1002/advs.202104530
M. Su, M. Li, K. He, T. Wan, X. Chen et al., Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries. Chem. Eng. J. 455, 140802 (2023). https://doi.org/10.1016/j.cej.2022.140802
Q. Fu, X. Zhu, R. Li, G. Liang, L. Luo et al., A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Storage Mater. 30, 401–411 (2020). https://doi.org/10.1016/j.ensm.2020.05.012
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
Q. Deng, Y. Fu, C. Zhu, Y. Yu, Niobium-based oxides toward advanced electrochemical energy storage: recent advances and challenges. Small 15, e1804884 (2019). https://doi.org/10.1002/smll.201804884
Q. Zhang, S. Ma, W. Wang, S. Gao, Y. Ou et al., “Zero-strain” K2SrV4O12 as a high-temperature friendly Li+-storage material. Energy Storage Mater. 52, 637–645 (2022). https://doi.org/10.1016/j.ensm.2022.08.023
G. Liang, L. Yang, Q. Han, G. Chen, C. Lin et al., Conductive Li3.08Cr0.02Si0.09V0.9O4 anode material: novel “zero-strain” characteristic and superior electrochemical Li+ storage. Adv. Energy Mater. 10, 1904267 (2020). https://doi.org/10.1002/aenm.201904267
T.-T. Wei, P. Peng, Y.-R. Ji, Y.-R. Zhu, T.-F. Yi et al., Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–410 (2022). https://doi.org/10.1016/j.jechem.2022.04.017
R. Xia, K. Zhao, L.-Y. Kuo, L. Zhang, D.M. Cunha et al., Nickel niobate anodes for high rate lithium-ion batteries. Adv. Energy Mater. 12, 2102972 (2022). https://doi.org/10.1002/aenm.202102972
B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/s0021889801002242
W. Huang, C. Yang, N. Miao, C. Lin, W. Xu et al., A novel temperature-dependent electrochemical system for electrode materials for time resolved X-ray diffraction. Scr. Mater. 211, 114529 (2022). https://doi.org/10.1016/j.scriptamat.2022.114529
N. Muralidharan, C.N. Brock, A.P. Cohn, D. Schauben, R.E. Carter et al., Tunable mechanochemistry of lithium battery electrodes. ACS Nano 11, 6243–6251 (2017). https://doi.org/10.1021/acsnano.7b02404
J. Kim, S.H. Jo, S. Bhavaraju, A. Eccleston, S.O. Kang, Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte. J. Electroanal. Chem. 759, 201–206 (2015). https://doi.org/10.1016/j.jelechem.2015.11.022
C.-H. Shen, R. Gundakaram, R.-S. Liu, H.-S. Sheu, Absence of phase transformation at low temperature in Co-doped LiMn2O4 samples. J. Chem. Soc. Dalton Trans. 1, 37–40 (2001). https://doi.org/10.1039/B007120J
J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12. J. Power. Sources 159, 1340–1345 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.039
F. Huang, J. Ma, H. Xia, Y. Huang, L. Zhao et al., Capacity loss mechanism of the Li4Ti5O12 microsphere anode of lithium-ion batteries at high temperature and rate cycling conditions. ACS Appl. Mater. Interfaces 11, 37357–37364 (2019). https://doi.org/10.1021/acsami.9b14119
X. Zhu, J. Xu, Y. Luo, Q. Fu, G. Liang et al., MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J. Mater. Chem. A 7, 6522–6532 (2019). https://doi.org/10.1039/C9TA00309F
S. Li, J. Gao, Y. Ou, W. Wang, Q. Zhang et al., A general strategy to enhance the electrochemical activity and energy density of energy-storage materials through using sintering aids with redox activity: a case study of Mo4Nb26O77. J. Mater. Chem. A 10, 19953–19962 (2022). https://doi.org/10.1039/D2TA02169B
Q. Fu, R. Li, X. Zhu, G. Liang, L. Luo et al., Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J. Mater. Chem. A 7, 19862–19871 (2019). https://doi.org/10.1039/c9ta04644e
M. Liang, Y. Huang, Y. Lin, G. Liang, C. Huang et al., Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage. J. Mater. Sci. Technol. 83, 66–74 (2021). https://doi.org/10.1016/j.jmst.2020.12.018
Y. De Luna, N. Bensalah, Mechanochemical synthesis of orthorhombic nickel niobate (NiNb2O6) as a robust and fast charging anode material for lithium-ion batteries. ACS Appl. Energy Mater. 5, 7443–7457 (2022). https://doi.org/10.1021/acsaem.2c00935
A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, vol. 38, 2nd edn. (Wiley, New York, 2001), pp. 1364–1365. https://doi.org/10.1023/A:1021637209564
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
L. Yan, X. Rui, G. Chen, W. Xu, G. Zou et al., Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8, 8443–8465 (2016). https://doi.org/10.1039/c6nr01340f
H. Jiang, H. Zhang, L. Chen, Y. Hu, C. Li, Nanospace-confinement synthesis: designing high-energy anode materials toward ultrastable lithium-ion batteries. Small 16, e2002351 (2020). https://doi.org/10.1002/smll.202002351
L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011). https://doi.org/10.1039/C0EE00699H
Z. Li, M. Han, P. Yu, J. Lin, J. Yu, Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 16, 98 (2024). https://doi.org/10.1007/s40820-023-01308-x
Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15, 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5