3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 157
Abstract
Ti3C2Tx MXene is widely regarded as a potential microwave absorber due to its dielectric multi-layered structure. However, missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condition. Herein, with the inspiration from dielectric-magnetic synergy, this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method. Ni2+ ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption. Benefiting from the possible “seed-germination” effect, the “seeds” Ni2+ grow into “buds” Ni nanoparticles and “stem” carbon nanotubes (CNTs) from the enlarged “soil” of MXene skeleton. Due to the improved impedance matching condition, the MXene-CNTs/Ni hybrid holds a superior microwave absorption performance of − 56.4 dB at only 2.4 mm thickness. Such a distinctive 3D architecture endows the hybrids: (i) a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability, (ii) a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability, confirmed by the off-axis electron holography. These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.
Highlights:
1 Benefiting from the possible “seed-germination” effect, the “seeds” Ni2+ grow into “buds” Ni nanoparticles and “stem” carbon nanotubes (CNTs) from the enlarged “soil” of MXene skeleton.
2 Compared with the traditional magnetic agglomeration, the MXene-CNTs/Ni hybrids exhibit the highly spatial dispersed magnetic architecture.
3 3D MXene-CNTs/Ni composites hold excellent microwave absorption performance (−56.4 dB at only 2.4 mm).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401 (2004). https://doi.org/10.1002/adma.200306460
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- M. Cao, J. Yang, W. Song, D. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812
- F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
- Y. Wang, B. Suo, Y. Shi, H. Yuan, C. Zhu et al., General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotube arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation. ACS Appl. Mater. Interfaces 12(36), 40692–40701 (2020). https://doi.org/10.1021/acsami.0c12413
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- F. Cao, F. Yan, J. Xu, C. Zhu, L. Qi et al., Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 174, 79–89 (2021). https://doi.org/10.1016/j.carbon.2020.12.013
- X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
- X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123208
- N. He, Z. He, L. Liu, Y. Lu, F. Wang et al., Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122743
- X. Zhang, Z. Zhao, J. Xu, Q. Ouyang, C. Zhu et al., N-doped carbon nanotube arrays on reduced graphene oxide as multifunctional materials for energy devices and absorption of electromagnetic wave. Carbon 177, 216–225 (2021). https://doi.org/10.1016/j.carbon.2021.02.085
- T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao et al., Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8(11), 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow mxenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- X. Li, W. You, L. Wang, J. Liu, Z. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11(47), 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
- X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna et al., Mxene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
- Y. Qing, W. Zhou, F. Luo, D. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42(14), 16412–16416 (2016). https://doi.org/10.1016/j.ceramint.2016.07.150
- X. Li, X. Yin, M. Han, C. Song, X. Sun et al., A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5(30), 7621–7628 (2017). https://doi.org/10.1039/c7tc01991b
- Y. Lei, Z. Yao, S. Li, J. Zhou, A.A. Haidry et al., Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int. 46(8), 10006–10015 (2020). https://doi.org/10.1016/j.ceramint.2019.12.189
- Y. Qian, H. Wei, J. Dong, Y. Du, X. Fang et al., Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43(14), 10757–10762 (2017). https://doi.org/10.1016/j.ceramint.2017.05.082
- B. Dai, B. Zhao, X. Xie, T. Su, B. Fan et al., Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 6(21), 5690–5697 (2018). https://doi.org/10.1039/c8tc01404c
- X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
- L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@rGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloy. Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
- N. Li, X. Xie, H. Lu, B. Fan, X. Wang et al., Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 45(17), 22880–22888 (2019). https://doi.org/10.1016/j.ceramint.2019.07.331
- P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, L.B. Kong, Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 229, 286–289 (2018). https://doi.org/10.1016/j.matlet.2018.07.045
- C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- J. He, D. Shan, S. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.165639
- C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano Micro Lett. 13(1), 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
- J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Se4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4(1), 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
- F. Ran, X. Xu, D. Pan, Y. Liu, Y. Bai et al., Ultrathin 2D metal–organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device. Nano Micro Lett. 12(1), 46 (2020). https://doi.org/10.1007/s40820-020-0382-x
- M. Cao, Y. Cai, P. He, J. Shu, W. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- M. Ning, J. Li, B. Kuang, C. Wang, D. Su et al., One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M=Fe Co, Ni) for efficient microwave absorption. Appl. Surf. Sci. 447, 244–253 (2018). https://doi.org/10.1016/j.apsusc.2018.03.242
- L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5(8), 2005–2014 (2017). https://doi.org/10.1039/c6tc05179k
- H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3(19), 5056–5064 (2015). https://doi.org/10.1039/c5tc00525f
- H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
- X. Li, L. Wang, W. You, L. Xing, L. Yang et al., Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11(28), 13269–13281 (2019). https://doi.org/10.1039/c9nr02667c
- M. Hytch, F. Houdellier, F. Hue, E. Snoeck, Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453(7198), 1086–1089 (2008). https://doi.org/10.1038/nature07049
- A. Nie, L. Gan, Y. Chong, H. Asayesh-Ardakani, Q. Li et al., Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano 7(7), 6203–6211 (2013). https://doi.org/10.1021/nn402125e
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- X. Li, L. Wang, W. You, L. Xing, X. Yu et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11(6), 2694–2702 (2019). https://doi.org/10.1039/c8nr08601j
References
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401 (2004). https://doi.org/10.1002/adma.200306460
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
M. Cao, J. Yang, W. Song, D. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
Y. Wang, B. Suo, Y. Shi, H. Yuan, C. Zhu et al., General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotube arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation. ACS Appl. Mater. Interfaces 12(36), 40692–40701 (2020). https://doi.org/10.1021/acsami.0c12413
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
F. Cao, F. Yan, J. Xu, C. Zhu, L. Qi et al., Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 174, 79–89 (2021). https://doi.org/10.1016/j.carbon.2020.12.013
X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123208
N. He, Z. He, L. Liu, Y. Lu, F. Wang et al., Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122743
X. Zhang, Z. Zhao, J. Xu, Q. Ouyang, C. Zhu et al., N-doped carbon nanotube arrays on reduced graphene oxide as multifunctional materials for energy devices and absorption of electromagnetic wave. Carbon 177, 216–225 (2021). https://doi.org/10.1016/j.carbon.2021.02.085
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao et al., Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8(11), 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow mxenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
X. Li, W. You, L. Wang, J. Liu, Z. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11(47), 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna et al., Mxene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
Y. Qing, W. Zhou, F. Luo, D. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42(14), 16412–16416 (2016). https://doi.org/10.1016/j.ceramint.2016.07.150
X. Li, X. Yin, M. Han, C. Song, X. Sun et al., A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5(30), 7621–7628 (2017). https://doi.org/10.1039/c7tc01991b
Y. Lei, Z. Yao, S. Li, J. Zhou, A.A. Haidry et al., Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int. 46(8), 10006–10015 (2020). https://doi.org/10.1016/j.ceramint.2019.12.189
Y. Qian, H. Wei, J. Dong, Y. Du, X. Fang et al., Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43(14), 10757–10762 (2017). https://doi.org/10.1016/j.ceramint.2017.05.082
B. Dai, B. Zhao, X. Xie, T. Su, B. Fan et al., Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 6(21), 5690–5697 (2018). https://doi.org/10.1039/c8tc01404c
X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@rGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloy. Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
N. Li, X. Xie, H. Lu, B. Fan, X. Wang et al., Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 45(17), 22880–22888 (2019). https://doi.org/10.1016/j.ceramint.2019.07.331
P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, L.B. Kong, Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 229, 286–289 (2018). https://doi.org/10.1016/j.matlet.2018.07.045
C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
J. He, D. Shan, S. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.165639
C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano Micro Lett. 13(1), 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Se4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4(1), 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
F. Ran, X. Xu, D. Pan, Y. Liu, Y. Bai et al., Ultrathin 2D metal–organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device. Nano Micro Lett. 12(1), 46 (2020). https://doi.org/10.1007/s40820-020-0382-x
M. Cao, Y. Cai, P. He, J. Shu, W. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
M. Ning, J. Li, B. Kuang, C. Wang, D. Su et al., One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M=Fe Co, Ni) for efficient microwave absorption. Appl. Surf. Sci. 447, 244–253 (2018). https://doi.org/10.1016/j.apsusc.2018.03.242
L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5(8), 2005–2014 (2017). https://doi.org/10.1039/c6tc05179k
H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3(19), 5056–5064 (2015). https://doi.org/10.1039/c5tc00525f
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
X. Li, L. Wang, W. You, L. Xing, L. Yang et al., Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11(28), 13269–13281 (2019). https://doi.org/10.1039/c9nr02667c
M. Hytch, F. Houdellier, F. Hue, E. Snoeck, Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453(7198), 1086–1089 (2008). https://doi.org/10.1038/nature07049
A. Nie, L. Gan, Y. Chong, H. Asayesh-Ardakani, Q. Li et al., Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano 7(7), 6203–6211 (2013). https://doi.org/10.1021/nn402125e
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
X. Li, L. Wang, W. You, L. Xing, X. Yu et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11(6), 2694–2702 (2019). https://doi.org/10.1039/c8nr08601j