Cocoon Silk-Derived, Hierarchically Porous Carbon as Anode for Highly Robust Potassium-Ion Hybrid Capacitors
Corresponding Author: Jian Zhu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 113
Abstract
Potassium-ion hybrid capacitors (KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors. The development of KIHCs is subject to the investigation of applicable K+ storage materials which are able to accommodate the relatively large size and high activity of potassium. Here, we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon (SHPNC). The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling, but also provides sufficient void space to relieve volume expansion of electrode and improves its stability. Therefore, KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg−1 (calculated based on the total mass of anode and cathode), long lifespan, and ultrafast charge/slow discharge performance. This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.
Highlights:
1 The hierarchically porous nitrogen-doped carbon (SHPNC) was fabricated by biorenewable carbon sources.
2 The SHPNC electrode exhibited a high specific capacity, excellent cyclic stability, and superior rate capability.
3 The asymmetric potassium-ion hybrid capacitors delivered a maximum energy density of 135 Wh kg−1, long lifespan with excellent capacity retention, and outstanding ultrafast charge/slow discharge performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu, Y. Shao, J. Li, J. Sun, Z. Liu, Designing 3d biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30, 1903878 (2019). https://doi.org/10.1002/adfm.201903878
- J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang, X. Yan, Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9(19), 19 (2019). https://doi.org/10.1002/aenm.201803894
- B. Yang, J. Chen, L. Liu, P. Ma, B. Liu, J. Lang, Y. Tang, X. Yan, 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
- Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6(12), 1802272 (2019). https://doi.org/10.1002/advs.201802272
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
- K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
- X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
- I.A. Rodriguez-Perez, Y. Yuan, C. Bommier, X. Wang, L. Ma et al., Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139(37), 13031–13037 (2017). https://doi.org/10.1021/jacs.7b06313
- S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11, 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji, X. Zhang, Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces. 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28(36), 1892684 (2018). https://doi.org/10.1002/adfm.201802684
- J. Lang, J. Li, X. Ou, F. Zhang, K. Shin, Y. Tang, A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life. ACS Appl. Mater. Interfaces. 12(2), 2424–2431 (2020). https://doi.org/10.1021/acsami.9b17635
- Q. Shen, P. Jiang, H. He, C. Chen, Y. Liu, M. Zhang, Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 11(28), 13511–13520 (2019). https://doi.org/10.1039/c9nr03480c
- Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui, F. Du, B. Zou, Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horizons 4(6), 1394–1401 (2019). https://doi.org/10.1039/c9nh00211a
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1800804 (2018). https://doi.org/10.1002/adma.201800804
- Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng et al., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11, 30 (2019). https://doi.org/10.1007/s40820-019-0260-6
- C. Han, K. Han, X. Wang, C. Wang, Q. Li et al., Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 10(15), 6820–6826 (2018). https://doi.org/10.1039/c8nr00237a
- J. Wang, L. Fan, Z. Liu, S. Chen, Q. Zhang et al., In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13(3), 3703–3713 (2019). https://doi.org/10.1021/acsnano.9b00634
- B. Ji, W. Yao, Y. Zheng, P. Kidkhunthod, X. Zhou et al., A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat. Commun. 11(1), 1225 (2020). https://doi.org/10.1038/s41467-020-15044-y
- F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei, A.-H. Emwas, H.N. Alshareef, Porous MXenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
- D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29(32), 1903496 (2019). https://doi.org/10.1002/adfm.201903496
- Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu, F. Li, J. Chen, A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10(7), 2048–2052 (2019). https://doi.org/10.1039/c8sc04489a
- Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ion. 324, 267–275 (2018). https://doi.org/10.1016/j.ssi.2018.07.019
- W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), 1801812 (2018). https://doi.org/10.1002/adma.201801812
- L. Wang, J. Yang, J. Li, T. Chen, S. Chen et al., Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 409, 24–30 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.092
- X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing, Q. Zhuang, Z. Ju, Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 378, 460–467 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.077
- W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
- Y. An, H. Fei, Z. Zhang, L. Ci, S. Xiong, J. Feng, A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. Chem. Commun. 53(59), 8360–8363 (2017). https://doi.org/10.1039/c7cc03606j
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen, C. Yan, Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
- R. Hao, Y. Yang, H. Wang, B. Jia, G. Ma, D. Yu, L. Guo, S. Yang, Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018). https://doi.org/10.1016/j.nanoen.2017.12.042
- X. Chang, X. Zhou, X. Ou, C.S. Lee, J. Zhou, Y. Tang, Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9(47), 1902672 (2019). https://doi.org/10.1002/aenm.201902672
- C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010
- N. Sinan, E. Unur, Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J. Energy Chem. 26(4), 783–789 (2017). https://doi.org/10.1016/j.jechem.2017.04.011
- X. Zhou, P. Wang, Y. Zhang, L. Wang, L. Zhang, L. Zhang, L. Xu, L. Liu, Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J. Mater. Chem. A 5(25), 12958–12968 (2017). https://doi.org/10.1039/c7ta02113e
- Y. Li, R.A. Adams, A. Arora, V.G. Pol, A.M. Levine et al., Sustainable potassium-ion battery anodes derived from waste-tire rubber. J. Electrochem. Soc. 164(6), A1234–A1238 (2017). https://doi.org/10.1149/2.1391706jes
- D. Li, Y. Sun, S. Chen, J. Yao, Y. Zhang, Y. Xia, D. Yang, Highly porous fes/carbon fibers derived from fe-carrageenan biomass: high-capacity and durable anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces. 10(20), 17175–17182 (2018). https://doi.org/10.1021/acsami.8b03059
- Y. Ai, Y. You, F. Wei, X. Jiang, Z. Han et al., Hollow bio-derived polymer nanospheres with ordered mesopores for sodium-ion battery. Nano-Micro Lett. 12(1), 31 (2020). https://doi.org/10.1007/s40820-020-0370-1H
- H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated n-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11, 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- J.H. Hou, C.B. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)
- Y. Zhu, W. Sun, J. Luo, W. Chen, T. Cao et al., A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 9(1), 3861 (2018). https://doi.org/10.1038/s41467-018-06296-w
- Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25(14), 1993–1998 (2013). https://doi.org/10.1002/adma.201204692
- C. Hu, L. Wang, Y. Zhao, M. Ye, Q. Chen, Z. Feng, L. Qu, Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage. Nanoscale 6(14), 8002–8009 (2014). https://doi.org/10.1039/c4nr01184h
- Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135(4), 1524–1530 (2013). https://doi.org/10.1021/ja310849c
- Y. Liang, D. Wu, R. Fu, Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 3, 1119 (2013). https://doi.org/10.1038/srep01119
- W. Cao, E. Zhang, J. Wang, Z. Liu, J. Ge, X. Yu, H. Yang, B. Lu, Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta 293, 364–370 (2019). https://doi.org/10.1016/j.electacta.2018.10.036
- G. Ma, K. Huang, J.S. Ma, Z. Ju, Z. Xing, Q.C. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1039/c7ta01108c
- Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan et al., N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135
- M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong et al., Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9, 1901663 (2019). https://doi.org/10.1002/aenm.201901663
- Z. Xing, Y. Qi, Z. Jian, X. Ji, Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces. 9(5), 4343–4351 (2017). https://doi.org/10.1021/acsami.6b06767
- W. Luo, F. Li, W. Zhang, K. Han, J.-J. Gaumet, H.E. Schaefer, L. Mai, Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 12(5), 1025–1031 (2019). https://doi.org/10.1007/s12274-019-2335-6
- Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu, Z. Guo, Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8(15), 1703288 (2018). https://doi.org/10.1002/aenm.201703288
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li et al., Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 229, 303–309 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.021
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8, 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- Z. Tai, Q. Zhang, Y. Liu, H. Liu, S. Dou, Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
- C. Zhang, Y. Qiao, P. Xiong, W. Ma, P. Bai et al., Conjugated microporous polymers with tunable electronic structure for high-performance potassium-ion batteries. ACS Nano 13(1), 745–754 (2019). https://doi.org/10.1021/acsnano.8b08046
- J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
- J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
- N. Xiao, G. Gourdin, Y. Wu, Simultaneous stabilization of potassium metal and superoxide in K-O2 batteries on the basis of electrolyte reactivity. Angew. Chem. Int. Ed. 57(34), 10864–10867 (2018). https://doi.org/10.1002/anie.201804115
- B. Zhang, G. Rousse, D. Foix, R. Dugas, D.A. Corte, J.M. Tarascon, Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater. 28(44), 9824–9830 (2016). https://doi.org/10.1002/adma.201603212
- Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309–1316 (2015). https://doi.org/10.1039/c4ee03759f
- J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
- J. Ding, Z. Li, K. Cui, S. Boyer, D. Karpuzov, D. Mitlin, Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23, 129–137 (2016). https://doi.org/10.1016/j.nanoen.2016.03.014
- J. Zhang, W. Lv, D. Zheng, Q. Liang, D.W. Wang, F. Kang, Q.H. Yang, The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8(11), 1702395 (2018). https://doi.org/10.1002/aenm.201702395
- Y. Feng, S. Chen, J. Wang, B. Lu, Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 43, 129–138 (2020). https://doi.org/10.1016/j.jechem.2019.08.013
- A. Le Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (KIC): an innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 363, 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
- L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu, X. Liu, Y. Wu, W. Huang, Cubic prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106–113 (2017). https://doi.org/10.1016/j.electacta.2017.02.096
References
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu, Y. Shao, J. Li, J. Sun, Z. Liu, Designing 3d biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30, 1903878 (2019). https://doi.org/10.1002/adfm.201903878
J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang, X. Yan, Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9(19), 19 (2019). https://doi.org/10.1002/aenm.201803894
B. Yang, J. Chen, L. Liu, P. Ma, B. Liu, J. Lang, Y. Tang, X. Yan, 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6(12), 1802272 (2019). https://doi.org/10.1002/advs.201802272
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
I.A. Rodriguez-Perez, Y. Yuan, C. Bommier, X. Wang, L. Ma et al., Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139(37), 13031–13037 (2017). https://doi.org/10.1021/jacs.7b06313
S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11, 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji, X. Zhang, Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces. 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28(36), 1892684 (2018). https://doi.org/10.1002/adfm.201802684
J. Lang, J. Li, X. Ou, F. Zhang, K. Shin, Y. Tang, A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life. ACS Appl. Mater. Interfaces. 12(2), 2424–2431 (2020). https://doi.org/10.1021/acsami.9b17635
Q. Shen, P. Jiang, H. He, C. Chen, Y. Liu, M. Zhang, Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 11(28), 13511–13520 (2019). https://doi.org/10.1039/c9nr03480c
Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui, F. Du, B. Zou, Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horizons 4(6), 1394–1401 (2019). https://doi.org/10.1039/c9nh00211a
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1800804 (2018). https://doi.org/10.1002/adma.201800804
Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng et al., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11, 30 (2019). https://doi.org/10.1007/s40820-019-0260-6
C. Han, K. Han, X. Wang, C. Wang, Q. Li et al., Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 10(15), 6820–6826 (2018). https://doi.org/10.1039/c8nr00237a
J. Wang, L. Fan, Z. Liu, S. Chen, Q. Zhang et al., In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13(3), 3703–3713 (2019). https://doi.org/10.1021/acsnano.9b00634
B. Ji, W. Yao, Y. Zheng, P. Kidkhunthod, X. Zhou et al., A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat. Commun. 11(1), 1225 (2020). https://doi.org/10.1038/s41467-020-15044-y
F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei, A.-H. Emwas, H.N. Alshareef, Porous MXenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29(32), 1903496 (2019). https://doi.org/10.1002/adfm.201903496
Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu, F. Li, J. Chen, A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10(7), 2048–2052 (2019). https://doi.org/10.1039/c8sc04489a
Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ion. 324, 267–275 (2018). https://doi.org/10.1016/j.ssi.2018.07.019
W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), 1801812 (2018). https://doi.org/10.1002/adma.201801812
L. Wang, J. Yang, J. Li, T. Chen, S. Chen et al., Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 409, 24–30 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.092
X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing, Q. Zhuang, Z. Ju, Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 378, 460–467 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.077
W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
Y. An, H. Fei, Z. Zhang, L. Ci, S. Xiong, J. Feng, A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. Chem. Commun. 53(59), 8360–8363 (2017). https://doi.org/10.1039/c7cc03606j
J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen, C. Yan, Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
R. Hao, Y. Yang, H. Wang, B. Jia, G. Ma, D. Yu, L. Guo, S. Yang, Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018). https://doi.org/10.1016/j.nanoen.2017.12.042
X. Chang, X. Zhou, X. Ou, C.S. Lee, J. Zhou, Y. Tang, Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9(47), 1902672 (2019). https://doi.org/10.1002/aenm.201902672
C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010
N. Sinan, E. Unur, Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J. Energy Chem. 26(4), 783–789 (2017). https://doi.org/10.1016/j.jechem.2017.04.011
X. Zhou, P. Wang, Y. Zhang, L. Wang, L. Zhang, L. Zhang, L. Xu, L. Liu, Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J. Mater. Chem. A 5(25), 12958–12968 (2017). https://doi.org/10.1039/c7ta02113e
Y. Li, R.A. Adams, A. Arora, V.G. Pol, A.M. Levine et al., Sustainable potassium-ion battery anodes derived from waste-tire rubber. J. Electrochem. Soc. 164(6), A1234–A1238 (2017). https://doi.org/10.1149/2.1391706jes
D. Li, Y. Sun, S. Chen, J. Yao, Y. Zhang, Y. Xia, D. Yang, Highly porous fes/carbon fibers derived from fe-carrageenan biomass: high-capacity and durable anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces. 10(20), 17175–17182 (2018). https://doi.org/10.1021/acsami.8b03059
Y. Ai, Y. You, F. Wei, X. Jiang, Z. Han et al., Hollow bio-derived polymer nanospheres with ordered mesopores for sodium-ion battery. Nano-Micro Lett. 12(1), 31 (2020). https://doi.org/10.1007/s40820-020-0370-1H
H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated n-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11, 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
J.H. Hou, C.B. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)
Y. Zhu, W. Sun, J. Luo, W. Chen, T. Cao et al., A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 9(1), 3861 (2018). https://doi.org/10.1038/s41467-018-06296-w
Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25(14), 1993–1998 (2013). https://doi.org/10.1002/adma.201204692
C. Hu, L. Wang, Y. Zhao, M. Ye, Q. Chen, Z. Feng, L. Qu, Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage. Nanoscale 6(14), 8002–8009 (2014). https://doi.org/10.1039/c4nr01184h
Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135(4), 1524–1530 (2013). https://doi.org/10.1021/ja310849c
Y. Liang, D. Wu, R. Fu, Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 3, 1119 (2013). https://doi.org/10.1038/srep01119
W. Cao, E. Zhang, J. Wang, Z. Liu, J. Ge, X. Yu, H. Yang, B. Lu, Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta 293, 364–370 (2019). https://doi.org/10.1016/j.electacta.2018.10.036
G. Ma, K. Huang, J.S. Ma, Z. Ju, Z. Xing, Q.C. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1039/c7ta01108c
Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan et al., N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135
M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong et al., Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9, 1901663 (2019). https://doi.org/10.1002/aenm.201901663
Z. Xing, Y. Qi, Z. Jian, X. Ji, Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces. 9(5), 4343–4351 (2017). https://doi.org/10.1021/acsami.6b06767
W. Luo, F. Li, W. Zhang, K. Han, J.-J. Gaumet, H.E. Schaefer, L. Mai, Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 12(5), 1025–1031 (2019). https://doi.org/10.1007/s12274-019-2335-6
Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu, Z. Guo, Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8(15), 1703288 (2018). https://doi.org/10.1002/aenm.201703288
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li et al., Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 229, 303–309 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.021
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8, 1800171 (2018). https://doi.org/10.1002/aenm.201800171
Z. Tai, Q. Zhang, Y. Liu, H. Liu, S. Dou, Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
C. Zhang, Y. Qiao, P. Xiong, W. Ma, P. Bai et al., Conjugated microporous polymers with tunable electronic structure for high-performance potassium-ion batteries. ACS Nano 13(1), 745–754 (2019). https://doi.org/10.1021/acsnano.8b08046
J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
N. Xiao, G. Gourdin, Y. Wu, Simultaneous stabilization of potassium metal and superoxide in K-O2 batteries on the basis of electrolyte reactivity. Angew. Chem. Int. Ed. 57(34), 10864–10867 (2018). https://doi.org/10.1002/anie.201804115
B. Zhang, G. Rousse, D. Foix, R. Dugas, D.A. Corte, J.M. Tarascon, Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater. 28(44), 9824–9830 (2016). https://doi.org/10.1002/adma.201603212
Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309–1316 (2015). https://doi.org/10.1039/c4ee03759f
J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
J. Ding, Z. Li, K. Cui, S. Boyer, D. Karpuzov, D. Mitlin, Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23, 129–137 (2016). https://doi.org/10.1016/j.nanoen.2016.03.014
J. Zhang, W. Lv, D. Zheng, Q. Liang, D.W. Wang, F. Kang, Q.H. Yang, The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8(11), 1702395 (2018). https://doi.org/10.1002/aenm.201702395
Y. Feng, S. Chen, J. Wang, B. Lu, Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 43, 129–138 (2020). https://doi.org/10.1016/j.jechem.2019.08.013
A. Le Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (KIC): an innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 363, 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu, X. Liu, Y. Wu, W. Huang, Cubic prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106–113 (2017). https://doi.org/10.1016/j.electacta.2017.02.096