Coordination Effect-Promoted Durable Ni(OH)2 for Energy-Saving Hydrogen Evolution from Water/Methanol Co-Electrocatalysis
Corresponding Author: Jianwen Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 200
Abstract
Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions (OER). Small molecule oxidation reactions with lower working potentials, such as methanol oxidation reactions, are good alternatives to OER with faster kinetics. However, the typically employed Ni-based electrocatalysts have poor activity and stability. Herein, a novel three-dimensional (3D)-networking Mo-doped Ni(OH)2 with ultralow Ni–Ni coordination is synthesized, which exhibits a high MOR activity of 100 mA cm−2 at 1.39 V, delivering 28 mV dec−1 for the Tafel slope. Meanwhile, hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm−2 at a cell voltage of 2.00 V for 50 h, showing excellent stability in an industrial alkaline concentration (6 M KOH). Mechanistic studies based on density functional theory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni–Ni coordination, 3D-networking structures and Mo dopants, which improve the catalytic activity, increase the active site density and strengthen the Ni(OH)2 3D-networking structures, respectively. This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.
Highlights:
1 A novel Ni(OH)2-based catalyst with ultralow Ni–Ni coordination is produced, exhibiting high activity (100 mA cm−2 at 1.39 V for methanol oxidation reactions) and outstanding stability in an industrial concentration electrolyte (over 500 mA cm−2 in 6 M KOH).
2 Mechanistic studies show that the improved kinetics and durability are primarily due to ultralow Ni–Ni coordination, 3D-networking structures and the Mo dopant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.W.D. Ng, M. Garcia-Melchor, M. Bajdich, P. Chakthranont, C. Kirk et al., Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016). https://doi.org/10.1038/nenergy.2016.53
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
- F.Q. Liu, J.W. Liu, Z. Gao, L. Wang, X.Z. Fu et al., Constructing bimetal-complex based hydrogen-bonded framework for highly efficient electrocatalytic water splitting. Appl. Catal. B 258, 117973 (2019). https://doi.org/10.1016/j.apcatb.2019.117973
- Y. Shi, W. Du, W. Zhou, C. Wang, S. Lu et al., Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 59(50), 22470–22474 (2020). https://doi.org/10.1002/anie.202011097
- Y. Lu, T. Liu, C.L. Dong, Y.C. Huang, Y. Li et al., Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 33(8), 2007056 (2021). https://doi.org/10.1002/adma.202007056
- X. Cao, X. Yan, L. Ke, K. Zhao, N. Yan, Proton-assisted reconstruction of perovskite oxides: toward improved electrocatalytic activity. ACS Appl. Mater. Interfaces 13(18), 22009–22016 (2021). https://doi.org/10.1021/acsami.1c03276
- Y. Qiu, Z. Feng, X. Ji, J. Liu, Surface self-reconstruction of nickel foam triggered by hydrothermal corrosion for boosted water oxidation. Int. J. Hydrogen Energy 46, 1501–1508 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.071
- Y. Qiu, X. Zhang, H. Han, Z. Liu, J. Liu et al., Advantageous metal-atom-escape towards super-hydrophilic interfaces assembly for efficient overall water splitting. J. Power Sources 499, 229941 (2021). https://doi.org/10.1016/j.jpowsour.2021.229941
- L. Huang, Y.Q. Su, R. Qi, D. Dang, Y. Qin et al., Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem. Int. Ed. 60(48), 25530–25537 (2021). https://doi.org/10.1002/anie.202111426
- J. Yu, Y. Cao, Q. Liu, Y. Luo, Y. Liu et al., Co-MOF nanosheet arrays for efficient alkaline oxygen evolution electrocatalysis. ChemNanoMat 7, 906–909 (2021). https://doi.org/10.1002/cnma.202100153
- K. Xiang, D. Wu, X. Deng, M. Li, S. Chen et al., Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 30(10), 1909610 (2020). https://doi.org/10.1002/adfm.201909610
- B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138(41), 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127
- K. Xiang, Z. Song, D. Wu, X. Deng, X. Wang et al., Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 9(10), 6316–6324 (2021). https://doi.org/10.1039/d0ta10501e
- Z. Miao, C. Xu, J. Zhan, Z. Xu, Morphology-control and template-free fabrication of bimetallic Cu–Ni alloy rods for ethanol electro-oxidation in alkaline media. J. Alloys Compd. 855, 157438 (2021). https://doi.org/10.1016/j.jallcom.2020.157438
- L. Dai, Q. Qin, X. Zhao, C. Xu, C. Hu et al., Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Central Sci. 2(8), 538–544 (2016). https://doi.org/10.1021/acscentsci.6b00164
- M.S.E. Houache, E. Cossar, S. Ntais, E.A. Baranova, Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation. J. Power Sources 375, 310–319 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.089
- S.S.G. Dodekatos, H. Tüysüz, Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8(7), 6301–6333 (2018). https://doi.org/10.1021/acscatal.8b01317
- J. Xie, W. Liu, X. Zhang, Y. Guo, L. Gao et al., Constructing hierarchical wire-on-sheet nanoarrays in phase-regulated cerium-doped nickel hydroxide for promoted urea electro-oxidation. ACS Mater. Lett. 1(1), 103–110 (2019). https://doi.org/10.1021/acsmaterialslett.9b00124
- J.D.S. Chen, A. Vasileff, S.Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed. 128(11), 3868–3872 (2016). https://doi.org/10.1002/anie.201600387
- Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Boosting hydrogen production by anodic oxidation of primary amines over a nise nanorod electrode. Angew. Chem. Int. Ed. 57(40), 13163–13166 (2018). https://doi.org/10.1002/anie.201807717
- C. Xu, E. Paone, D. Rodriguez-Padron, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49(13), 4273–4306 (2020). https://doi.org/10.1039/d0cs00041h
- W.J. Liu, L. Dang, Z. Xu, H.Q. Yu, S. Jin et al., Electrochemical oxidation of 5-hydroxymethylfurfural with nife layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 8(6), 5533–5541 (2018). https://doi.org/10.1021/acscatal.8b01017
- B.J. Taitt, D.H. Nam, K.S. Choi, A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 9(1), 660–670 (2019). https://doi.org/10.1021/acscatal.8b04003
- X. Zhen, Y. Wang, An overview of methanol as an internal combustion engine fuel. Renew. Sust. Energy Rev. 52, 477–493 (2015). https://doi.org/10.1016/j.rser.2015.07.083
- J.M. Spurgeon, B. Kumar, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018). https://doi.org/10.1039/c8ee00097b
- T. Iwasita, Electrocatalysis of methanol oxidation. Electrochim. Acta 47, 3663–3674 (2002). https://doi.org/10.1016/S0013-4686(02)00336-5
- E.H. Yu, K. Scott, R.W. Reeve, A study of the anodic oxidation of methanol on Pt in alkaline solutions. J. Electroanal. Chem. 547, 17–24 (2003). https://doi.org/10.1016/s0022-0728(03)00172-4
- A.A. Siller-Ceniceros, E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubián, E. Martínez-Guerra et al., Functionalizing reduced graphene oxide with ru-organometallic compounds as an effective strategy to produce high-performance Pt nanocatalysts for the methanol oxidation reaction. ChemElectroChem 6, 4902–4916 (2019). https://doi.org/10.1002/celc.201901190
- B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 134(34), 13934–13937 (2012). https://doi.org/10.1021/ja3051662
- Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85, 314–321 (2012). https://doi.org/10.1016/j.electacta.2012.08.080
- S. Chen, M. Li, M. Gao, J. Jin, M.A. Spronsen et al., High-performance Pt-Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 20, 1974–1979 (2020). https://doi.org/10.1021/acs.nanolett.9b05251
- B. Li, D.C. Higgins, S. Zhu, H. Li, H. Wang et al., Highly active Pt–Ru nanowire network catalysts for the methanol oxidation reaction. Catal. Commun. 18, 51–54 (2012). https://doi.org/10.1016/j.catcom.2011.11.018
- X. Yang, J. Xue, L. Feng, Pt nanops anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction. Chem. Commun. 55, 11247–11250 (2019). https://doi.org/10.1039/c9cc06004a
- B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui et al., CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 80, 105530 (2021). https://doi.org/10.1016/j.nanoen.2020.105530
- J. Xie, L. Gao, S. Cao, W. Liu, F. Lei et al., Copper-incorporated hierarchical wire-on-sheet a-Ni(OH)2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. J. Mater. Chem. A 7(22), 13577–13584 (2019). https://doi.org/10.1039/C9TA02891A
- L. Zhang, J. Wang, P. Liu, J. Liang, Y. Luo et al., Ni(OH)2 nanops encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 15, 6084–6090 (2022). https://doi.org/10.1007/s12274-022-4391-6
- M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu et al., Co P@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 50, 314–323 (2020). https://doi.org/10.1016/j.jechem.2020.03.050
- J. Chang, L. Feng, C. Liu, W. Xing, X. Hu, Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy Environ. Sci. 7, 1628–1632 (2014). https://doi.org/10.1039/c4ee00100a
- J. Dong, F.Q. Zhang, Y. Yang, Y.B. Zhang, H. He et al., (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B 243, 693–702 (2019). https://doi.org/10.1016/j.apcatb.2018.11.003
- Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11, 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d
- C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu et al., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 56(3), 842–846 (2017). https://doi.org/10.1002/anie.201608899
- C. Meng, Y. Cao, Y. Luo, F. Zhang, Q. Kong et al., A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 8(12), 3007–3011 (2021). https://doi.org/10.1039/D1QI00345C
- B. Zhao, J.W. Liu, Y.R. Yin, D. Wu, J.L. Luo et al., Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 7(45), 25878–25886 (2019). https://doi.org/10.1039/c9ta09782a
- B. Zhao, J.W. Liu, C.Y. Xu, R.F. Feng, P.F. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31(8), 2008812 (2021). https://doi.org/10.1002/adfm.202008812
- S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144(7), 3250–3258 (2022). https://doi.org/10.1021/jacs.1c13374
- L. Li, W. Gao, K. Tang, M. Lei, B. Yao et al., Structure engineering of Ni2P by Mo doping for robust electrocatalytic water and methanol oxidation reactions. Electrochim. Acta 369, 137692 (2021). https://doi.org/10.1016/j.electacta.2020.137692
- Z. Pi, H. Zhong, Integrating hydrogen production with selective methanol oxidation to value-added formate over a NiS bifunctional electrocatalyst. IOP Conf. Ser. Earth Environ. Sci. 651, 042062 (2021). https://doi.org/10.1088/1755-1315/651/4/042062
- F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
- B. Zhao, C.Y. Xu, M. Shakouri, R.F. Feng, Y. Zhang et al., Anode-cathode interchangeable strategy for in situ reviving electrocatalysts’ critical active sites for highly stable methanol upgrading and hydrogen evolution reactions. Appl. Catal. B 305, 121082 (2022). https://doi.org/10.1016/j.apcatb.2022.121082
- W. Chen, C. Xie, Y. Wang, Y. Zou, C.L. Dong et al., Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6(11), 2974–2993 (2020). https://doi.org/10.1016/j.chempr.2020.07.022
- G. Kresse, J. Furthmueller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- X. Liu, J. Meng, K. Ni, R. Guo, F. Xia et al., Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrail concentration alkali media. Cell Rep. Phys. Sci. 1(11), 100241 (2020). https://doi.org/10.1016/j.xcrp.2020.100241
- J. Zaffran, M.C. Toroker, Benchmarking density functional theory based methods to model NiOOH material properties: hubbard and van der Waals corrections vs hybrid functionals. J. Chem. Theory Comput. 12, 3807–3812 (2016). https://doi.org/10.1021/acs.jctc.6b00657
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- X. Deng, M. Li, Y. Fan, L. Wang, X.Z. Fu et al., Constructing multifunctional “nanoplatelet-on-nanoarray” electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Appl. Catal. B 278, 119339 (2020). https://doi.org/10.1016/j.apcatb.2020.119339
- F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan et al., NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 8(21), 1800584 (2018). https://doi.org/10.1002/aenm.201800584
- Y. Wang, Q. Zhu, Y. Wei, Y. Gong, C. Chen et al., Catalytic hydrodehalogenation over supported gold: electron transfer versus hydride transfer. Appl. Catal. B 231, 262–268 (2018). https://doi.org/10.1016/j.apcatb.2018.03.032
- R.N. Durr, P. Maltoni, H. Tian, B. Jousselme, L. Hammarstrom et al., From NiMoO4 to gamma-NiOOH: detecting the active catalyst phase by time resolved in situ and operando raman spectroscopy. ACS Nano 15(8), 13504–13515 (2021). https://doi.org/10.1021/acsnano.1c04126
- P.W. Menezes, S. Yao, R. Beltran-Suito, J.N. Hausmann, P.V. Menezes et al., Facile access to an active gamma-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angew. Chem. Int. Ed. 60(9), 4640–4647 (2021). https://doi.org/10.1002/anie.202014331
- S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015). https://doi.org/10.1002/aenm.201401172
- S. Anantharaj, S. Kundu, S. Noda, “The Fe effect”: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514 (2021). https://doi.org/10.1016/j.nanoen.2020.105514
- D.T. Tran, V.H. Hoa, S. Prabhakaran, D.H. Kim, N.H. Kim et al., Activated CuNi@Ni core@shell structures via oxygen and nitrogen dual coordination assembled on 3D CNTs-graphene hybrid for high-performance water splitting. Appl. Catal. B 294, 120263 (2021). https://doi.org/10.1016/j.apcatb.2021.120263
- H.B. Yang, S.F. Hung, S. Liu, H.Y. Wang, W. Cai et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
References
J.W.D. Ng, M. Garcia-Melchor, M. Bajdich, P. Chakthranont, C. Kirk et al., Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016). https://doi.org/10.1038/nenergy.2016.53
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
F.Q. Liu, J.W. Liu, Z. Gao, L. Wang, X.Z. Fu et al., Constructing bimetal-complex based hydrogen-bonded framework for highly efficient electrocatalytic water splitting. Appl. Catal. B 258, 117973 (2019). https://doi.org/10.1016/j.apcatb.2019.117973
Y. Shi, W. Du, W. Zhou, C. Wang, S. Lu et al., Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 59(50), 22470–22474 (2020). https://doi.org/10.1002/anie.202011097
Y. Lu, T. Liu, C.L. Dong, Y.C. Huang, Y. Li et al., Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 33(8), 2007056 (2021). https://doi.org/10.1002/adma.202007056
X. Cao, X. Yan, L. Ke, K. Zhao, N. Yan, Proton-assisted reconstruction of perovskite oxides: toward improved electrocatalytic activity. ACS Appl. Mater. Interfaces 13(18), 22009–22016 (2021). https://doi.org/10.1021/acsami.1c03276
Y. Qiu, Z. Feng, X. Ji, J. Liu, Surface self-reconstruction of nickel foam triggered by hydrothermal corrosion for boosted water oxidation. Int. J. Hydrogen Energy 46, 1501–1508 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.071
Y. Qiu, X. Zhang, H. Han, Z. Liu, J. Liu et al., Advantageous metal-atom-escape towards super-hydrophilic interfaces assembly for efficient overall water splitting. J. Power Sources 499, 229941 (2021). https://doi.org/10.1016/j.jpowsour.2021.229941
L. Huang, Y.Q. Su, R. Qi, D. Dang, Y. Qin et al., Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem. Int. Ed. 60(48), 25530–25537 (2021). https://doi.org/10.1002/anie.202111426
J. Yu, Y. Cao, Q. Liu, Y. Luo, Y. Liu et al., Co-MOF nanosheet arrays for efficient alkaline oxygen evolution electrocatalysis. ChemNanoMat 7, 906–909 (2021). https://doi.org/10.1002/cnma.202100153
K. Xiang, D. Wu, X. Deng, M. Li, S. Chen et al., Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 30(10), 1909610 (2020). https://doi.org/10.1002/adfm.201909610
B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138(41), 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127
K. Xiang, Z. Song, D. Wu, X. Deng, X. Wang et al., Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 9(10), 6316–6324 (2021). https://doi.org/10.1039/d0ta10501e
Z. Miao, C. Xu, J. Zhan, Z. Xu, Morphology-control and template-free fabrication of bimetallic Cu–Ni alloy rods for ethanol electro-oxidation in alkaline media. J. Alloys Compd. 855, 157438 (2021). https://doi.org/10.1016/j.jallcom.2020.157438
L. Dai, Q. Qin, X. Zhao, C. Xu, C. Hu et al., Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Central Sci. 2(8), 538–544 (2016). https://doi.org/10.1021/acscentsci.6b00164
M.S.E. Houache, E. Cossar, S. Ntais, E.A. Baranova, Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation. J. Power Sources 375, 310–319 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.089
S.S.G. Dodekatos, H. Tüysüz, Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8(7), 6301–6333 (2018). https://doi.org/10.1021/acscatal.8b01317
J. Xie, W. Liu, X. Zhang, Y. Guo, L. Gao et al., Constructing hierarchical wire-on-sheet nanoarrays in phase-regulated cerium-doped nickel hydroxide for promoted urea electro-oxidation. ACS Mater. Lett. 1(1), 103–110 (2019). https://doi.org/10.1021/acsmaterialslett.9b00124
J.D.S. Chen, A. Vasileff, S.Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed. 128(11), 3868–3872 (2016). https://doi.org/10.1002/anie.201600387
Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Boosting hydrogen production by anodic oxidation of primary amines over a nise nanorod electrode. Angew. Chem. Int. Ed. 57(40), 13163–13166 (2018). https://doi.org/10.1002/anie.201807717
C. Xu, E. Paone, D. Rodriguez-Padron, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49(13), 4273–4306 (2020). https://doi.org/10.1039/d0cs00041h
W.J. Liu, L. Dang, Z. Xu, H.Q. Yu, S. Jin et al., Electrochemical oxidation of 5-hydroxymethylfurfural with nife layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 8(6), 5533–5541 (2018). https://doi.org/10.1021/acscatal.8b01017
B.J. Taitt, D.H. Nam, K.S. Choi, A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 9(1), 660–670 (2019). https://doi.org/10.1021/acscatal.8b04003
X. Zhen, Y. Wang, An overview of methanol as an internal combustion engine fuel. Renew. Sust. Energy Rev. 52, 477–493 (2015). https://doi.org/10.1016/j.rser.2015.07.083
J.M. Spurgeon, B. Kumar, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018). https://doi.org/10.1039/c8ee00097b
T. Iwasita, Electrocatalysis of methanol oxidation. Electrochim. Acta 47, 3663–3674 (2002). https://doi.org/10.1016/S0013-4686(02)00336-5
E.H. Yu, K. Scott, R.W. Reeve, A study of the anodic oxidation of methanol on Pt in alkaline solutions. J. Electroanal. Chem. 547, 17–24 (2003). https://doi.org/10.1016/s0022-0728(03)00172-4
A.A. Siller-Ceniceros, E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubián, E. Martínez-Guerra et al., Functionalizing reduced graphene oxide with ru-organometallic compounds as an effective strategy to produce high-performance Pt nanocatalysts for the methanol oxidation reaction. ChemElectroChem 6, 4902–4916 (2019). https://doi.org/10.1002/celc.201901190
B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 134(34), 13934–13937 (2012). https://doi.org/10.1021/ja3051662
Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85, 314–321 (2012). https://doi.org/10.1016/j.electacta.2012.08.080
S. Chen, M. Li, M. Gao, J. Jin, M.A. Spronsen et al., High-performance Pt-Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 20, 1974–1979 (2020). https://doi.org/10.1021/acs.nanolett.9b05251
B. Li, D.C. Higgins, S. Zhu, H. Li, H. Wang et al., Highly active Pt–Ru nanowire network catalysts for the methanol oxidation reaction. Catal. Commun. 18, 51–54 (2012). https://doi.org/10.1016/j.catcom.2011.11.018
X. Yang, J. Xue, L. Feng, Pt nanops anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction. Chem. Commun. 55, 11247–11250 (2019). https://doi.org/10.1039/c9cc06004a
B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui et al., CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 80, 105530 (2021). https://doi.org/10.1016/j.nanoen.2020.105530
J. Xie, L. Gao, S. Cao, W. Liu, F. Lei et al., Copper-incorporated hierarchical wire-on-sheet a-Ni(OH)2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. J. Mater. Chem. A 7(22), 13577–13584 (2019). https://doi.org/10.1039/C9TA02891A
L. Zhang, J. Wang, P. Liu, J. Liang, Y. Luo et al., Ni(OH)2 nanops encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 15, 6084–6090 (2022). https://doi.org/10.1007/s12274-022-4391-6
M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu et al., Co P@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 50, 314–323 (2020). https://doi.org/10.1016/j.jechem.2020.03.050
J. Chang, L. Feng, C. Liu, W. Xing, X. Hu, Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy Environ. Sci. 7, 1628–1632 (2014). https://doi.org/10.1039/c4ee00100a
J. Dong, F.Q. Zhang, Y. Yang, Y.B. Zhang, H. He et al., (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B 243, 693–702 (2019). https://doi.org/10.1016/j.apcatb.2018.11.003
Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11, 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu et al., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 56(3), 842–846 (2017). https://doi.org/10.1002/anie.201608899
C. Meng, Y. Cao, Y. Luo, F. Zhang, Q. Kong et al., A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 8(12), 3007–3011 (2021). https://doi.org/10.1039/D1QI00345C
B. Zhao, J.W. Liu, Y.R. Yin, D. Wu, J.L. Luo et al., Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 7(45), 25878–25886 (2019). https://doi.org/10.1039/c9ta09782a
B. Zhao, J.W. Liu, C.Y. Xu, R.F. Feng, P.F. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31(8), 2008812 (2021). https://doi.org/10.1002/adfm.202008812
S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144(7), 3250–3258 (2022). https://doi.org/10.1021/jacs.1c13374
L. Li, W. Gao, K. Tang, M. Lei, B. Yao et al., Structure engineering of Ni2P by Mo doping for robust electrocatalytic water and methanol oxidation reactions. Electrochim. Acta 369, 137692 (2021). https://doi.org/10.1016/j.electacta.2020.137692
Z. Pi, H. Zhong, Integrating hydrogen production with selective methanol oxidation to value-added formate over a NiS bifunctional electrocatalyst. IOP Conf. Ser. Earth Environ. Sci. 651, 042062 (2021). https://doi.org/10.1088/1755-1315/651/4/042062
F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
B. Zhao, C.Y. Xu, M. Shakouri, R.F. Feng, Y. Zhang et al., Anode-cathode interchangeable strategy for in situ reviving electrocatalysts’ critical active sites for highly stable methanol upgrading and hydrogen evolution reactions. Appl. Catal. B 305, 121082 (2022). https://doi.org/10.1016/j.apcatb.2022.121082
W. Chen, C. Xie, Y. Wang, Y. Zou, C.L. Dong et al., Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6(11), 2974–2993 (2020). https://doi.org/10.1016/j.chempr.2020.07.022
G. Kresse, J. Furthmueller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
X. Liu, J. Meng, K. Ni, R. Guo, F. Xia et al., Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrail concentration alkali media. Cell Rep. Phys. Sci. 1(11), 100241 (2020). https://doi.org/10.1016/j.xcrp.2020.100241
J. Zaffran, M.C. Toroker, Benchmarking density functional theory based methods to model NiOOH material properties: hubbard and van der Waals corrections vs hybrid functionals. J. Chem. Theory Comput. 12, 3807–3812 (2016). https://doi.org/10.1021/acs.jctc.6b00657
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
X. Deng, M. Li, Y. Fan, L. Wang, X.Z. Fu et al., Constructing multifunctional “nanoplatelet-on-nanoarray” electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Appl. Catal. B 278, 119339 (2020). https://doi.org/10.1016/j.apcatb.2020.119339
F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan et al., NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 8(21), 1800584 (2018). https://doi.org/10.1002/aenm.201800584
Y. Wang, Q. Zhu, Y. Wei, Y. Gong, C. Chen et al., Catalytic hydrodehalogenation over supported gold: electron transfer versus hydride transfer. Appl. Catal. B 231, 262–268 (2018). https://doi.org/10.1016/j.apcatb.2018.03.032
R.N. Durr, P. Maltoni, H. Tian, B. Jousselme, L. Hammarstrom et al., From NiMoO4 to gamma-NiOOH: detecting the active catalyst phase by time resolved in situ and operando raman spectroscopy. ACS Nano 15(8), 13504–13515 (2021). https://doi.org/10.1021/acsnano.1c04126
P.W. Menezes, S. Yao, R. Beltran-Suito, J.N. Hausmann, P.V. Menezes et al., Facile access to an active gamma-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angew. Chem. Int. Ed. 60(9), 4640–4647 (2021). https://doi.org/10.1002/anie.202014331
S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015). https://doi.org/10.1002/aenm.201401172
S. Anantharaj, S. Kundu, S. Noda, “The Fe effect”: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514 (2021). https://doi.org/10.1016/j.nanoen.2020.105514
D.T. Tran, V.H. Hoa, S. Prabhakaran, D.H. Kim, N.H. Kim et al., Activated CuNi@Ni core@shell structures via oxygen and nitrogen dual coordination assembled on 3D CNTs-graphene hybrid for high-performance water splitting. Appl. Catal. B 294, 120263 (2021). https://doi.org/10.1016/j.apcatb.2021.120263
H.B. Yang, S.F. Hung, S. Liu, H.Y. Wang, W. Cai et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437