A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application
Corresponding Author: Xinyu Xue
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 76
Abstract
The increasing morbidity of internal diseases poses serious threats to human health and quality of life. Exhaled breath analysis is a noninvasive and convenient diagnostic method to improve the cure rate of patients. In this study, a self-powered breath analyzer based on polyaniline/polyvinylidene fluoride (PANI/PVDF) piezo-gas-sensing arrays has been developed for potential detection of several internal diseases. The device works by converting exhaled breath energy into piezoelectric gas-sensing signals without any external power sources. The five sensing units in the device have different sensitivities to various gas markers with concentrations ranging from 0 to 600 ppm. The working principle can be attributed to the coupling of the in-pipe gas-flow-induced piezoelectric effect of PVDF and gas-sensing properties of PANI electrodes. In addition, the device demonstrates its use as an ethanol analyzer to roughly mimic fatty liver diagnosis. This new approach can be applied to fabricating new exhaled breath analyzers and promoting the development of self-powered systems.
Highlights:
1 A self-powered breath analyzer based on polyaniline/polyvinylidene fluoride (PANI/PVDF) piezo-gas-sensing arrays was developed for a potential diagnostics application.
2 The device works by converting energy from exhaled breath into electrical sensing signals without any external power sources.
3 The working principle can be attributed to the coupling of in-pipe gas-flow-induced piezoelectric effect of PVDF bellows and gas-sensing effect of PANI electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Bodenheimer, K. Lorig, H. Holman, K. Grumbach, Patient self-management of chronic disease in primary care. JAMA J. Am. Med. Assoc. 288(19), 2469–2475 (2002). https://doi.org/10.1001/jama.288.19.2469
- A.H. Mokdad, E.S. Ford, B.A. Bowman, W.H. Dietz, F. Vinicor, V.S. Bales, J.S. Marks, Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA J. Am. Med. Assoc. 289(1), 76–79 (2003). https://doi.org/10.1001/jama.289.1.76
- S. Moussavi, S. Chatterji, E. Verdes, A. Tandon, V. Patel, B. Ustun, Depression, chronic diseases, and decrements in health: results from the world health surveys. Lancet 370(9590), 851–858 (2007). https://doi.org/10.1016/S0140-6736(07)61415-9
- A.S. Levey, J. Coresh, E. Balk, A.T. Kausz, A. Levin et al., National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139(2), 137–147 (2003). https://doi.org/10.7326/0003-4819-139-2-200307150-00013
- N. Singh, D.G. Armstrong, B.A. Lipsky, Preventing foot ulcers in patients with diabetes. JAMA J. Am. Med. Assoc. 293(2), 217–228 (2005). https://doi.org/10.1001/jama.293.2.217
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- R.A. Dweik, P.B. Boggs, S.C. Erzurum, C.G. Irvin, M.W. Leigh, J.O. Lundberg, A.C. Olin, A.L. Plummer, D.R. Taylor, An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (F ENO) for clinical applications. Am. J. Respir. Crit. Care Med. 184(5), 602–615 (2011). https://doi.org/10.1164/rccm.9120-11ST
- I. Horvath, J. Hunt, P.J. Barnes, K. Alving, A. Antczak et al., Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 26(3), 523–548 (2005). https://doi.org/10.1183/09031936.05.00029705
- A. Jatakanon, S. Lim, S.A. Kharitonov, K.F. Chung, P.J. Barnes, Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 53(2), 91–95 (1998). https://doi.org/10.1136/thx.53.2.91
- S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163(7), 1693–1722 (2001). https://doi.org/10.1164/ajrccm.163.7.2009041
- G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4(10), 669–673 (2009). https://doi.org/10.1038/nnano.2009.235
- A.D. Smith, J.O. Cowan, K.P. Brassett, G.P. Herbison, D.R. Taylor, Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N. Engl. J. Med. 352(21), 2163–2173 (2005). https://doi.org/10.1056/NEJMoa043596
- Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
- K.Y. Lee, M.K. Gupta, S.W. Kim, Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14, 139–160 (2015). https://doi.org/10.1016/j.nanoen.2014.11.009
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339–6346 (2012). https://doi.org/10.1021/nl303573d
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- H. Guo, X. Pu, J. Chen, Y. Meng, M.H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
- X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z.L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
- J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003). https://doi.org/10.1038/nmat768
- Y.Z. Long, M.M. Li, C. Gu, M. Wan, J.L. Duvail, Z. Liu, Z. Fan, Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 36(10), 1415–1442 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.001
- D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 42(1), 135–145 (2009). https://doi.org/10.1021/ar800080n
- J.X. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc. 125(2), 314–315 (2003). https://doi.org/10.1021/ja028371y
- Q. Liang, Q. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma, Y. Zhang, Recyclable and green triboelectric nanogenerator. Adv. Mater. 29(5), 1604961 (2016). https://doi.org/10.1002/adma.201604961
- Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28(1), 1703801 (2017). https://doi.org/10.1002/adfm.201703801
- L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4(3), 1633 (2013). https://doi.org/10.1038/ncomms2639
- Y. Shapiro, A. Wolf, G. Kosa, Piezoelectric deflection sensor for a bi-bellows actuator. IEEE-ASME Trans. Mechatron. 18(3), 1226–1230 (2013). https://doi.org/10.1109/TMECH.2012.2218115
- P. Maurya, N. Mandal, Design and analysis of an electro-optic type pressure transmitter using bellows as primary sensor. IEEE Sens. J. 18(18), 7730–7740 (2018). https://doi.org/10.1109/JSEN.2018.2862921
- Y. Zhou, W. Liu, X. Huang, A. Zhang, Y. Zhang, Z.L. Wang, Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 9(3), 800–807 (2016). https://doi.org/10.1007/s12274-015-0959-8
- Y. Hu, Z.L. Wang, Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 14, 3–14 (2015). https://doi.org/10.1016/j.nanoen.2014.11.038
- Z.L. Wang, On maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1−x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7(18), 9831–9840 (2015). https://doi.org/10.1021/acsami.5b01760
- C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010). https://doi.org/10.1021/nl9040719
- M. Trchová, Z. Morávková, M. Bláha, J. Stejskal, Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim. Acta 122, 28–38 (2014). https://doi.org/10.1016/j.electacta.2013.10.133
- E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 23(2), 277–324 (1998). https://doi.org/10.1016/S0079-6700(97)00030-0
- M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002). https://doi.org/10.1016/S0956-5663(01)00312-8
- X. Cao, J. Ma, X. Shi, Z. Ren, Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253(4), 2003–2010 (2006). https://doi.org/10.1016/j.apsusc.2006.03.090
- P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
- I.H. Kadhim, H. Abu Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare si substrates. Nano-Micro Lett. 8(1), 20–28 (2016). https://doi.org/10.1007/s40820-015-0057-1
- R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas-sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
- T. Wang, D. Huang, Z. Yang, S. Xu, G. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). https://doi.org/10.1007/s40820-015-0073-1
- M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9, 419–433 (2017). https://doi.org/10.1016/j.apmt.2017.09.001
- E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54(1), 1–67 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.003
- S.B. Abel, R. Olejnik, C.R. Rivarola, P. Slobodian, P. Saha, D.F. Acevedo, C.A. Barbero, Resistive sensors for organic vapors based on nanostructured and chemically modified polyanilines. IEEE Sens. J. 18(16), 6510–6516 (2018). https://doi.org/10.1109/JSEN.2018.2848843
- D. Nicolas-Debarnot, F. Poncin-Epaillard, Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 475(1), 1–15 (2003). https://doi.org/10.1016/S0003-2670(02)01229-1
- I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuators B 220, 534–548 (2015). https://doi.org/10.1016/j.snb.2015.05.107
- M.Y. Chuang, Y.T. Lin, T.W. Tung, L.Y. Chang, H.W. Zan, H.F. Meng, C.J. Lu, Y.T. Tao, Room-temperature-operated organic-based acetone gas sensor for breath analysis. Sens. Actuators B 260, 593–600 (2018). https://doi.org/10.1016/j.snb.2017.12.168
- D.W. Longcope, G.H. Fisher, A.A. Pevtsov, Flux-tube twist resulting from helical turbulence: the sigma-effect. Astrophys. J. 507(1), 417–432 (1998). https://doi.org/10.1086/306312
- P. Cavallo, D.F. Acevedo, M.C. Fuertes, G.J.A.A. Soler-Illia, C.A. Barbero, Understanding the sensing mechanism of polyaniline resistive sensors. Effect of humidity on sensing of organic volatiles. Sens. Actuators B 210, 574–580 (2015). https://doi.org/10.1016/j.snb.2015.01.029
- Y. Guo, L. Li, C. Zhao, L. Song, B. Wang, Humidity sensing properties of poly-vanadium–titanium acid combined with polyaniline grown in situ by electrochemical polymerization. Sens. Actuators B 270, 80–88 (2018). https://doi.org/10.1016/j.snb.2018.05.010
- J. Zhao, G. Wu, Y. Hu, Y. Liu, X. Tao, W. Chen, A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofiber membrane. J. Mater. Chem. A 3(48), 24333–24337 (2015). https://doi.org/10.1039/C5TA06734K
- M.K. Ram, O. Yavuz, V. Lahsangah, M. Aldissi, CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuators B 106(2), 750–757 (2005). https://doi.org/10.1016/j.snb.2004.09.027
- Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 13(2), 777–782 (2013). https://doi.org/10.1109/JSEN.2012.2227597
- T. Kinkeldei, C. Zysset, N. Muenzenrieder, G. Troester, An electronic nose on flexible substrates integrated into a smart textile. Sens. Actuators B 174, 81–86 (2012). https://doi.org/10.1016/j.snb.2012.08.023
- A. Choudhury, Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens. Actuators B 138(1), 318–325 (2009). https://doi.org/10.1016/j.snb.2009.01.019
- D. Xie, Y.D. Jiang, W. Pan, D. Li, Z.M. Wu, Y.R. Li, Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens. Actuators B 81(2–3), 158–164 (2002). https://doi.org/10.1016/S0925-4005(01)00946-7
- J.L. Wojkiewicz, V.N. Bliznyuk, S. Carquigny, N. Elkamchi, N. Redon, T. Lasri, A.A. Pud, S. Reynaud, Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens. Actuators B 160(1), 1394–1403 (2011). https://doi.org/10.1016/j.snb.2011.09.084
- P. Le Maout, J.L. Wojkiewicz, N. Redon, C. Lahuec, F. Seguin et al., Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease. Sens. Actuators B 274, 616–626 (2018). https://doi.org/10.1016/j.snb.2018.07.178
References
T. Bodenheimer, K. Lorig, H. Holman, K. Grumbach, Patient self-management of chronic disease in primary care. JAMA J. Am. Med. Assoc. 288(19), 2469–2475 (2002). https://doi.org/10.1001/jama.288.19.2469
A.H. Mokdad, E.S. Ford, B.A. Bowman, W.H. Dietz, F. Vinicor, V.S. Bales, J.S. Marks, Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA J. Am. Med. Assoc. 289(1), 76–79 (2003). https://doi.org/10.1001/jama.289.1.76
S. Moussavi, S. Chatterji, E. Verdes, A. Tandon, V. Patel, B. Ustun, Depression, chronic diseases, and decrements in health: results from the world health surveys. Lancet 370(9590), 851–858 (2007). https://doi.org/10.1016/S0140-6736(07)61415-9
A.S. Levey, J. Coresh, E. Balk, A.T. Kausz, A. Levin et al., National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139(2), 137–147 (2003). https://doi.org/10.7326/0003-4819-139-2-200307150-00013
N. Singh, D.G. Armstrong, B.A. Lipsky, Preventing foot ulcers in patients with diabetes. JAMA J. Am. Med. Assoc. 293(2), 217–228 (2005). https://doi.org/10.1001/jama.293.2.217
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
R.A. Dweik, P.B. Boggs, S.C. Erzurum, C.G. Irvin, M.W. Leigh, J.O. Lundberg, A.C. Olin, A.L. Plummer, D.R. Taylor, An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (F ENO) for clinical applications. Am. J. Respir. Crit. Care Med. 184(5), 602–615 (2011). https://doi.org/10.1164/rccm.9120-11ST
I. Horvath, J. Hunt, P.J. Barnes, K. Alving, A. Antczak et al., Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 26(3), 523–548 (2005). https://doi.org/10.1183/09031936.05.00029705
A. Jatakanon, S. Lim, S.A. Kharitonov, K.F. Chung, P.J. Barnes, Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 53(2), 91–95 (1998). https://doi.org/10.1136/thx.53.2.91
S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163(7), 1693–1722 (2001). https://doi.org/10.1164/ajrccm.163.7.2009041
G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4(10), 669–673 (2009). https://doi.org/10.1038/nnano.2009.235
A.D. Smith, J.O. Cowan, K.P. Brassett, G.P. Herbison, D.R. Taylor, Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N. Engl. J. Med. 352(21), 2163–2173 (2005). https://doi.org/10.1056/NEJMoa043596
Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
K.Y. Lee, M.K. Gupta, S.W. Kim, Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14, 139–160 (2015). https://doi.org/10.1016/j.nanoen.2014.11.009
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339–6346 (2012). https://doi.org/10.1021/nl303573d
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
H. Guo, X. Pu, J. Chen, Y. Meng, M.H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z.L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003). https://doi.org/10.1038/nmat768
Y.Z. Long, M.M. Li, C. Gu, M. Wan, J.L. Duvail, Z. Liu, Z. Fan, Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 36(10), 1415–1442 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.001
D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 42(1), 135–145 (2009). https://doi.org/10.1021/ar800080n
J.X. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc. 125(2), 314–315 (2003). https://doi.org/10.1021/ja028371y
Q. Liang, Q. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma, Y. Zhang, Recyclable and green triboelectric nanogenerator. Adv. Mater. 29(5), 1604961 (2016). https://doi.org/10.1002/adma.201604961
Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28(1), 1703801 (2017). https://doi.org/10.1002/adfm.201703801
L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4(3), 1633 (2013). https://doi.org/10.1038/ncomms2639
Y. Shapiro, A. Wolf, G. Kosa, Piezoelectric deflection sensor for a bi-bellows actuator. IEEE-ASME Trans. Mechatron. 18(3), 1226–1230 (2013). https://doi.org/10.1109/TMECH.2012.2218115
P. Maurya, N. Mandal, Design and analysis of an electro-optic type pressure transmitter using bellows as primary sensor. IEEE Sens. J. 18(18), 7730–7740 (2018). https://doi.org/10.1109/JSEN.2018.2862921
Y. Zhou, W. Liu, X. Huang, A. Zhang, Y. Zhang, Z.L. Wang, Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 9(3), 800–807 (2016). https://doi.org/10.1007/s12274-015-0959-8
Y. Hu, Z.L. Wang, Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 14, 3–14 (2015). https://doi.org/10.1016/j.nanoen.2014.11.038
Z.L. Wang, On maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1−x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7(18), 9831–9840 (2015). https://doi.org/10.1021/acsami.5b01760
C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010). https://doi.org/10.1021/nl9040719
M. Trchová, Z. Morávková, M. Bláha, J. Stejskal, Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim. Acta 122, 28–38 (2014). https://doi.org/10.1016/j.electacta.2013.10.133
E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 23(2), 277–324 (1998). https://doi.org/10.1016/S0079-6700(97)00030-0
M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002). https://doi.org/10.1016/S0956-5663(01)00312-8
X. Cao, J. Ma, X. Shi, Z. Ren, Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253(4), 2003–2010 (2006). https://doi.org/10.1016/j.apsusc.2006.03.090
P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
I.H. Kadhim, H. Abu Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare si substrates. Nano-Micro Lett. 8(1), 20–28 (2016). https://doi.org/10.1007/s40820-015-0057-1
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas-sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
T. Wang, D. Huang, Z. Yang, S. Xu, G. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). https://doi.org/10.1007/s40820-015-0073-1
M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9, 419–433 (2017). https://doi.org/10.1016/j.apmt.2017.09.001
E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54(1), 1–67 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.003
S.B. Abel, R. Olejnik, C.R. Rivarola, P. Slobodian, P. Saha, D.F. Acevedo, C.A. Barbero, Resistive sensors for organic vapors based on nanostructured and chemically modified polyanilines. IEEE Sens. J. 18(16), 6510–6516 (2018). https://doi.org/10.1109/JSEN.2018.2848843
D. Nicolas-Debarnot, F. Poncin-Epaillard, Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 475(1), 1–15 (2003). https://doi.org/10.1016/S0003-2670(02)01229-1
I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuators B 220, 534–548 (2015). https://doi.org/10.1016/j.snb.2015.05.107
M.Y. Chuang, Y.T. Lin, T.W. Tung, L.Y. Chang, H.W. Zan, H.F. Meng, C.J. Lu, Y.T. Tao, Room-temperature-operated organic-based acetone gas sensor for breath analysis. Sens. Actuators B 260, 593–600 (2018). https://doi.org/10.1016/j.snb.2017.12.168
D.W. Longcope, G.H. Fisher, A.A. Pevtsov, Flux-tube twist resulting from helical turbulence: the sigma-effect. Astrophys. J. 507(1), 417–432 (1998). https://doi.org/10.1086/306312
P. Cavallo, D.F. Acevedo, M.C. Fuertes, G.J.A.A. Soler-Illia, C.A. Barbero, Understanding the sensing mechanism of polyaniline resistive sensors. Effect of humidity on sensing of organic volatiles. Sens. Actuators B 210, 574–580 (2015). https://doi.org/10.1016/j.snb.2015.01.029
Y. Guo, L. Li, C. Zhao, L. Song, B. Wang, Humidity sensing properties of poly-vanadium–titanium acid combined with polyaniline grown in situ by electrochemical polymerization. Sens. Actuators B 270, 80–88 (2018). https://doi.org/10.1016/j.snb.2018.05.010
J. Zhao, G. Wu, Y. Hu, Y. Liu, X. Tao, W. Chen, A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofiber membrane. J. Mater. Chem. A 3(48), 24333–24337 (2015). https://doi.org/10.1039/C5TA06734K
M.K. Ram, O. Yavuz, V. Lahsangah, M. Aldissi, CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuators B 106(2), 750–757 (2005). https://doi.org/10.1016/j.snb.2004.09.027
Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 13(2), 777–782 (2013). https://doi.org/10.1109/JSEN.2012.2227597
T. Kinkeldei, C. Zysset, N. Muenzenrieder, G. Troester, An electronic nose on flexible substrates integrated into a smart textile. Sens. Actuators B 174, 81–86 (2012). https://doi.org/10.1016/j.snb.2012.08.023
A. Choudhury, Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens. Actuators B 138(1), 318–325 (2009). https://doi.org/10.1016/j.snb.2009.01.019
D. Xie, Y.D. Jiang, W. Pan, D. Li, Z.M. Wu, Y.R. Li, Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens. Actuators B 81(2–3), 158–164 (2002). https://doi.org/10.1016/S0925-4005(01)00946-7
J.L. Wojkiewicz, V.N. Bliznyuk, S. Carquigny, N. Elkamchi, N. Redon, T. Lasri, A.A. Pud, S. Reynaud, Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens. Actuators B 160(1), 1394–1403 (2011). https://doi.org/10.1016/j.snb.2011.09.084
P. Le Maout, J.L. Wojkiewicz, N. Redon, C. Lahuec, F. Seguin et al., Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease. Sens. Actuators B 274, 616–626 (2018). https://doi.org/10.1016/j.snb.2018.07.178