Breaking Solvation Dominance Effect Enabled by Ion–Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries
Corresponding Author: Shuaifeng Lou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 95
Abstract
Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li+) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li+ solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li+ solvation structure, enriched with FEC and TFSI−, facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO2 full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte.
Highlights:
1 The succinonitrile-based deep eutectic electrolyte, characterized by strong ion–dipole interactions, can establish an anion-rich Li+ solvation structure while exhibiting high ionic conductivity and Li+ transference number.
2 Precisely regulating multiple ion–ion, ion–dipole, and dipole–dipole interactions facilitates the transition of the Li+ solvation structure from solvent dominance to anion dominance.
3 Optical microscopy and Micro-CT analysis can demonstrate that the anion-derived solid electrolyte interphase effectively mitigates the irreversible volume expansion of silicon oxide.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Fan, X. Chang, Q.H. Meng, L.J. Wan, Y.G. Guo, Progress in the sustainable recycling of spent lithium-ion batteries. SusMat 1(2), 241–254 (2021). https://doi.org/10.1002/sus2.16
- X.-B. Cheng, H. Liu, H. Yuan, H.-J. Peng, C. Tang et al., A perspective on sustainable energy materials for lithium batteries. SusMat 1, 38–50 (2021). https://doi.org/10.1002/sus2.4
- X.-Q. Xu, X.-B. Cheng, F.-N. Jiang, S.-J. Yang, D. Ren et al., Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2, 435–444 (2022). https://doi.org/10.1002/sus2.74
- Y. Liu, H. Shi, Z.-S. Wu, Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ. Sci. 16, 4834–4871 (2023). https://doi.org/10.1039/D3EE02213G
- S. Li, Z. Luo, L. Li, J. Hu, G. Zou et al., Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 32, 306–319 (2020). https://doi.org/10.1016/j.ensm.2020.07.008
- Z. Li, L. Yu, C.-X. Bi, X.-Y. Li, J. Ma et al., A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium–sulfur pouch cells. SusMat 4, e191 (2024). https://doi.org/10.1002/sus2.191
- W.J. Jeong, D.J. Chung, D. Youn, N.G. Kim, H. Kim, Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Mater. 50, 740–750 (2022). https://doi.org/10.1016/j.ensm.2022.06.023
- Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309 (2019). https://doi.org/10.1039/C8CS00441B
- F. Fu, X. Wang, L. Zhang, Y. Yang, J. Chen et al., Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes. Adv. Funct. Mater. 33, 2303936 (2023). https://doi.org/10.1002/adfm.202303936
- X. Deng, X. Zheng, T. Yuan, W. Sui, Y. Xie et al., Ligand impact of silicanes as anode materials for lithium-ion batteries. Chem. Mater. 33, 9357–9365 (2021). https://doi.org/10.1021/acs.chemmater.1c03254
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- Z. Xiao, C. Yu, X. Lin, X. Chen, C. Zhang et al., TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy 77, 105082 (2020). https://doi.org/10.1016/j.nanoen.2020.105082
- J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
- S. Xu, X. Hou, D. Wang, L. Zuin, J. Zhou et al., Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 12, 2200127 (2022). https://doi.org/10.1002/aenm.202200127
- S. Xu, J. Zhou, J. Wang, S. Pathiranage, N. Oncel et al., In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 31, 2101645 (2021). https://doi.org/10.1002/adfm.202101645
- T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526
- J. Kang, K. Rah, S. Lee, S.M. Park, Kinetics on Li deintercalation in Mg- or Li-doped SiO/graphite composite anodes for Li ion batteries: dopant effect. J. Phys. Chem. C 127, 20255–20266 (2023). https://doi.org/10.1021/acs.jpcc.3c05124
- C.R. Lee, H.Y. Jang, H.J. Leem, M.A. Lee, W. Kim et al., Surface work function-induced thermally vulnerable solid electrolyte interphase formation on the negative electrode for lithium-ion batteries. Adv. Energy Mater. 14, 2302906 (2024). https://doi.org/10.1002/aenm.202302906
- A. Ghaur, C. Peschel, I. Dienwiebel, L. Haneke, L. Du et al., Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries. Adv. Energy Mater. 13, 2203503 (2023). https://doi.org/10.1002/aenm.202203503
- J. Wu, T. Zhou, B. Zhong, Q. Wang, W. Liu et al., Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 27873–27881 (2022). https://doi.org/10.1021/acsami.2c05098
- G. Yang, S. Frisco, R. Tao, N. Philip, T.H. Bennett et al., Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021). https://doi.org/10.1021/acsenergylett.0c02629
- W. Huang, J. Wang, M.R. Braun, Z. Zhang, Y. Li et al., Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter 1, 1232–1245 (2019). https://doi.org/10.1016/j.matt.2019.09.020
- X. Zhuang, S. Zhang, Z. Cui, B. Xie, T. Gong et al., Interphase regulation by multifunctional additive empowering high energy lithium-ion batteries with enhanced cycle life and thermal safety. Angew. Chem. Int. Ed. 63, e202315710 (2024). https://doi.org/10.1002/anie.202315710
- L. Chen, J. Wang, M. Chen, Z. Pan, Y. Ding et al., “Dragging effect” induced fast desolvation kinetics and −50 °C workable high-safe lithium batteries. Energy Storage Mater. 65, 103098 (2024). https://doi.org/10.1016/j.ensm.2023.103098
- X. Liu, X. Shen, L. Luo, F. Zhong, X. Ai et al., Designing advanced electrolytes for lithium secondary batteries based on the coordination number rule. ACS Energy Lett. 6, 4282–4290 (2021). https://doi.org/10.1021/acsenergylett.1c02194
- H. Moon, S.-J. Cho, D.-E. Yu, S.-Y. Lee, Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy Environ. Mater. 6, e12383 (2023). https://doi.org/10.1002/eem2.12383
- J. Zhang, H. Wu, X. Du, H. Zhang, L. Huang et al., Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv. Energy Mater. 13, 2202529 (2023). https://doi.org/10.1002/aenm.202202529
- G. Zhang, J. Li, S.-S. Chi, J. Wang, Q. Wang et al., Molecular design of competitive solvation electrolytes for practical high-energy and long-cycling lithium-metal batteries. Adv. Funct. Mater. 34, 2312413 (2024). https://doi.org/10.1002/adfm.202312413
- S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng et al., Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries. Nano Energy 98, 107265 (2022). https://doi.org/10.1016/j.nanoen.2022.107265
- T. Li, X.-Q. Zhang, N. Yao, Y.-X. Yao, L.-P. Hou et al., Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60, 22683–22687 (2021). https://doi.org/10.1002/anie.202107732
- Y. Liu, Y. Huang, X. Xu, Y. Liu, J. Yang et al., Fluorinated solvent-coupled anion-derived interphase to stabilize silicon microp anodes for high-energy-density batteries. Adv. Funct. Mater. 33, 2303667 (2023). https://doi.org/10.1002/adfm.202303667
- C. Kang, J. Zhu, Y. Wang, S. Ye, Y. Xiong et al., Concentration induced modulation of solvation structure for efficient lithium metal battery by regulating energy level of LUMO orbital. Energy Storage Mater. 61, 102898 (2023). https://doi.org/10.1016/j.ensm.2023.102898
- M. Yeddala, L. Rynearson, B.L. Lucht, Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett. 8, 4782–4793 (2023). https://doi.org/10.1021/acsenergylett.3c01709
- Y. Yang, Z. Fang, Y. Yin, Y. Cao, Y. Wang et al., Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61, e202208345 (2022). https://doi.org/10.1002/anie.202208345
- Z. Wang, R. Han, D. Huang, Y. Wei, H. Song et al., Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries. ACS Nano 17, 18103–18113 (2023). https://doi.org/10.1021/acsnano.3c04907
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
- O. Isayev, B. Rasulev, L. Gorb, J. Leszczynski, Structure-toxicity relationships of nitroaromatic compounds. Mol. Divers. 10, 233–245 (2006). https://doi.org/10.1007/s11030-005-9002-4
- P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973). https://doi.org/10.1007/BF00533485
- Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
- M.J. Frisch, J.A. Pople, J.S. Binkley, Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984). https://doi.org/10.1063/1.447079
- R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980). https://doi.org/10.1063/1.438955
- W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
References
M. Fan, X. Chang, Q.H. Meng, L.J. Wan, Y.G. Guo, Progress in the sustainable recycling of spent lithium-ion batteries. SusMat 1(2), 241–254 (2021). https://doi.org/10.1002/sus2.16
X.-B. Cheng, H. Liu, H. Yuan, H.-J. Peng, C. Tang et al., A perspective on sustainable energy materials for lithium batteries. SusMat 1, 38–50 (2021). https://doi.org/10.1002/sus2.4
X.-Q. Xu, X.-B. Cheng, F.-N. Jiang, S.-J. Yang, D. Ren et al., Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2, 435–444 (2022). https://doi.org/10.1002/sus2.74
Y. Liu, H. Shi, Z.-S. Wu, Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ. Sci. 16, 4834–4871 (2023). https://doi.org/10.1039/D3EE02213G
S. Li, Z. Luo, L. Li, J. Hu, G. Zou et al., Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 32, 306–319 (2020). https://doi.org/10.1016/j.ensm.2020.07.008
Z. Li, L. Yu, C.-X. Bi, X.-Y. Li, J. Ma et al., A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium–sulfur pouch cells. SusMat 4, e191 (2024). https://doi.org/10.1002/sus2.191
W.J. Jeong, D.J. Chung, D. Youn, N.G. Kim, H. Kim, Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Mater. 50, 740–750 (2022). https://doi.org/10.1016/j.ensm.2022.06.023
Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309 (2019). https://doi.org/10.1039/C8CS00441B
F. Fu, X. Wang, L. Zhang, Y. Yang, J. Chen et al., Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes. Adv. Funct. Mater. 33, 2303936 (2023). https://doi.org/10.1002/adfm.202303936
X. Deng, X. Zheng, T. Yuan, W. Sui, Y. Xie et al., Ligand impact of silicanes as anode materials for lithium-ion batteries. Chem. Mater. 33, 9357–9365 (2021). https://doi.org/10.1021/acs.chemmater.1c03254
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
Z. Xiao, C. Yu, X. Lin, X. Chen, C. Zhang et al., TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy 77, 105082 (2020). https://doi.org/10.1016/j.nanoen.2020.105082
J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
S. Xu, X. Hou, D. Wang, L. Zuin, J. Zhou et al., Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 12, 2200127 (2022). https://doi.org/10.1002/aenm.202200127
S. Xu, J. Zhou, J. Wang, S. Pathiranage, N. Oncel et al., In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 31, 2101645 (2021). https://doi.org/10.1002/adfm.202101645
T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526
J. Kang, K. Rah, S. Lee, S.M. Park, Kinetics on Li deintercalation in Mg- or Li-doped SiO/graphite composite anodes for Li ion batteries: dopant effect. J. Phys. Chem. C 127, 20255–20266 (2023). https://doi.org/10.1021/acs.jpcc.3c05124
C.R. Lee, H.Y. Jang, H.J. Leem, M.A. Lee, W. Kim et al., Surface work function-induced thermally vulnerable solid electrolyte interphase formation on the negative electrode for lithium-ion batteries. Adv. Energy Mater. 14, 2302906 (2024). https://doi.org/10.1002/aenm.202302906
A. Ghaur, C. Peschel, I. Dienwiebel, L. Haneke, L. Du et al., Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries. Adv. Energy Mater. 13, 2203503 (2023). https://doi.org/10.1002/aenm.202203503
J. Wu, T. Zhou, B. Zhong, Q. Wang, W. Liu et al., Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 27873–27881 (2022). https://doi.org/10.1021/acsami.2c05098
G. Yang, S. Frisco, R. Tao, N. Philip, T.H. Bennett et al., Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021). https://doi.org/10.1021/acsenergylett.0c02629
W. Huang, J. Wang, M.R. Braun, Z. Zhang, Y. Li et al., Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter 1, 1232–1245 (2019). https://doi.org/10.1016/j.matt.2019.09.020
X. Zhuang, S. Zhang, Z. Cui, B. Xie, T. Gong et al., Interphase regulation by multifunctional additive empowering high energy lithium-ion batteries with enhanced cycle life and thermal safety. Angew. Chem. Int. Ed. 63, e202315710 (2024). https://doi.org/10.1002/anie.202315710
L. Chen, J. Wang, M. Chen, Z. Pan, Y. Ding et al., “Dragging effect” induced fast desolvation kinetics and −50 °C workable high-safe lithium batteries. Energy Storage Mater. 65, 103098 (2024). https://doi.org/10.1016/j.ensm.2023.103098
X. Liu, X. Shen, L. Luo, F. Zhong, X. Ai et al., Designing advanced electrolytes for lithium secondary batteries based on the coordination number rule. ACS Energy Lett. 6, 4282–4290 (2021). https://doi.org/10.1021/acsenergylett.1c02194
H. Moon, S.-J. Cho, D.-E. Yu, S.-Y. Lee, Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy Environ. Mater. 6, e12383 (2023). https://doi.org/10.1002/eem2.12383
J. Zhang, H. Wu, X. Du, H. Zhang, L. Huang et al., Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv. Energy Mater. 13, 2202529 (2023). https://doi.org/10.1002/aenm.202202529
G. Zhang, J. Li, S.-S. Chi, J. Wang, Q. Wang et al., Molecular design of competitive solvation electrolytes for practical high-energy and long-cycling lithium-metal batteries. Adv. Funct. Mater. 34, 2312413 (2024). https://doi.org/10.1002/adfm.202312413
S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng et al., Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries. Nano Energy 98, 107265 (2022). https://doi.org/10.1016/j.nanoen.2022.107265
T. Li, X.-Q. Zhang, N. Yao, Y.-X. Yao, L.-P. Hou et al., Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60, 22683–22687 (2021). https://doi.org/10.1002/anie.202107732
Y. Liu, Y. Huang, X. Xu, Y. Liu, J. Yang et al., Fluorinated solvent-coupled anion-derived interphase to stabilize silicon microp anodes for high-energy-density batteries. Adv. Funct. Mater. 33, 2303667 (2023). https://doi.org/10.1002/adfm.202303667
C. Kang, J. Zhu, Y. Wang, S. Ye, Y. Xiong et al., Concentration induced modulation of solvation structure for efficient lithium metal battery by regulating energy level of LUMO orbital. Energy Storage Mater. 61, 102898 (2023). https://doi.org/10.1016/j.ensm.2023.102898
M. Yeddala, L. Rynearson, B.L. Lucht, Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett. 8, 4782–4793 (2023). https://doi.org/10.1021/acsenergylett.3c01709
Y. Yang, Z. Fang, Y. Yin, Y. Cao, Y. Wang et al., Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61, e202208345 (2022). https://doi.org/10.1002/anie.202208345
Z. Wang, R. Han, D. Huang, Y. Wei, H. Song et al., Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries. ACS Nano 17, 18103–18113 (2023). https://doi.org/10.1021/acsnano.3c04907
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
O. Isayev, B. Rasulev, L. Gorb, J. Leszczynski, Structure-toxicity relationships of nitroaromatic compounds. Mol. Divers. 10, 233–245 (2006). https://doi.org/10.1007/s11030-005-9002-4
P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973). https://doi.org/10.1007/BF00533485
Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
M.J. Frisch, J.A. Pople, J.S. Binkley, Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984). https://doi.org/10.1063/1.447079
R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980). https://doi.org/10.1063/1.438955
W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5