Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries
Corresponding Author: Hua Huo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 2
Abstract
To address the limitations of contemporary lithium-ion batteries, particularly their low energy density and safety concerns, all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative. Among the various SEs, organic–inorganic composite solid electrolytes (OICSEs) that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications. However, OICSEs still face many challenges in practical applications, such as low ionic conductivity and poor interfacial stability, which severely limit their applications. This review provides a comprehensive overview of recent research advancements in OICSEs. Specifically, the influence of inorganic fillers on the main functional parameters of OICSEs, including ionic conductivity, Li+ transfer number, mechanical strength, electrochemical stability, electronic conductivity, and thermal stability are systematically discussed. The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective. Besides, the classic inorganic filler types, including both inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs. Finally, the advanced characterization techniques relevant to OICSEs are summarized, and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
Highlights:
1 The lithium-ion conduction mechanism of organic-inorganic composite solid electrolytes (OICSEs) is thoroughly conducted and concluded from the microscopic perspective based on filler content, type, and system.
2 The classic inorganic filler types, including inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.
3 Advanced characterization techniques for OICSEs are discussed, and the challenges and prospects for developing superior all-solid-state lithium batteries are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
- L. Wang, T. Liu, T. Wu, J. Lu, Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022). https://doi.org/10.1038/s41586-022-05238-3
- Y. Zhang, W. Zhao, C. Kang, S. Geng, J. Zhu et al., Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at −30 °C. Matter 6, 1928–1944 (2023). https://doi.org/10.1016/j.matt.2023.03.026
- S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
- J. Wu, M. Zheng, T. Liu, Y. Wang, Y. Liu et al., Direct recovery: a sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater 54, 120–134 (2023). https://doi.org/10.1016/j.ensm.2022.09.029
- M. Li, H. An, Y. Song, Q. Liu, J. Wang et al., Ion-dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145, 25632–25642 (2023). https://doi.org/10.1021/jacs.3c07482
- B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16, 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
- L. Wang, T. Liu, A. Dai, V. De Andrade, Y. Ren et al., Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 12, 5370 (2021). https://doi.org/10.1038/s41467-021-25686-1
- J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G.O. Hartley et al., Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). https://doi.org/10.1038/s41563-019-0438-9
- H. Wang, H. Gao, X. Chen, J. Zhu, W. Li et al., Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv. Energy Mater. 11, 2102148 (2021). https://doi.org/10.1002/aenm.202102148
- S. Lou, Q. Liu, F. Zhang, Q. Liu, Z. Yu et al., Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 11, 5700 (2020). https://doi.org/10.1038/s41467-020-19528-9
- W. Lin, J. Xing, Y. Zhou, L. Pan, L. Yang et al., A biomimetic cement-based solid-state electrolyte with both high strength and ionic conductivity for self-energy-storage buildings. Research 7, 0379 (2024). https://doi.org/10.34133/research.0379
- Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang et al., Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020). https://doi.org/10.1038/s41586-020-1972-y
- S. Lou, Z. Yu, Q. Liu, H. Wang, M. Chen et al., Multi-scale imaging of solid-state battery interfaces: from atomic scale to macroscopic scale. Chem 6, 2199–2218 (2020). https://doi.org/10.1016/j.chempr.2020.06.030
- L. Wang, A. Dai, W. Xu, S. Lee, W. Cha et al., Structural distortion induced by manganese activation in a lithium-rich layered cathode. J. Am. Chem. Soc. 142, 14966–14973 (2020). https://doi.org/10.1021/jacs.0c05498
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- L. Dong, S. Zhong, B. Yuan, Y. Ji, J. Liu et al., Electrolyte engineering for high-voltage lithium metal batteries. Research 2022, 9837586 (2022). https://doi.org/10.34133/2022/9837586
- V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
- R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144
- H. Zheng, S. Wu, R. Tian, Z. Xu, H. Zhu et al., Intrinsic lithiophilicity of Li–garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 30, 1906189 (2020). https://doi.org/10.1002/adfm.201906189
- Y.T. Li, X. Chen, A. Dolocan, Z.M. Cui, S. Xin et al., Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018). https://doi.org/10.1021/jacs.8b03106
- H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo et al., In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 61, 119–125 (2019). https://doi.org/10.1016/j.nanoen.2019.04.058
- W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6%3c439::AID-ADMA439%3e3.0.CO;2-I
- D. Zhou, A. Tkacheva, X. Tang, B. Sun, D. Shanmukaraj et al., Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction. Angew. Chem. Int. Ed. 58, 6001–6006 (2019). https://doi.org/10.1002/anie.201901582
- J. Xi, X. Qiu, S. Zheng, X. Tang, Nanocomposite polymer electrolyte comprising PEO/LiClO4 and solid super acid: effect of sulphated-zirconia on the crystallization kinetics of PEO. Polymer 46, 5702–5706 (2005). https://doi.org/10.1016/j.polymer.2005.05.051
- M. Nakayama, S. Wada, S. Kuroki, M. Nogami, Factors affecting cyclic durability of all-solid-state lithiumpolymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 3, 1995–2002 (2010). https://doi.org/10.1039/C0EE00266F
- D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10, 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
- H.W. Kim, P. Manikandan, Y.J. Lim, J.H. Kim, S.-C. Nam et al., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J. Mater. Chem. A 4, 17025–17032 (2016). https://doi.org/10.1039/C6TA07268B
- S.A. Pervez, G. Kim, B.P. Vinayan, M.A. Cambaz, M. Kuenzel et al., Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small 16, e2000279 (2020). https://doi.org/10.1002/smll.202000279
- W. Fan, N.-W. Li, X. Zhang, S. Zhao, R. Cao et al., A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv. Sci. 5, 1800559 (2018). https://doi.org/10.1002/advs.201800559
- Y. Gao, Z. Yan, J.L. Gray, X. He, D. Wang et al., Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019). https://doi.org/10.1038/s41563-019-0305-8
- Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023). https://doi.org/10.1038/s41467-023-41808-3
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- C. Capiglia, Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ion. 118, 73–79 (1999). https://doi.org/10.1016/s0167-2738(98)00457-3
- B.W. Zewde, G.A. Elia, S. Admassie, J. Zimmermann, M. Hagemann et al., Polyethylene oxide electrolyte added by silane-functionalized TiO2 filler for lithium battery. Solid State Ion. 268, 174–178 (2014). https://doi.org/10.1016/j.ssi.2014.10.030
- S.J. Kwon, B.M. Jung, T. Kim, J. Byun, J. Lee et al., Influence of Al2O3 nanowires on ion transport in nanocomposite solid polymer electrolytes. Macromolecules 51, 10194–10201 (2018). https://doi.org/10.1021/acs.macromol.8b01603
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
- W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang et al., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8, 1800866 (2018). https://doi.org/10.1002/aenm.201800866
- Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora et al., Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, e1901131 (2019). https://doi.org/10.1002/adma.201901131
- Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y
- Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao et al., Tape-casting Li0.34 La0.56 TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 32, e1906221 (2020). https://doi.org/10.1002/adma.201906221
- W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
- D. Zhang, X. Xu, Y. Qin, S. Ji, Y. Huo et al., Recent progress in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Chemistry 26, 1720–1736 (2020). https://doi.org/10.1002/chem.201904461
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
- V. Vijayakumar, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot et al., 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13, 2203326 (2023). https://doi.org/10.1002/aenm.202203326
- J. Sun, C. Liu, H. Liu, J. Li, P. Zheng et al., Advances in ordered architecture design of composite solid electrolytes for solid-state lithium batteries. Chem. Rec. 23, e202300044 (2023). https://doi.org/10.1002/tcr.202300044
- F. Zheng, C. Li, Z. Li, X. Cao, H. Luo et al., Advanced composite solid electrolytes for lithium batteries: filler dimensional design and ion path optimization. Small 19, e2206355 (2023). https://doi.org/10.1002/smll.202206355
- X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
- W.-P. Chen, H. Duan, J.-L. Shi, Y. Qian, J. Wan et al., Bridging interp Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021). https://doi.org/10.1021/jacs.0c12965
- L. Du, B. Zhang, X. Wang, C. Dong, L. Mai et al., 3D frameworks in composite polymer electrolytes: synthesis, mechanisms, and applications. Chem. Eng. J. 451, 138787 (2023). https://doi.org/10.1016/j.cej.2022.138787
- P. Ranque, J. Zagórski, S. Devaraj, F. Aguesse, J.M. López del Amo, Characterization of the interfacial Li-ion exchange process in a ceramic–polymer composite by solid state NMR. J. Mater. Chem. A 9, 17812–17820 (2021). https://doi.org/10.1039/D1TA03720J
- M.M.U. Din, M. Häusler, S.M. Fischer, K. Ratzenböck, F.F. Chamasemani et al., Role of filler content and morphology in LLZO/PEO membranes. Front. Energy Res. 9, 711610 (2021). https://doi.org/10.3389/fenrg.2021.711610
- Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao et al., The effects of the size and content of BaTiO3 nanops on solid polymer electrolytes for all-solid-state lithium-ion batteries. J. Solid State Electrochem. 23, 749–758 (2019). https://doi.org/10.1007/s10008-018-04175-4
- H.Y. Sun, Y. Takeda, N. Imanishi, O. Yamamoto, H.-J. Sohn, Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J. Electrochem. Soc. 147, 2462 (2000). https://doi.org/10.1149/1.1393554
- M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawala, I. Albinsson, B.-E. Mellander, Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: Al2O3 composite polymer electrolyte. J. Power Sources 119, 409–414 (2003). https://doi.org/10.1016/S0378-7753(03)00262-3
- J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
- M. Sahimi, Applications of Percolation Theory (CRC Press, Cambridge, 1994)
- J. Maier, Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995). https://doi.org/10.1016/0079-6786(95)00004-E
- W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
- K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
- S.F. Song, Y.M. Wu, W.P. Tang, F. Deng, J.Y. Yao et al., Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustain. Chem. Eng. 7, 7163–7170 (2019). https://doi.org/10.1021/acssuschemeng.9b00143
- W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramicnanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17, 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
- J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
- D.G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu et al., Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019). https://doi.org/10.1038/s41467-019-13362-4
- C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 12, 1152–1156 (2012). https://doi.org/10.1021/nl202692y
- F. He, W. Tang, X. Zhang, L. Deng, J. Luo, High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 33, e2105329 (2021). https://doi.org/10.1002/adma.202105329
- Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16, 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
- S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney et al., Elastic properties of the solid electrolyte Li7La3Zr2O12(LLZO). Chem. Mater. 28, 197–206 (2016). https://doi.org/10.1021/acs.chemmater.5b03854
- A. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine, J. Sakamoto, Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019). https://doi.org/10.1007/s10853-018-2971-3
- J.E. Ni, E.D. Case, J.S. Sakamoto, E. Rangasamy, J.B. Wolfenstine, Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J. Mater. Sci. 47, 7978–7985 (2012). https://doi.org/10.1007/s10853-012-6687-5
- P. Bruce, Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28–30, 918–922 (1988). https://doi.org/10.1016/0167-2738(88)90304-9
- P.G. Bruce, C.A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 225, 1–17 (1987). https://doi.org/10.1016/0022-0728(87)80001-3
- H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo et al., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017). https://doi.org/10.1039/C6CS00491A
- X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy Environ. Sci. 13, 1318–1325 (2020). https://doi.org/10.1039/D0EE00342E
- C.-Z. Zhao, X.-Q. Zhang, X.-B. Cheng, R. Zhang, R. Xu et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U.S.A. 114, 11069–11074 (2017). https://doi.org/10.1073/pnas.1708489114
- Y. Li, L. Zhang, Z. Sun, G. Gao, S. Lu et al., Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A 8, 9579–9589 (2020). https://doi.org/10.1039/D0TA03677C
- K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, e2000399 (2020). https://doi.org/10.1002/adma.202000399
- F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
- N. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu et al., Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020). https://doi.org/10.1021/jacs.9b12233
- A. Rajamani, T. Panneerselvam, R. Murugan, A.P. Ramaswamy, Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries. Energy 263, 126058 (2023). https://doi.org/10.1016/j.energy.2022.126058
- J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai et al., High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940–4948 (2017). https://doi.org/10.1039/C6TA10066J
- X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023). https://doi.org/10.1016/j.ensm.2022.12.048
- J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
- J. Zheng, Y.-Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
- J. Zheng, H. Dang, X. Feng, P.-H. Chien, Y.-Y. Hu, Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5, 18457–18463 (2017). https://doi.org/10.1039/C7TA05832B
- T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017). https://doi.org/10.1021/acsami.7b03806
- J. Zheng, P. Wang, H. Liu, Y.-Y. Hu, Interface-enabled ion conduction in Li10GeP2S12–poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019). https://doi.org/10.1021/acsaem.8b02008
- Z. Li, H.-M. Huang, J.-K. Zhu, J.-F. Wu, H. Yang et al., Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 11, 784–791 (2019). https://doi.org/10.1021/acsami.8b17279
- W. Wang, E. Yi, A.J. Fici, R.M. Laine, J. Kieffer, Lithium ion conducting Poly(ethylene oxide)-Based solid electrolytes containing active or passive ceramic nanops. J. Phys. Chem. C 121, 2563–2573 (2017). https://doi.org/10.1021/acs.jpcc.6b11136
- X. Zhang, S. Cheng, C. Fu, G. Yin, P. Zuo et al., Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202401802
- D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 1801219 (2018). https://doi.org/10.1002/aenm.201801219
- S. Bag, C. Zhou, P.J. Kim, V.G. Pol, V. Thangadurai, LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Mater. 24, 198–207 (2020). https://doi.org/10.1016/j.ensm.2019.08.019
- X. Liu, S. Peng, S. Gao, Y. Cao, Q. You et al., Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte. ACS Appl. Mater. Interfaces 10, 15691–15696 (2018). https://doi.org/10.1021/acsami.8b01631
- I. Nicotera, L. Coppola, C. Oliviero, G.A. Ranieri, Rheological properties and impedance spectroscopy of PMMA-PVdF blend and PMMA gel polymer electrolytes for advanced lithium batteries. Ionics 11, 87–94 (2005). https://doi.org/10.1007/BF02430406
- R.H.Y. Subban, A.K. Arof, Plasticiser interactions with polymer and salt in PVC–LiCF3SO3–DMF electrolytes. Eur. Polym. J. 40, 1841–1847 (2004). https://doi.org/10.1016/j.eurpolymj.2004.03.026
- Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun et al., Cross-linking network based on Poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J. Power Sources 420, 63–72 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.090
- R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602
- G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature 398, 792–794 (1999). https://doi.org/10.1038/19730
- F. Croce, L. Settimi, B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem. Commun. 8, 364–368 (2006). https://doi.org/10.1016/j.elecom.2005.12.002
- T. Itoh, S. Horii, T. Uno, M. Kubo, O. Yamamoto, Influence of hyperbranched polymer structure on ionic conductivity in composite polymer electrolytes of PEO/hyperbranched polymer/BaTiO3/Li salt system. Electrochim. Acta 50, 271–274 (2004). https://doi.org/10.1016/j.electacta.2004.02.054
- A. D’Epifanio, F. Serraino Fiory, S. Licoccia, E. Traversa, B. Scrosati et al., Metallic-lithium, LiFePO4-based polymer battery using PEO—ZrO2 nanocomposite polymer electrolyte. J. Appl. Electrochem. 34, 403–408 (2004). https://doi.org/10.1023/B:JACH.0000016623.42147.68
- B. Zhou, Y.H. Jo, R. Wang, D. He, X. Zhou et al., Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries. J. Mater. Chem. A 7, 10354–10362 (2019). https://doi.org/10.1039/C9TA01214A
- Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang et al., Strong lewis Acid-Base and weak hydrogen bond synergistically enhancing ionic conductivity of Poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-Metal battery. ACS Appl. Mater. Interfaces 12, 10341–10349 (2020). https://doi.org/10.1021/acsami.9b20128
- M. Yao, Q. Ruan, T. Yu, H. Zhang, S. Zhang, Solid polymer electrolyte with in situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 44, 93–103 (2022). https://doi.org/10.1016/j.ensm.2021.10.009
- P.N. Didwal, Y.N. Singhbabu, R. Verma, B.-J. Sung, G.-H. Lee et al., An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanops for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 37, 476–490 (2021). https://doi.org/10.1016/j.ensm.2021.02.034
- H. Zhan, M. Wu, R. Wang, S. Wu, H. Li et al., Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanops for lithium metal batteries. Polymers 13, 2468 (2021). https://doi.org/10.3390/polym13152468
- Y. Li, Y. Qin, J. Zhao, M. Ma, M. Zhang et al., Boosting the ion mobility in solid polymer electrolytes using hollow polymer nanospheres as an additive. ACS Appl. Mater. Interfaces 14, 18360–18372 (2022). https://doi.org/10.1021/acsami.2c00244
- W. Bao, L. Zhao, H. Zhao, L. Su, X. Cai et al., Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 43, 258–265 (2021). https://doi.org/10.1016/j.ensm.2021.09.010
- D. Shanmukaraj, G.X. Wang, H.K. Liu, R. Murugan, Synthesis and characterization of SrBi4Ti4O15ferroelectricfiller based composite polymer electrolytes for lithium ion batteries. Polym. Bull. 60, 351–361 (2008). https://doi.org/10.1007/s00289-007-0845-y
- R. Jayaraman, P. Vickraman, N.M.V. Subramanian, A.S. Justin, Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites, in AIP Conference Proceedings, vol. 1731 p. 140028 (2016). https://doi.org/10.1063/1.4948194
- Y. Matsuo, J. Kuwano, Ionic conductivity of poly( ethylene glycol) -LiCF3SO3-ultrafine SiO2 composite electrolytes: effects of addition of the surfactant lithium dodecylsulfate. Solid State Ion. 79, 295–299 (1995). https://doi.org/10.1016/0167-2738(95)00077-J
- F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). https://doi.org/10.1038/28818
- S. Rajendran, T. Uma, Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes. Ionics 6, 288–293 (2000). https://doi.org/10.1007/BF02374079
- J. Xi, X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery. Chem. Phys. Lett. 393, 271–276 (2004). https://doi.org/10.1016/j.cplett.2004.06.054
- D. Shanmukaraj, R. Murugan, Characterization of PEG: LiClO4 +SrBi4Ti4O15 nanocomposite polymer electrolytes for lithium secondary batteries. J. Power Sources 149, 90–95 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.008
- F. Croce, S. Sacchetti, B. Scrosati, Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 162, 685–689 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.038
- V. Aravindan, P. Vickraman, Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE). J. Phys. D-Appl. Phys. 40, 6754–6759 (2007). https://doi.org/10.1088/0022-3727/40/21/040
- G. Liang, J. Xu, W. Xu, X. Shen, Z. Bai et al., Nonisothermal crystallization behaviors and conductive properties of PEO-based solid polymer electrolytes containing yttrium oxide nanops. Polym. Eng. Sci. 51, 2526–2534 (2011). https://doi.org/10.1002/pen.22030
- L. Lee, S.-J. Park, S. Kim, Effect of nano-sized Barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ion. 234, 19–24 (2013). https://doi.org/10.1016/j.ssi.2012.12.011
- D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in Poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
- S.V. Ganesan, K.K. Mothilal, T.K. Ganesan, The role of zirconium oxide as nano-filler on the conductivity, morphology, and thermal stability of poly(methyl methacrylate)–poly(styrene-co-acrylonitrile)-based plasticized composite solid polymer electrolytes. Ionics 24, 3845–3860 (2018). https://doi.org/10.1007/s11581-018-2529-z
- M. Sasikumar, M. Raja, R.H. Krishna, A. Jagadeesan, P. Sivakumar et al., Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF–HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J. Phys. Chem. C 122, 25741–25752 (2018). https://doi.org/10.1021/acs.jpcc.8b03952
- Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao et al., Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries. Ionics 25, 1471–1480 (2019). https://doi.org/10.1007/s11581-018-2706-0
- X. Li, L. Yang, D. Shao, K. Luo, L. Liu et al., Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J. Appl. Polym. Sci. 137, e48810 (2020). https://doi.org/10.1002/app.48810
- Y. Zhu, J. Cao, H. Chen, Q. Yu, B. Li, High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2019). https://doi.org/10.1039/C9TA00560A
- Y.Z. Li, Y.P. Yang, R.Y. Lei, S.D. Fu, R.G. Wan et al., Investigation of structure and ionic conductivity of (PEO)12-SiO2-LiClO4 nanocomposite electrolyte for all solid-state lithium-ion battery. J. Phys. Conf. Ser. 1765, 012016 (2021). https://doi.org/10.1088/1742-6596/1765/1/012016
- W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
- S. Hua, J.-L. Li, M.-X. Jing, F. Chen, B.-W. Ju et al., Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes. Int. J. Energy Res. 44, 6452–6462 (2020). https://doi.org/10.1002/er.5379
- S. Hua, M.-X. Jing, C. Han, H. Yang, H. Chen et al., A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4758
- X. Ao, X. Wang, J. Tan, S. Zhang, C. Su et al., Nanocomposite with fast Li+ conducting percolation network: solid polymer electrolyte with Li+ non-conducting filler. Nano Energy 79, 105475 (2021). https://doi.org/10.1016/j.nanoen.2020.105475
- O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18, 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
- C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang, High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries. Appl. Surf. Sci. 563, 150248 (2021). https://doi.org/10.1016/j.apsusc.2021.150248
- E. Zhao, Y. Guo, A. Zhang, H. Wang, G. Xu, Polydopamine coated TiO2 nanofiber fillers for polyethylene oxide hybrid electrolytes for efficient and durable all solid state lithium ion batteries. Nanoscale 14, 890–897 (2022). https://doi.org/10.1039/D1NR06636F
- J. Hu, W. Wang, X. Zhu, S. Liu, Y. Wang et al., Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J. Membr. Sci. 618, 118697 (2021). https://doi.org/10.1016/j.memsci.2020.118697
- P. Lun, Z. Chen, Z. Zhang, S. Tan, D. Chen, Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries. RSC Adv. 8, 34232–34240 (2018). https://doi.org/10.1039/c8ra06856a
- Q. Zhu, X. Wang, J.D. Miller, Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11, 8954–8960 (2019). https://doi.org/10.1021/acsami.8b13735
- Z. Wu, Z. Xie, A. Yoshida, J. Wang, T. Yu et al., Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J. Colloid Interface Sci. 565, 110–118 (2020). https://doi.org/10.1016/j.jcis.2020.01.005
- Z. Zhang, J.-H. You, S.-J. Zhang, C.-W. Wang, Y. Zhou et al., Metal organic framework nanorod doped solid polymer electrolyte with decreased crystallinity for high-performance all-solid-state lithium batteries. ChemElectroChem 7, 1125–1134 (2020). https://doi.org/10.1002/celc.201901987
- Z. Wu, Z. Xie, J. Wang, T. Yu, X. Du et al., Simultaneously enhancing the thermal stability and electrochemical performance of solid polymer electrolytes by incorporating rod-like Zn2(OH)BO3 ps. Int. J. Hydrog. Energy 45, 19601–19610 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.086
- J. Zhang, X. Huang, H. Wei, J. Fu, Y. Huang et al., Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic–organic hybrid polyphosphazene nanotubes as fillers. J. Solid State Electrochem. 16, 101–107 (2012). https://doi.org/10.1007/s10008-010-1278-3
- J. Wen, Q. Zhao, X. Jiang, G. Ji, R. Wang et al., Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery. ACS Appl. Energy Mater. 4, 3660–3669 (2021). https://doi.org/10.1021/acsaem.1c00090
- Z. Yang, Z. Sun, C. Liu, Y. Li, G. Zhou et al., Lithiated nanosheets hybridized solid polymer electrolyte to construct Li+ conduction highways for advanced all-solid-state lithium battery. J. Power Sources 484, 229287 (2021). https://doi.org/10.1016/j.jpowsour.2020.229287
- W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan et al., Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery. Adv. Mater. 30, e1804084 (2018). https://doi.org/10.1002/adma.201804084
- L. Chen, W. Li, L.-Z. Fan, C.-W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29, 1901047 (2019). https://doi.org/10.1002/adfm.201901047
- X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14, 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- Z. Zhang, R.G. Antonio, K.L. Choy, Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. J. Power Sources 435, 226736 (2019). https://doi.org/10.1016/j.jpowsour.2019.226736
- X. Yin, L. Wang, Y. Kim, N. Ding, J. Kong et al., Thermal conductive 2D boron nitride for high-performance all-solid-state lithium-sulfur batteries. Adv. Sci. 7, 2001303 (2020). https://doi.org/10.1002/advs.202001303
- Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu et al., g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7, 11069–11076 (2019). https://doi.org/10.1039/C9TA00634F
- Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang et al., MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10, 1903534 (2020). https://doi.org/10.1002/aenm.201903534
- X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
- Z. Zhang, Q. Wang, Z. Li, Y. Jiang, B. Zhao et al., Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte. Mater. Express 9, 993–1000 (2019). https://doi.org/10.1166/mex.2019.1589
- Z. Zhang, Y. Huang, H. Gao, C. Li, J. Huang et al., 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries. J. Membr. Sci. 621, 118940 (2021). https://doi.org/10.1016/j.memsci.2020.118940
- D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, e1802661 (2018). https://doi.org/10.1002/adma.201802661
- C.-S. Liao, W.-B. Ye, Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes. Mater. Chem. Phys. 88, 84–89 (2004). https://doi.org/10.1016/j.matchemphys.2004.06.012
- J. Shim, D.-G. Kim, H.J. Kim, J.H. Lee, J.-H. Baik et al., Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A 2, 13873–13883 (2014). https://doi.org/10.1039/c4ta02667e
- S. Gao, J. Zhong, G. Xue, B. Wang, Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide. J. Membr. Sci. 470, 316–322 (2014). https://doi.org/10.1016/j.memsci.2014.07.044
- Z. Huang, S. Wang, S. Kota, Q. Pan, M.W. Barsoum et al., Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer 102, 119–126 (2016). https://doi.org/10.1016/j.polymer.2016.09.011
- Q. Chi, R. Zhen, X. Wang, K. Yang, Y. Jiang et al., The role of exfoliated kaolinite on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene oxide)/kaolinite composites. Polym. Bull. 74, 3089–3108 (2017). https://doi.org/10.1007/s00289-016-1884-z
- B. Wu, L. Wang, Z. Li, M. Zhao, K. Chen et al., Performance of “polymer-in-salt” electrolyte PAN-LiTFSI enhanced by graphene oxide filler. J. Electrochem. Soc. 163, A2248–A2252 (2016). https://doi.org/10.1149/2.0531610jes
- H. Aydın, S.Ü. Çelik, A. Bozkurt, Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ion. 309, 71–76 (2017). https://doi.org/10.1016/j.ssi.2017.07.004
- P. Dhatarwal, R.J. Sengwa, S. Choudhary, Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Compos. Commun. 5, 1–7 (2017). https://doi.org/10.1016/j.coco.2017.05.001
- S. Gomari, M. Esfandeh, I. Ghasemi, All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene. Solid State Ion. 303, 37–46 (2017). https://doi.org/10.1016/j.ssi.2017.02.005
- W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu et al., Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ion. 315, 7–13 (2018). https://doi.org/10.1016/j.ssi.2017.11.026
- B. Wang, M. Tang, Y. Wu, Y. Chen, C. Jiang et al., A 2D layered natural ore as a novel solid-state electrolyte. ACS Appl. Energy Mater. 2, 5909–5916 (2019). https://doi.org/10.1021/acsaem.9b01046
- Q. Pan, Y. Zheng, S. Kota, W. Huang, S. Wang et al., 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019). https://doi.org/10.1039/C8NA00206A
- Y. Zhao, Y. Wang, Tailored solid polymer electrolytes by montmorillonite with high ionic conductivity for lithium-ion batteries. Nanoscale Res. Lett. 14, 366 (2019). https://doi.org/10.1186/s11671-019-3210-9
- S.N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, A.A. Ensafi, Nanofibrous poly(ethylene oxide)-based structures incorporated with multi-walled carbon nanotube and graphene oxide as all-solid-state electrolytes for lithium ion batteries. Polym. Int. 68, 1787–1794 (2019). https://doi.org/10.1002/pi.5889
- Y. Li, Z. Sun, D. Liu, Y. Gao, Y. Wang et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 8, 2021–2032 (2020). https://doi.org/10.1039/C9TA11542K
- Q. Han, S. Wang, Z. Jiang, X. Hu, H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces 12, 20514–20521 (2020). https://doi.org/10.1021/acsami.0c03430
- Q. Wang, J.-F. Wu, Z.-Y. Yu, X. Guo, Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ion. 347, 115275 (2020). https://doi.org/10.1016/j.ssi.2020.115275
- L. Li, Y. Shan, X. Yang, New insights for constructing solid polymer electrolytes with ideal lithium-ion transfer channels by using inorganic filler. Mater. Today Commun. 26, 101910 (2021). https://doi.org/10.1016/j.mtcomm.2020.101910
- H. An, Q. Liu, J. An, S. Liang, X. Wang et al., Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries. Energy Storage Mater. 43, 358–364 (2021). https://doi.org/10.1016/j.ensm.2021.09.019
- Y. Wang, X. Li, Y. Qin, D. Zhang, Z. Song et al., Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy 90, 106490 (2021). https://doi.org/10.1016/j.nanoen.2021.106490
- Y. Wang, S. Geng, G. Yan, X. Liu, X. Zhang et al., A Squaraine-linked zwitterionic covalent organic framework nanosheets enhanced Poly(ethylene oxide) composite polymer electrolyte for Quasi-Solid-State Li–S batteries. ACS Appl. Energy Mater. 5, 2495–2504 (2022). https://doi.org/10.1021/acsaem.1c04009
- I. Jayasekara, M. Poyner, D. Teeters, Investigation of a nanoconfined ceramic composite solid polymer electrolyte. Electrochim. Acta 247, 1147–1154 (2017). https://doi.org/10.1016/j.electacta.2017.06.129
- J. Wang, J. Yang, L. Shen, Q. Guo, H. He et al., Synergistic effects of plasticizer and 3D framework toward high-performance solid polymer electrolyte for room-temperature solid-state lithium batteries. ACS Appl. Energy Mater. 4, 4129–4137 (2021). https://doi.org/10.1021/acsaem.1c00468
- C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang et al., A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries. J. Colloid Interface Sci. 608, 313–321 (2022). https://doi.org/10.1016/j.jcis.2021.09.113
- X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao et al., A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 301, 47–53 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.111
- S. Chen, J. Wang, Z. Zhang, L. Wu, L. Yao et al., In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 387, 72–80 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.016
- Y. Li, W. Arnold, A. Thapa, J.B. Jasinski, G. Sumanasekera et al., Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 42653–42659 (2020). https://doi.org/10.1021/acsami.0c08261
- S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang et al., A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film. J. Power Sources 485, 229325 (2021). https://doi.org/10.1016/j.jpowsour.2020.229325
- S. Liu, L. Zhou, J. Han, K. Wen, S. Guan et al., Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12, 2270105 (2022). https://doi.org/10.1002/aenm.202270105
- Y. Su, X. Zhang, C. Du, Y. Luo, J. Chen et al., An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 18, e2202069 (2022). https://doi.org/10.1002/smll.202202069
- D. Li, L. Cao, C. Liu, G. Cao, J. Hu et al., A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte. Appl. Surf. Sci. 493, 1326–1333 (2019). https://doi.org/10.1016/j.apsusc.2019.07.041
- J. Li, H. Chen, Y. Shen, C. Hu, Z. Cheng et al., Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 23, 277–283 (2019). https://doi.org/10.1016/j.ensm.2019.05.002
- X. Li, D. Wang, H. Wang, H. Yan, Z. Gong et al., Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 11, 22745–22753 (2019). https://doi.org/10.1021/acsami.9b05212
- C. Lai, C. Shu, W. Li, L. Wang, X. Wang et al., Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett. 20, 8273–8281 (2020). https://doi.org/10.1021/acs.nanolett.0c03395
- M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020). https://doi.org/10.1002/adfm.201910123
- F.J. Simon, M. Hanauer, F.H. Richter, J. Janek, Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Interfaces 12, 11713–11723 (2020). https://doi.org/10.1021/acsami.9b22968
- Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu et al., Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020). https://doi.org/10.1016/j.ensm.2019.10.020
- J. Yi, D. Zhou, Y. Liang, H. Liu, H. Ni et al., Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem. 58, 17–24 (2021). https://doi.org/10.1016/j.jechem.2020.09.038
- G. Yu, Y. Wang, K. Li, D. Chen, L. Qin et al., Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries. Sustain. Energy Fuels 5, 1211–1221 (2021). https://doi.org/10.1039/D0SE01669A
- H. Liu, P. He, G. Wang, Y. Liang, C. Wang et al., Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. Chem. Eng. J. 430, 132991 (2022). https://doi.org/10.1016/j.cej.2021.132991
- P. Khomein, Y.-W. Byeon, D. Liu, J. Yu, A.M. Minor et al., Lithium phosphorus sulfide chloride–polymer composite via the solution–precipitation process for improving stability toward dendrite formation of Li-ion solid electrolyte. ACS Appl. Mater. Interfaces 15, 11723–11730 (2023). https://doi.org/10.1021/acsami.2c21302
- A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through In-situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16, 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
- J.-H. Choi, C.-H. Lee, J.-H. Yu, C.-H. Doh, S.-M. Lee, Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 274, 458–463 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.078
- Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., All-solid-state batteries: low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1970006 (2019). https://doi.org/10.1002/adfm.201970006
- R. Li, S. Guo, L. Yu, L. Wang, D. Wu et al., Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6, 1900200 (2019). https://doi.org/10.1002/admi.201900200
- J.Q. Dai, K. Fu, Y.H. Gong, J.W. Song, C.J. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
- Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7, 16425–16436 (2019). https://doi.org/10.1039/C9TA03395E
- X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
- W. Li, C. Sun, J. Jin, Y. Li, C. Chen et al., Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7, 27304–27312 (2019). https://doi.org/10.1039/C9TA10400C
- L. Wu, Y. Wang, M. Tang, Y. Liang, Z. Lin et al., Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Mater. 58, 40–47 (2023). https://doi.org/10.1016/j.ensm.2023.02.038
- X. Yu, Y. Liu, J.B. Goodenough, A. Manthiram, Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 13, 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
- O.V. Sreejith, S. Elsin Abraham, M. Ramaswamy, Free-standing and flexible garnet-PVDF ceramic polymer electrolyte membranes for solid-state batteries. Energy Fuels 37, 2401–2409 (2023). https://doi.org/10.1021/acs.energyfuels.2c03828
- C. Hu, Y. Shen, M. Shen, X. Liu, H. Chen et al., Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 142, 18035–18041 (2020). https://doi.org/10.1021/jacs.0c07060
- F. Chen, D. Yang, W. Zha, B. Zhu, Y. Zhang et al., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017). https://doi.org/10.1016/j.electacta.2017.11.164
- M. Falco, L. Castro, J.R. Nair, F. Bella, F. Bardé et al., UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl. Energy Mater. 2, 1600–1607 (2019). https://doi.org/10.1021/acsaem.8b02185
- R. Fan, C. Liu, K. He, S. Ho-Sum Cheng, D. Chen et al., Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 12, 7222–7231 (2020). https://doi.org/10.1021/acsami.9b20104
- J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
- M. Zhang, P. Pan, Z. Cheng, J. Mao, L. Jiang et al., Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries. Nano Lett. 21, 7070–7078 (2021). https://doi.org/10.1021/acs.nanolett.1c01704
- F. Fu, Y. Liu, C. Sun, L. Cong, Y. Liu et al., Unveiling and alleviating chemical “crosstalk” of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries. Energy Environ. Mater. 6, 12367 (2023). https://doi.org/10.1002/eem2.12367
- J. Li, R. Li, L.-X. Li, H. Yang, M.-Q. Liu et al., A high-filled Li7La3Zr2O12/polypropylene oxide composite solid electrolyte with improved lithium-ion transport and safety performances for high-voltage Li batteries. ACS Appl. Energy Mater. 5, 10786–10793 (2022). https://doi.org/10.1021/acsaem.2c01487
- H.K. Tran, B.T. Truong, B.-R. Zhang, R. Jose, J.-K. Chang et al., Sandwich-structured composite polymer electrolyte based on PVDF-HFP/PPC/Al-doped LLZO for high-voltage solid-state lithium batteries. ACS Appl. Energy Mater. 6, 1475–1487 (2023). https://doi.org/10.1021/acsaem.2c03363
- S. Xue, S. Chen, Y. Fu, H. Zhu, Y. Ji et al., Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 19, e2305326 (2023). https://doi.org/10.1002/smll.202305326
- Y.-J. Wang, Y. Pan, D. Kim, Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources 159, 690–701 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.104
- Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
- G. Wang, H. Liu, Y. Liang, C. Wang, L.-Z. Fan, Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Mater. 45, 1212–1219 (2022). https://doi.org/10.1016/j.ensm.2021.11.021
- Y. Jin, X. Zong, X. Zhang, C. Liu, D. Li et al., Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J. Power Sources 501, 230027 (2021). https://doi.org/10.1016/j.jpowsour.2021.230027
- Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li et al., New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 41837–41844 (2017). https://doi.org/10.1021/acsami.7b12092
- L. Wang, S. Hu, J. Su, T. Huang, A. Yu, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 42715–42721 (2019). https://doi.org/10.1021/acsami.9b12112
- C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu et al., Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 13694–13702 (2017). https://doi.org/10.1021/acsami.7b00336
- D. Wang, F. Zheng, Z. Song, H. Li, Y. Yu et al., Construction of polyvinylidene fluoride buffer layers for Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolytes toward stable dendrite-free lithium metal batteries. Ind. Eng. Chem. Res. 61, 14891–14897 (2022). https://doi.org/10.1021/acs.iecr.2c02575
- P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang et al., Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 6, 4279–4285 (2018). https://doi.org/10.1039/C7TA10517G
- X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin et al., Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658
- K. Liu, M. Wu, L. Wei, Y. Lin, T. Zhao, A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries. J. Membr. Sci. 610, 118265 (2020). https://doi.org/10.1016/j.memsci.2020.118265
- C. Yan, P. Zhu, H. Jia, J. Zhu, R.K. Selvan et al., High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 1, 46–60 (2019). https://doi.org/10.1007/s42765-019-00006-x
- P.C. Rath, M.S. Liu, S.T. Lo, R.S. Dhaka, D. Bresser et al., Suppression of dehydrofluorination reactions of a Li0.33La0.557TiO3-nanofiber-dispersed poly(vinylidene fluoride-co-hexafluoropropylene) electrolyte for Quasi-solid-state lithium-metal batteries by a fluorine-rich succinonitrile interlayer. ACS Appl. Mater. Interfaces 15, 15429–15438 (2023). https://doi.org/10.1021/acsami.2c22268
- S.H. Siyal, S.S. Ahmad Shah, T. Najam, M.S. Javed, M. Imran et al., Significant reduction in interface resistance and super-enhanced performance of lithium-metal battery by in situ construction of poly(vinylidene fluoride)-based solid-state membrane with dual ceramic fillers. ACS Appl. Energy Mater. 4, 8604–8614 (2021). https://doi.org/10.1021/acsaem.1c01820
- K.-Q. He, J.-W. Zha, P. Du, S.H.-S. Cheng, C. Liu et al., Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li0.33La0.557TiO3 nanofibers for all-solid-state lithium ion batteries. Dalton Trans. 48, 3263–3269 (2019). https://doi.org/10.1039/C9DT00074G
- K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, Polyoxyethylene (PEO)|PEO–Perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
- H. Xu, P.-H. Chien, J. Shi, Y. Li, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. U.S.A. 116, 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
- L. Zhu, P. Zhu, S. Yao, X. Shen, F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery. Int. J. Energy Res. 43, 4854–4866 (2019). https://doi.org/10.1002/er.4638
- B. Li, Q. Su, L. Yu, W. Liu, S. Dong et al., Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity. Appl. Surf. Sci. 541, 148434 (2021). https://doi.org/10.1016/j.apsusc.2020.148434
- J. Li, L. Zhu, J. Zhang, M. Jing, S. Yao et al., Approaching high performance PVDF-HFP based solid composite electrolytes with LLTO nanorods for solid-state lithium-ion batteries. Int. J. Energy Res. 45, 7663–7674 (2021). https://doi.org/10.1002/er.6347
- S. Sathya, S. Pazhaniswamy, P.C. Selvin, S. Vengatesan, A.M. Stephan, Physical and interfacial studies on Li0.5La0.5TiO3-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Energy Fuels 35, 13402–13410 (2021). https://doi.org/10.1021/acs.energyfuels.1c01151
- T.-Q. Yang, C. Wang, W.-K. Zhang, Y. Xia, Y.-P. Gan et al., Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Met. 41, 1870–1879 (2022). https://doi.org/10.1007/s12598-021-01891-1
- X. Zhang, H. Huo, Nuclear magnetic resonance studies of organic-inorganic composite solid electrolytes. Magn. Reson. Lett. 1, 142–152 (2021). https://doi.org/10.1016/j.mrl.2021.10.004
- J. Zagórski, J.M. López del Amo, M.J. Cordill, F. Aguesse, L. Buannic et al., Garnet–polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2, 1734–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
- M. Liu, S.N. Zhang, E.R.H. van Eck, C. Wang, S. Ganapathy et al., Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 17, 959–967 (2022). https://doi.org/10.1038/s41565-022-01162-9
- P.-H. Chien, X. Feng, M. Tang, J.T. Rosenberg, S. O’Neill et al., Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J. Phys. Chem. Lett. 9, 1990–1998 (2018). https://doi.org/10.1021/acs.jpclett.8b00240
- G. Polizos, M. Goswami, J.K. Keum, L. He, C.J. Jafta et al., Nanoscale ion transport enhances conductivity in solid polymer-ceramic lithium electrolytes. ACS Nano 18, 2750–2762 (2024). https://doi.org/10.1021/acsnano.3c03901
- Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021). https://doi.org/10.1002/advs.202003887
- C. Shen, Y. Huang, J. Yang, M. Chen, Z. Liu, Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. Energy Storage Mater. 39, 271–277 (2021). https://doi.org/10.1016/j.ensm.2021.04.028
- Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
References
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
L. Wang, T. Liu, T. Wu, J. Lu, Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022). https://doi.org/10.1038/s41586-022-05238-3
Y. Zhang, W. Zhao, C. Kang, S. Geng, J. Zhu et al., Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at −30 °C. Matter 6, 1928–1944 (2023). https://doi.org/10.1016/j.matt.2023.03.026
S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
J. Wu, M. Zheng, T. Liu, Y. Wang, Y. Liu et al., Direct recovery: a sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater 54, 120–134 (2023). https://doi.org/10.1016/j.ensm.2022.09.029
M. Li, H. An, Y. Song, Q. Liu, J. Wang et al., Ion-dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145, 25632–25642 (2023). https://doi.org/10.1021/jacs.3c07482
B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16, 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
L. Wang, T. Liu, A. Dai, V. De Andrade, Y. Ren et al., Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 12, 5370 (2021). https://doi.org/10.1038/s41467-021-25686-1
J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G.O. Hartley et al., Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). https://doi.org/10.1038/s41563-019-0438-9
H. Wang, H. Gao, X. Chen, J. Zhu, W. Li et al., Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv. Energy Mater. 11, 2102148 (2021). https://doi.org/10.1002/aenm.202102148
S. Lou, Q. Liu, F. Zhang, Q. Liu, Z. Yu et al., Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 11, 5700 (2020). https://doi.org/10.1038/s41467-020-19528-9
W. Lin, J. Xing, Y. Zhou, L. Pan, L. Yang et al., A biomimetic cement-based solid-state electrolyte with both high strength and ionic conductivity for self-energy-storage buildings. Research 7, 0379 (2024). https://doi.org/10.34133/research.0379
Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang et al., Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020). https://doi.org/10.1038/s41586-020-1972-y
S. Lou, Z. Yu, Q. Liu, H. Wang, M. Chen et al., Multi-scale imaging of solid-state battery interfaces: from atomic scale to macroscopic scale. Chem 6, 2199–2218 (2020). https://doi.org/10.1016/j.chempr.2020.06.030
L. Wang, A. Dai, W. Xu, S. Lee, W. Cha et al., Structural distortion induced by manganese activation in a lithium-rich layered cathode. J. Am. Chem. Soc. 142, 14966–14973 (2020). https://doi.org/10.1021/jacs.0c05498
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
L. Dong, S. Zhong, B. Yuan, Y. Ji, J. Liu et al., Electrolyte engineering for high-voltage lithium metal batteries. Research 2022, 9837586 (2022). https://doi.org/10.34133/2022/9837586
V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144
H. Zheng, S. Wu, R. Tian, Z. Xu, H. Zhu et al., Intrinsic lithiophilicity of Li–garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 30, 1906189 (2020). https://doi.org/10.1002/adfm.201906189
Y.T. Li, X. Chen, A. Dolocan, Z.M. Cui, S. Xin et al., Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018). https://doi.org/10.1021/jacs.8b03106
H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo et al., In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 61, 119–125 (2019). https://doi.org/10.1016/j.nanoen.2019.04.058
W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6%3c439::AID-ADMA439%3e3.0.CO;2-I
D. Zhou, A. Tkacheva, X. Tang, B. Sun, D. Shanmukaraj et al., Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction. Angew. Chem. Int. Ed. 58, 6001–6006 (2019). https://doi.org/10.1002/anie.201901582
J. Xi, X. Qiu, S. Zheng, X. Tang, Nanocomposite polymer electrolyte comprising PEO/LiClO4 and solid super acid: effect of sulphated-zirconia on the crystallization kinetics of PEO. Polymer 46, 5702–5706 (2005). https://doi.org/10.1016/j.polymer.2005.05.051
M. Nakayama, S. Wada, S. Kuroki, M. Nogami, Factors affecting cyclic durability of all-solid-state lithiumpolymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 3, 1995–2002 (2010). https://doi.org/10.1039/C0EE00266F
D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10, 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
H.W. Kim, P. Manikandan, Y.J. Lim, J.H. Kim, S.-C. Nam et al., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J. Mater. Chem. A 4, 17025–17032 (2016). https://doi.org/10.1039/C6TA07268B
S.A. Pervez, G. Kim, B.P. Vinayan, M.A. Cambaz, M. Kuenzel et al., Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small 16, e2000279 (2020). https://doi.org/10.1002/smll.202000279
W. Fan, N.-W. Li, X. Zhang, S. Zhao, R. Cao et al., A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv. Sci. 5, 1800559 (2018). https://doi.org/10.1002/advs.201800559
Y. Gao, Z. Yan, J.L. Gray, X. He, D. Wang et al., Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019). https://doi.org/10.1038/s41563-019-0305-8
Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023). https://doi.org/10.1038/s41467-023-41808-3
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
C. Capiglia, Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ion. 118, 73–79 (1999). https://doi.org/10.1016/s0167-2738(98)00457-3
B.W. Zewde, G.A. Elia, S. Admassie, J. Zimmermann, M. Hagemann et al., Polyethylene oxide electrolyte added by silane-functionalized TiO2 filler for lithium battery. Solid State Ion. 268, 174–178 (2014). https://doi.org/10.1016/j.ssi.2014.10.030
S.J. Kwon, B.M. Jung, T. Kim, J. Byun, J. Lee et al., Influence of Al2O3 nanowires on ion transport in nanocomposite solid polymer electrolytes. Macromolecules 51, 10194–10201 (2018). https://doi.org/10.1021/acs.macromol.8b01603
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang et al., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8, 1800866 (2018). https://doi.org/10.1002/aenm.201800866
Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora et al., Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, e1901131 (2019). https://doi.org/10.1002/adma.201901131
Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y
Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao et al., Tape-casting Li0.34 La0.56 TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 32, e1906221 (2020). https://doi.org/10.1002/adma.201906221
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
D. Zhang, X. Xu, Y. Qin, S. Ji, Y. Huo et al., Recent progress in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Chemistry 26, 1720–1736 (2020). https://doi.org/10.1002/chem.201904461
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
V. Vijayakumar, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot et al., 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13, 2203326 (2023). https://doi.org/10.1002/aenm.202203326
J. Sun, C. Liu, H. Liu, J. Li, P. Zheng et al., Advances in ordered architecture design of composite solid electrolytes for solid-state lithium batteries. Chem. Rec. 23, e202300044 (2023). https://doi.org/10.1002/tcr.202300044
F. Zheng, C. Li, Z. Li, X. Cao, H. Luo et al., Advanced composite solid electrolytes for lithium batteries: filler dimensional design and ion path optimization. Small 19, e2206355 (2023). https://doi.org/10.1002/smll.202206355
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
W.-P. Chen, H. Duan, J.-L. Shi, Y. Qian, J. Wan et al., Bridging interp Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021). https://doi.org/10.1021/jacs.0c12965
L. Du, B. Zhang, X. Wang, C. Dong, L. Mai et al., 3D frameworks in composite polymer electrolytes: synthesis, mechanisms, and applications. Chem. Eng. J. 451, 138787 (2023). https://doi.org/10.1016/j.cej.2022.138787
P. Ranque, J. Zagórski, S. Devaraj, F. Aguesse, J.M. López del Amo, Characterization of the interfacial Li-ion exchange process in a ceramic–polymer composite by solid state NMR. J. Mater. Chem. A 9, 17812–17820 (2021). https://doi.org/10.1039/D1TA03720J
M.M.U. Din, M. Häusler, S.M. Fischer, K. Ratzenböck, F.F. Chamasemani et al., Role of filler content and morphology in LLZO/PEO membranes. Front. Energy Res. 9, 711610 (2021). https://doi.org/10.3389/fenrg.2021.711610
Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao et al., The effects of the size and content of BaTiO3 nanops on solid polymer electrolytes for all-solid-state lithium-ion batteries. J. Solid State Electrochem. 23, 749–758 (2019). https://doi.org/10.1007/s10008-018-04175-4
H.Y. Sun, Y. Takeda, N. Imanishi, O. Yamamoto, H.-J. Sohn, Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J. Electrochem. Soc. 147, 2462 (2000). https://doi.org/10.1149/1.1393554
M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawala, I. Albinsson, B.-E. Mellander, Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: Al2O3 composite polymer electrolyte. J. Power Sources 119, 409–414 (2003). https://doi.org/10.1016/S0378-7753(03)00262-3
J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
M. Sahimi, Applications of Percolation Theory (CRC Press, Cambridge, 1994)
J. Maier, Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995). https://doi.org/10.1016/0079-6786(95)00004-E
W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
S.F. Song, Y.M. Wu, W.P. Tang, F. Deng, J.Y. Yao et al., Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustain. Chem. Eng. 7, 7163–7170 (2019). https://doi.org/10.1021/acssuschemeng.9b00143
W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramicnanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17, 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
D.G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu et al., Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019). https://doi.org/10.1038/s41467-019-13362-4
C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 12, 1152–1156 (2012). https://doi.org/10.1021/nl202692y
F. He, W. Tang, X. Zhang, L. Deng, J. Luo, High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 33, e2105329 (2021). https://doi.org/10.1002/adma.202105329
Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16, 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney et al., Elastic properties of the solid electrolyte Li7La3Zr2O12(LLZO). Chem. Mater. 28, 197–206 (2016). https://doi.org/10.1021/acs.chemmater.5b03854
A. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine, J. Sakamoto, Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019). https://doi.org/10.1007/s10853-018-2971-3
J.E. Ni, E.D. Case, J.S. Sakamoto, E. Rangasamy, J.B. Wolfenstine, Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J. Mater. Sci. 47, 7978–7985 (2012). https://doi.org/10.1007/s10853-012-6687-5
P. Bruce, Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28–30, 918–922 (1988). https://doi.org/10.1016/0167-2738(88)90304-9
P.G. Bruce, C.A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 225, 1–17 (1987). https://doi.org/10.1016/0022-0728(87)80001-3
H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo et al., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017). https://doi.org/10.1039/C6CS00491A
X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy Environ. Sci. 13, 1318–1325 (2020). https://doi.org/10.1039/D0EE00342E
C.-Z. Zhao, X.-Q. Zhang, X.-B. Cheng, R. Zhang, R. Xu et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U.S.A. 114, 11069–11074 (2017). https://doi.org/10.1073/pnas.1708489114
Y. Li, L. Zhang, Z. Sun, G. Gao, S. Lu et al., Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A 8, 9579–9589 (2020). https://doi.org/10.1039/D0TA03677C
K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, e2000399 (2020). https://doi.org/10.1002/adma.202000399
F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
N. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu et al., Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020). https://doi.org/10.1021/jacs.9b12233
A. Rajamani, T. Panneerselvam, R. Murugan, A.P. Ramaswamy, Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries. Energy 263, 126058 (2023). https://doi.org/10.1016/j.energy.2022.126058
J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai et al., High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940–4948 (2017). https://doi.org/10.1039/C6TA10066J
X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023). https://doi.org/10.1016/j.ensm.2022.12.048
J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
J. Zheng, Y.-Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
J. Zheng, H. Dang, X. Feng, P.-H. Chien, Y.-Y. Hu, Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5, 18457–18463 (2017). https://doi.org/10.1039/C7TA05832B
T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017). https://doi.org/10.1021/acsami.7b03806
J. Zheng, P. Wang, H. Liu, Y.-Y. Hu, Interface-enabled ion conduction in Li10GeP2S12–poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019). https://doi.org/10.1021/acsaem.8b02008
Z. Li, H.-M. Huang, J.-K. Zhu, J.-F. Wu, H. Yang et al., Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 11, 784–791 (2019). https://doi.org/10.1021/acsami.8b17279
W. Wang, E. Yi, A.J. Fici, R.M. Laine, J. Kieffer, Lithium ion conducting Poly(ethylene oxide)-Based solid electrolytes containing active or passive ceramic nanops. J. Phys. Chem. C 121, 2563–2573 (2017). https://doi.org/10.1021/acs.jpcc.6b11136
X. Zhang, S. Cheng, C. Fu, G. Yin, P. Zuo et al., Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202401802
D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 1801219 (2018). https://doi.org/10.1002/aenm.201801219
S. Bag, C. Zhou, P.J. Kim, V.G. Pol, V. Thangadurai, LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Mater. 24, 198–207 (2020). https://doi.org/10.1016/j.ensm.2019.08.019
X. Liu, S. Peng, S. Gao, Y. Cao, Q. You et al., Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte. ACS Appl. Mater. Interfaces 10, 15691–15696 (2018). https://doi.org/10.1021/acsami.8b01631
I. Nicotera, L. Coppola, C. Oliviero, G.A. Ranieri, Rheological properties and impedance spectroscopy of PMMA-PVdF blend and PMMA gel polymer electrolytes for advanced lithium batteries. Ionics 11, 87–94 (2005). https://doi.org/10.1007/BF02430406
R.H.Y. Subban, A.K. Arof, Plasticiser interactions with polymer and salt in PVC–LiCF3SO3–DMF electrolytes. Eur. Polym. J. 40, 1841–1847 (2004). https://doi.org/10.1016/j.eurpolymj.2004.03.026
Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun et al., Cross-linking network based on Poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J. Power Sources 420, 63–72 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.090
R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602
G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature 398, 792–794 (1999). https://doi.org/10.1038/19730
F. Croce, L. Settimi, B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem. Commun. 8, 364–368 (2006). https://doi.org/10.1016/j.elecom.2005.12.002
T. Itoh, S. Horii, T. Uno, M. Kubo, O. Yamamoto, Influence of hyperbranched polymer structure on ionic conductivity in composite polymer electrolytes of PEO/hyperbranched polymer/BaTiO3/Li salt system. Electrochim. Acta 50, 271–274 (2004). https://doi.org/10.1016/j.electacta.2004.02.054
A. D’Epifanio, F. Serraino Fiory, S. Licoccia, E. Traversa, B. Scrosati et al., Metallic-lithium, LiFePO4-based polymer battery using PEO—ZrO2 nanocomposite polymer electrolyte. J. Appl. Electrochem. 34, 403–408 (2004). https://doi.org/10.1023/B:JACH.0000016623.42147.68
B. Zhou, Y.H. Jo, R. Wang, D. He, X. Zhou et al., Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries. J. Mater. Chem. A 7, 10354–10362 (2019). https://doi.org/10.1039/C9TA01214A
Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang et al., Strong lewis Acid-Base and weak hydrogen bond synergistically enhancing ionic conductivity of Poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-Metal battery. ACS Appl. Mater. Interfaces 12, 10341–10349 (2020). https://doi.org/10.1021/acsami.9b20128
M. Yao, Q. Ruan, T. Yu, H. Zhang, S. Zhang, Solid polymer electrolyte with in situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 44, 93–103 (2022). https://doi.org/10.1016/j.ensm.2021.10.009
P.N. Didwal, Y.N. Singhbabu, R. Verma, B.-J. Sung, G.-H. Lee et al., An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanops for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 37, 476–490 (2021). https://doi.org/10.1016/j.ensm.2021.02.034
H. Zhan, M. Wu, R. Wang, S. Wu, H. Li et al., Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanops for lithium metal batteries. Polymers 13, 2468 (2021). https://doi.org/10.3390/polym13152468
Y. Li, Y. Qin, J. Zhao, M. Ma, M. Zhang et al., Boosting the ion mobility in solid polymer electrolytes using hollow polymer nanospheres as an additive. ACS Appl. Mater. Interfaces 14, 18360–18372 (2022). https://doi.org/10.1021/acsami.2c00244
W. Bao, L. Zhao, H. Zhao, L. Su, X. Cai et al., Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 43, 258–265 (2021). https://doi.org/10.1016/j.ensm.2021.09.010
D. Shanmukaraj, G.X. Wang, H.K. Liu, R. Murugan, Synthesis and characterization of SrBi4Ti4O15ferroelectricfiller based composite polymer electrolytes for lithium ion batteries. Polym. Bull. 60, 351–361 (2008). https://doi.org/10.1007/s00289-007-0845-y
R. Jayaraman, P. Vickraman, N.M.V. Subramanian, A.S. Justin, Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites, in AIP Conference Proceedings, vol. 1731 p. 140028 (2016). https://doi.org/10.1063/1.4948194
Y. Matsuo, J. Kuwano, Ionic conductivity of poly( ethylene glycol) -LiCF3SO3-ultrafine SiO2 composite electrolytes: effects of addition of the surfactant lithium dodecylsulfate. Solid State Ion. 79, 295–299 (1995). https://doi.org/10.1016/0167-2738(95)00077-J
F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). https://doi.org/10.1038/28818
S. Rajendran, T. Uma, Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes. Ionics 6, 288–293 (2000). https://doi.org/10.1007/BF02374079
J. Xi, X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery. Chem. Phys. Lett. 393, 271–276 (2004). https://doi.org/10.1016/j.cplett.2004.06.054
D. Shanmukaraj, R. Murugan, Characterization of PEG: LiClO4 +SrBi4Ti4O15 nanocomposite polymer electrolytes for lithium secondary batteries. J. Power Sources 149, 90–95 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.008
F. Croce, S. Sacchetti, B. Scrosati, Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 162, 685–689 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.038
V. Aravindan, P. Vickraman, Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE). J. Phys. D-Appl. Phys. 40, 6754–6759 (2007). https://doi.org/10.1088/0022-3727/40/21/040
G. Liang, J. Xu, W. Xu, X. Shen, Z. Bai et al., Nonisothermal crystallization behaviors and conductive properties of PEO-based solid polymer electrolytes containing yttrium oxide nanops. Polym. Eng. Sci. 51, 2526–2534 (2011). https://doi.org/10.1002/pen.22030
L. Lee, S.-J. Park, S. Kim, Effect of nano-sized Barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ion. 234, 19–24 (2013). https://doi.org/10.1016/j.ssi.2012.12.011
D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in Poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
S.V. Ganesan, K.K. Mothilal, T.K. Ganesan, The role of zirconium oxide as nano-filler on the conductivity, morphology, and thermal stability of poly(methyl methacrylate)–poly(styrene-co-acrylonitrile)-based plasticized composite solid polymer electrolytes. Ionics 24, 3845–3860 (2018). https://doi.org/10.1007/s11581-018-2529-z
M. Sasikumar, M. Raja, R.H. Krishna, A. Jagadeesan, P. Sivakumar et al., Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF–HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J. Phys. Chem. C 122, 25741–25752 (2018). https://doi.org/10.1021/acs.jpcc.8b03952
Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao et al., Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries. Ionics 25, 1471–1480 (2019). https://doi.org/10.1007/s11581-018-2706-0
X. Li, L. Yang, D. Shao, K. Luo, L. Liu et al., Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J. Appl. Polym. Sci. 137, e48810 (2020). https://doi.org/10.1002/app.48810
Y. Zhu, J. Cao, H. Chen, Q. Yu, B. Li, High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2019). https://doi.org/10.1039/C9TA00560A
Y.Z. Li, Y.P. Yang, R.Y. Lei, S.D. Fu, R.G. Wan et al., Investigation of structure and ionic conductivity of (PEO)12-SiO2-LiClO4 nanocomposite electrolyte for all solid-state lithium-ion battery. J. Phys. Conf. Ser. 1765, 012016 (2021). https://doi.org/10.1088/1742-6596/1765/1/012016
W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
S. Hua, J.-L. Li, M.-X. Jing, F. Chen, B.-W. Ju et al., Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes. Int. J. Energy Res. 44, 6452–6462 (2020). https://doi.org/10.1002/er.5379
S. Hua, M.-X. Jing, C. Han, H. Yang, H. Chen et al., A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4758
X. Ao, X. Wang, J. Tan, S. Zhang, C. Su et al., Nanocomposite with fast Li+ conducting percolation network: solid polymer electrolyte with Li+ non-conducting filler. Nano Energy 79, 105475 (2021). https://doi.org/10.1016/j.nanoen.2020.105475
O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18, 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang, High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries. Appl. Surf. Sci. 563, 150248 (2021). https://doi.org/10.1016/j.apsusc.2021.150248
E. Zhao, Y. Guo, A. Zhang, H. Wang, G. Xu, Polydopamine coated TiO2 nanofiber fillers for polyethylene oxide hybrid electrolytes for efficient and durable all solid state lithium ion batteries. Nanoscale 14, 890–897 (2022). https://doi.org/10.1039/D1NR06636F
J. Hu, W. Wang, X. Zhu, S. Liu, Y. Wang et al., Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J. Membr. Sci. 618, 118697 (2021). https://doi.org/10.1016/j.memsci.2020.118697
P. Lun, Z. Chen, Z. Zhang, S. Tan, D. Chen, Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries. RSC Adv. 8, 34232–34240 (2018). https://doi.org/10.1039/c8ra06856a
Q. Zhu, X. Wang, J.D. Miller, Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11, 8954–8960 (2019). https://doi.org/10.1021/acsami.8b13735
Z. Wu, Z. Xie, A. Yoshida, J. Wang, T. Yu et al., Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J. Colloid Interface Sci. 565, 110–118 (2020). https://doi.org/10.1016/j.jcis.2020.01.005
Z. Zhang, J.-H. You, S.-J. Zhang, C.-W. Wang, Y. Zhou et al., Metal organic framework nanorod doped solid polymer electrolyte with decreased crystallinity for high-performance all-solid-state lithium batteries. ChemElectroChem 7, 1125–1134 (2020). https://doi.org/10.1002/celc.201901987
Z. Wu, Z. Xie, J. Wang, T. Yu, X. Du et al., Simultaneously enhancing the thermal stability and electrochemical performance of solid polymer electrolytes by incorporating rod-like Zn2(OH)BO3 ps. Int. J. Hydrog. Energy 45, 19601–19610 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.086
J. Zhang, X. Huang, H. Wei, J. Fu, Y. Huang et al., Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic–organic hybrid polyphosphazene nanotubes as fillers. J. Solid State Electrochem. 16, 101–107 (2012). https://doi.org/10.1007/s10008-010-1278-3
J. Wen, Q. Zhao, X. Jiang, G. Ji, R. Wang et al., Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery. ACS Appl. Energy Mater. 4, 3660–3669 (2021). https://doi.org/10.1021/acsaem.1c00090
Z. Yang, Z. Sun, C. Liu, Y. Li, G. Zhou et al., Lithiated nanosheets hybridized solid polymer electrolyte to construct Li+ conduction highways for advanced all-solid-state lithium battery. J. Power Sources 484, 229287 (2021). https://doi.org/10.1016/j.jpowsour.2020.229287
W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan et al., Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery. Adv. Mater. 30, e1804084 (2018). https://doi.org/10.1002/adma.201804084
L. Chen, W. Li, L.-Z. Fan, C.-W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29, 1901047 (2019). https://doi.org/10.1002/adfm.201901047
X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14, 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
Z. Zhang, R.G. Antonio, K.L. Choy, Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. J. Power Sources 435, 226736 (2019). https://doi.org/10.1016/j.jpowsour.2019.226736
X. Yin, L. Wang, Y. Kim, N. Ding, J. Kong et al., Thermal conductive 2D boron nitride for high-performance all-solid-state lithium-sulfur batteries. Adv. Sci. 7, 2001303 (2020). https://doi.org/10.1002/advs.202001303
Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu et al., g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7, 11069–11076 (2019). https://doi.org/10.1039/C9TA00634F
Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang et al., MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10, 1903534 (2020). https://doi.org/10.1002/aenm.201903534
X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
Z. Zhang, Q. Wang, Z. Li, Y. Jiang, B. Zhao et al., Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte. Mater. Express 9, 993–1000 (2019). https://doi.org/10.1166/mex.2019.1589
Z. Zhang, Y. Huang, H. Gao, C. Li, J. Huang et al., 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries. J. Membr. Sci. 621, 118940 (2021). https://doi.org/10.1016/j.memsci.2020.118940
D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, e1802661 (2018). https://doi.org/10.1002/adma.201802661
C.-S. Liao, W.-B. Ye, Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes. Mater. Chem. Phys. 88, 84–89 (2004). https://doi.org/10.1016/j.matchemphys.2004.06.012
J. Shim, D.-G. Kim, H.J. Kim, J.H. Lee, J.-H. Baik et al., Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A 2, 13873–13883 (2014). https://doi.org/10.1039/c4ta02667e
S. Gao, J. Zhong, G. Xue, B. Wang, Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide. J. Membr. Sci. 470, 316–322 (2014). https://doi.org/10.1016/j.memsci.2014.07.044
Z. Huang, S. Wang, S. Kota, Q. Pan, M.W. Barsoum et al., Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer 102, 119–126 (2016). https://doi.org/10.1016/j.polymer.2016.09.011
Q. Chi, R. Zhen, X. Wang, K. Yang, Y. Jiang et al., The role of exfoliated kaolinite on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene oxide)/kaolinite composites. Polym. Bull. 74, 3089–3108 (2017). https://doi.org/10.1007/s00289-016-1884-z
B. Wu, L. Wang, Z. Li, M. Zhao, K. Chen et al., Performance of “polymer-in-salt” electrolyte PAN-LiTFSI enhanced by graphene oxide filler. J. Electrochem. Soc. 163, A2248–A2252 (2016). https://doi.org/10.1149/2.0531610jes
H. Aydın, S.Ü. Çelik, A. Bozkurt, Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ion. 309, 71–76 (2017). https://doi.org/10.1016/j.ssi.2017.07.004
P. Dhatarwal, R.J. Sengwa, S. Choudhary, Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Compos. Commun. 5, 1–7 (2017). https://doi.org/10.1016/j.coco.2017.05.001
S. Gomari, M. Esfandeh, I. Ghasemi, All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene. Solid State Ion. 303, 37–46 (2017). https://doi.org/10.1016/j.ssi.2017.02.005
W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu et al., Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ion. 315, 7–13 (2018). https://doi.org/10.1016/j.ssi.2017.11.026
B. Wang, M. Tang, Y. Wu, Y. Chen, C. Jiang et al., A 2D layered natural ore as a novel solid-state electrolyte. ACS Appl. Energy Mater. 2, 5909–5916 (2019). https://doi.org/10.1021/acsaem.9b01046
Q. Pan, Y. Zheng, S. Kota, W. Huang, S. Wang et al., 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019). https://doi.org/10.1039/C8NA00206A
Y. Zhao, Y. Wang, Tailored solid polymer electrolytes by montmorillonite with high ionic conductivity for lithium-ion batteries. Nanoscale Res. Lett. 14, 366 (2019). https://doi.org/10.1186/s11671-019-3210-9
S.N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, A.A. Ensafi, Nanofibrous poly(ethylene oxide)-based structures incorporated with multi-walled carbon nanotube and graphene oxide as all-solid-state electrolytes for lithium ion batteries. Polym. Int. 68, 1787–1794 (2019). https://doi.org/10.1002/pi.5889
Y. Li, Z. Sun, D. Liu, Y. Gao, Y. Wang et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 8, 2021–2032 (2020). https://doi.org/10.1039/C9TA11542K
Q. Han, S. Wang, Z. Jiang, X. Hu, H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces 12, 20514–20521 (2020). https://doi.org/10.1021/acsami.0c03430
Q. Wang, J.-F. Wu, Z.-Y. Yu, X. Guo, Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ion. 347, 115275 (2020). https://doi.org/10.1016/j.ssi.2020.115275
L. Li, Y. Shan, X. Yang, New insights for constructing solid polymer electrolytes with ideal lithium-ion transfer channels by using inorganic filler. Mater. Today Commun. 26, 101910 (2021). https://doi.org/10.1016/j.mtcomm.2020.101910
H. An, Q. Liu, J. An, S. Liang, X. Wang et al., Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries. Energy Storage Mater. 43, 358–364 (2021). https://doi.org/10.1016/j.ensm.2021.09.019
Y. Wang, X. Li, Y. Qin, D. Zhang, Z. Song et al., Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy 90, 106490 (2021). https://doi.org/10.1016/j.nanoen.2021.106490
Y. Wang, S. Geng, G. Yan, X. Liu, X. Zhang et al., A Squaraine-linked zwitterionic covalent organic framework nanosheets enhanced Poly(ethylene oxide) composite polymer electrolyte for Quasi-Solid-State Li–S batteries. ACS Appl. Energy Mater. 5, 2495–2504 (2022). https://doi.org/10.1021/acsaem.1c04009
I. Jayasekara, M. Poyner, D. Teeters, Investigation of a nanoconfined ceramic composite solid polymer electrolyte. Electrochim. Acta 247, 1147–1154 (2017). https://doi.org/10.1016/j.electacta.2017.06.129
J. Wang, J. Yang, L. Shen, Q. Guo, H. He et al., Synergistic effects of plasticizer and 3D framework toward high-performance solid polymer electrolyte for room-temperature solid-state lithium batteries. ACS Appl. Energy Mater. 4, 4129–4137 (2021). https://doi.org/10.1021/acsaem.1c00468
C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang et al., A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries. J. Colloid Interface Sci. 608, 313–321 (2022). https://doi.org/10.1016/j.jcis.2021.09.113
X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao et al., A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 301, 47–53 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.111
S. Chen, J. Wang, Z. Zhang, L. Wu, L. Yao et al., In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 387, 72–80 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.016
Y. Li, W. Arnold, A. Thapa, J.B. Jasinski, G. Sumanasekera et al., Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 42653–42659 (2020). https://doi.org/10.1021/acsami.0c08261
S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang et al., A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film. J. Power Sources 485, 229325 (2021). https://doi.org/10.1016/j.jpowsour.2020.229325
S. Liu, L. Zhou, J. Han, K. Wen, S. Guan et al., Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12, 2270105 (2022). https://doi.org/10.1002/aenm.202270105
Y. Su, X. Zhang, C. Du, Y. Luo, J. Chen et al., An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 18, e2202069 (2022). https://doi.org/10.1002/smll.202202069
D. Li, L. Cao, C. Liu, G. Cao, J. Hu et al., A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte. Appl. Surf. Sci. 493, 1326–1333 (2019). https://doi.org/10.1016/j.apsusc.2019.07.041
J. Li, H. Chen, Y. Shen, C. Hu, Z. Cheng et al., Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 23, 277–283 (2019). https://doi.org/10.1016/j.ensm.2019.05.002
X. Li, D. Wang, H. Wang, H. Yan, Z. Gong et al., Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 11, 22745–22753 (2019). https://doi.org/10.1021/acsami.9b05212
C. Lai, C. Shu, W. Li, L. Wang, X. Wang et al., Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett. 20, 8273–8281 (2020). https://doi.org/10.1021/acs.nanolett.0c03395
M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020). https://doi.org/10.1002/adfm.201910123
F.J. Simon, M. Hanauer, F.H. Richter, J. Janek, Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Interfaces 12, 11713–11723 (2020). https://doi.org/10.1021/acsami.9b22968
Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu et al., Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020). https://doi.org/10.1016/j.ensm.2019.10.020
J. Yi, D. Zhou, Y. Liang, H. Liu, H. Ni et al., Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem. 58, 17–24 (2021). https://doi.org/10.1016/j.jechem.2020.09.038
G. Yu, Y. Wang, K. Li, D. Chen, L. Qin et al., Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries. Sustain. Energy Fuels 5, 1211–1221 (2021). https://doi.org/10.1039/D0SE01669A
H. Liu, P. He, G. Wang, Y. Liang, C. Wang et al., Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. Chem. Eng. J. 430, 132991 (2022). https://doi.org/10.1016/j.cej.2021.132991
P. Khomein, Y.-W. Byeon, D. Liu, J. Yu, A.M. Minor et al., Lithium phosphorus sulfide chloride–polymer composite via the solution–precipitation process for improving stability toward dendrite formation of Li-ion solid electrolyte. ACS Appl. Mater. Interfaces 15, 11723–11730 (2023). https://doi.org/10.1021/acsami.2c21302
A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through In-situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16, 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
J.-H. Choi, C.-H. Lee, J.-H. Yu, C.-H. Doh, S.-M. Lee, Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 274, 458–463 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.078
Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., All-solid-state batteries: low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1970006 (2019). https://doi.org/10.1002/adfm.201970006
R. Li, S. Guo, L. Yu, L. Wang, D. Wu et al., Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6, 1900200 (2019). https://doi.org/10.1002/admi.201900200
J.Q. Dai, K. Fu, Y.H. Gong, J.W. Song, C.J. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7, 16425–16436 (2019). https://doi.org/10.1039/C9TA03395E
X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
W. Li, C. Sun, J. Jin, Y. Li, C. Chen et al., Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7, 27304–27312 (2019). https://doi.org/10.1039/C9TA10400C
L. Wu, Y. Wang, M. Tang, Y. Liang, Z. Lin et al., Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Mater. 58, 40–47 (2023). https://doi.org/10.1016/j.ensm.2023.02.038
X. Yu, Y. Liu, J.B. Goodenough, A. Manthiram, Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 13, 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
O.V. Sreejith, S. Elsin Abraham, M. Ramaswamy, Free-standing and flexible garnet-PVDF ceramic polymer electrolyte membranes for solid-state batteries. Energy Fuels 37, 2401–2409 (2023). https://doi.org/10.1021/acs.energyfuels.2c03828
C. Hu, Y. Shen, M. Shen, X. Liu, H. Chen et al., Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 142, 18035–18041 (2020). https://doi.org/10.1021/jacs.0c07060
F. Chen, D. Yang, W. Zha, B. Zhu, Y. Zhang et al., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017). https://doi.org/10.1016/j.electacta.2017.11.164
M. Falco, L. Castro, J.R. Nair, F. Bella, F. Bardé et al., UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl. Energy Mater. 2, 1600–1607 (2019). https://doi.org/10.1021/acsaem.8b02185
R. Fan, C. Liu, K. He, S. Ho-Sum Cheng, D. Chen et al., Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 12, 7222–7231 (2020). https://doi.org/10.1021/acsami.9b20104
J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
M. Zhang, P. Pan, Z. Cheng, J. Mao, L. Jiang et al., Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries. Nano Lett. 21, 7070–7078 (2021). https://doi.org/10.1021/acs.nanolett.1c01704
F. Fu, Y. Liu, C. Sun, L. Cong, Y. Liu et al., Unveiling and alleviating chemical “crosstalk” of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries. Energy Environ. Mater. 6, 12367 (2023). https://doi.org/10.1002/eem2.12367
J. Li, R. Li, L.-X. Li, H. Yang, M.-Q. Liu et al., A high-filled Li7La3Zr2O12/polypropylene oxide composite solid electrolyte with improved lithium-ion transport and safety performances for high-voltage Li batteries. ACS Appl. Energy Mater. 5, 10786–10793 (2022). https://doi.org/10.1021/acsaem.2c01487
H.K. Tran, B.T. Truong, B.-R. Zhang, R. Jose, J.-K. Chang et al., Sandwich-structured composite polymer electrolyte based on PVDF-HFP/PPC/Al-doped LLZO for high-voltage solid-state lithium batteries. ACS Appl. Energy Mater. 6, 1475–1487 (2023). https://doi.org/10.1021/acsaem.2c03363
S. Xue, S. Chen, Y. Fu, H. Zhu, Y. Ji et al., Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 19, e2305326 (2023). https://doi.org/10.1002/smll.202305326
Y.-J. Wang, Y. Pan, D. Kim, Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources 159, 690–701 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.104
Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
G. Wang, H. Liu, Y. Liang, C. Wang, L.-Z. Fan, Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Mater. 45, 1212–1219 (2022). https://doi.org/10.1016/j.ensm.2021.11.021
Y. Jin, X. Zong, X. Zhang, C. Liu, D. Li et al., Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J. Power Sources 501, 230027 (2021). https://doi.org/10.1016/j.jpowsour.2021.230027
Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li et al., New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 41837–41844 (2017). https://doi.org/10.1021/acsami.7b12092
L. Wang, S. Hu, J. Su, T. Huang, A. Yu, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 42715–42721 (2019). https://doi.org/10.1021/acsami.9b12112
C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu et al., Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 13694–13702 (2017). https://doi.org/10.1021/acsami.7b00336
D. Wang, F. Zheng, Z. Song, H. Li, Y. Yu et al., Construction of polyvinylidene fluoride buffer layers for Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolytes toward stable dendrite-free lithium metal batteries. Ind. Eng. Chem. Res. 61, 14891–14897 (2022). https://doi.org/10.1021/acs.iecr.2c02575
P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang et al., Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 6, 4279–4285 (2018). https://doi.org/10.1039/C7TA10517G
X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin et al., Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658
K. Liu, M. Wu, L. Wei, Y. Lin, T. Zhao, A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries. J. Membr. Sci. 610, 118265 (2020). https://doi.org/10.1016/j.memsci.2020.118265
C. Yan, P. Zhu, H. Jia, J. Zhu, R.K. Selvan et al., High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 1, 46–60 (2019). https://doi.org/10.1007/s42765-019-00006-x
P.C. Rath, M.S. Liu, S.T. Lo, R.S. Dhaka, D. Bresser et al., Suppression of dehydrofluorination reactions of a Li0.33La0.557TiO3-nanofiber-dispersed poly(vinylidene fluoride-co-hexafluoropropylene) electrolyte for Quasi-solid-state lithium-metal batteries by a fluorine-rich succinonitrile interlayer. ACS Appl. Mater. Interfaces 15, 15429–15438 (2023). https://doi.org/10.1021/acsami.2c22268
S.H. Siyal, S.S. Ahmad Shah, T. Najam, M.S. Javed, M. Imran et al., Significant reduction in interface resistance and super-enhanced performance of lithium-metal battery by in situ construction of poly(vinylidene fluoride)-based solid-state membrane with dual ceramic fillers. ACS Appl. Energy Mater. 4, 8604–8614 (2021). https://doi.org/10.1021/acsaem.1c01820
K.-Q. He, J.-W. Zha, P. Du, S.H.-S. Cheng, C. Liu et al., Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li0.33La0.557TiO3 nanofibers for all-solid-state lithium ion batteries. Dalton Trans. 48, 3263–3269 (2019). https://doi.org/10.1039/C9DT00074G
K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, Polyoxyethylene (PEO)|PEO–Perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
H. Xu, P.-H. Chien, J. Shi, Y. Li, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. U.S.A. 116, 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
L. Zhu, P. Zhu, S. Yao, X. Shen, F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery. Int. J. Energy Res. 43, 4854–4866 (2019). https://doi.org/10.1002/er.4638
B. Li, Q. Su, L. Yu, W. Liu, S. Dong et al., Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity. Appl. Surf. Sci. 541, 148434 (2021). https://doi.org/10.1016/j.apsusc.2020.148434
J. Li, L. Zhu, J. Zhang, M. Jing, S. Yao et al., Approaching high performance PVDF-HFP based solid composite electrolytes with LLTO nanorods for solid-state lithium-ion batteries. Int. J. Energy Res. 45, 7663–7674 (2021). https://doi.org/10.1002/er.6347
S. Sathya, S. Pazhaniswamy, P.C. Selvin, S. Vengatesan, A.M. Stephan, Physical and interfacial studies on Li0.5La0.5TiO3-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Energy Fuels 35, 13402–13410 (2021). https://doi.org/10.1021/acs.energyfuels.1c01151
T.-Q. Yang, C. Wang, W.-K. Zhang, Y. Xia, Y.-P. Gan et al., Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Met. 41, 1870–1879 (2022). https://doi.org/10.1007/s12598-021-01891-1
X. Zhang, H. Huo, Nuclear magnetic resonance studies of organic-inorganic composite solid electrolytes. Magn. Reson. Lett. 1, 142–152 (2021). https://doi.org/10.1016/j.mrl.2021.10.004
J. Zagórski, J.M. López del Amo, M.J. Cordill, F. Aguesse, L. Buannic et al., Garnet–polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2, 1734–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
M. Liu, S.N. Zhang, E.R.H. van Eck, C. Wang, S. Ganapathy et al., Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 17, 959–967 (2022). https://doi.org/10.1038/s41565-022-01162-9
P.-H. Chien, X. Feng, M. Tang, J.T. Rosenberg, S. O’Neill et al., Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J. Phys. Chem. Lett. 9, 1990–1998 (2018). https://doi.org/10.1021/acs.jpclett.8b00240
G. Polizos, M. Goswami, J.K. Keum, L. He, C.J. Jafta et al., Nanoscale ion transport enhances conductivity in solid polymer-ceramic lithium electrolytes. ACS Nano 18, 2750–2762 (2024). https://doi.org/10.1021/acsnano.3c03901
Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021). https://doi.org/10.1002/advs.202003887
C. Shen, Y. Huang, J. Yang, M. Chen, Z. Liu, Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. Energy Storage Mater. 39, 271–277 (2021). https://doi.org/10.1016/j.ensm.2021.04.028
Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523