Anion Defects Engineering of Ternary Nb-Based Chalcogenide Anodes Toward High-Performance Sodium-Based Dual-Ion Batteries
Corresponding Author: Zhenhai Wen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 104
Abstract
Sodium-based dual-ion batteries (SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIBs featuring with high kinetics and long durability. Herein, we report the design and fabrication of N-doped carbon film-modified niobium sulfur–selenium (NbSSe/NC) nanosheets architecture, which holds favorable merits for Na+ storage of enlarged interlayer space, improved electrical conductivity, as well as enhanced reaction reversibility, endowing it with high capacity, high-rate capability and high cycling stability. The combined electrochemical studies with density functional theory calculation reveal that the enriched defects in such nanosheets architecture can benefit for facilitating charge transfer and Na+ adsorption to speed the electrochemical kinetics. The NbSSe/NC composites are studied as the anode of a full SDIBs by pairing the expanded graphite as cathode, which shows an impressively cyclic durability with negligible capacity attenuation over 1000 cycles at 0.5 A g−1, as well as an outstanding energy density of 230.6 Wh kg−1 based on the total mass of anode and cathode.
Highlights:
1 We developed an efficient and extensible strategy to produce the single-phase ternary NbSSe nanohybrids with defect-enrich microstructure.
2 The anionic-Se doping play a key role in effectively modulating the electronic structure and surface chemistry of NbS2 phase, including the increased interlayers distance (0.65 nm), the enhanced intrinsic electrical conductivity (3.23 × 103 S m-1) and extra electroactive defect sites.
3 The NbSSe/NC composite as anode exhibits rapid Na+ diffusion kinetics and increased capacitance behavior for Na+ storage, resulting in high reversible capacity and excellent cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
- T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018). https://doi.org/10.1016/j.joule.2018.09.003
- Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan et al., Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 13, 663 (2022). https://doi.org/10.1038/s41467-022-28176-0
- C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32, e1908470 (2020). https://doi.org/10.1002/adma.201908470
- P. Qin, M. Wang, N. Li, H. Zhu, X. Ding et al., Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 29, 1606805 (2017). https://doi.org/10.1002/adma.201606805
- J. Zhou, Y. Shen, F. Lv, W. Zhang, F. Lin et al., Ultrathin metallic NbS2 nanosheets with unusual intercalation mechanism for ultra-stable potassium-ion storage. Adv. Funct. Mater. 32, 2204495 (2022). https://doi.org/10.1002/adfm.202204495
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2021). https://doi.org/10.1002/adfm.202108194
- J. Zhang, C. Du, Z. Dai, W. Chen, Y. Zheng et al., NbS2 nanosheets with M/Se (M = Fe Co, Ni) codopants for Li+ and Na+ storage. ACS Nano 11, 10599–10607 (2017). https://doi.org/10.1021/acsnano.7b06133
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, London, 2007)
- S. Nanda, A. Bhargav, A. Manthiram, Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 4, 1121–1135 (2020). https://doi.org/10.1016/j.joule.2020.03.020
- H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 22, 4999–5008 (2022). https://doi.org/10.1021/acs.nanolett.2c01779
- Y. Huang, Z. Wang, M. Guan, F. Wu, R. Chen, Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater. 32, 2003534 (2020). https://doi.org/10.1002/adma.202003534
- H. Fan, X. Wang, H. Yu, Q. Gu, S. Chen et al., Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 10, 1904162 (2020). https://doi.org/10.1002/aenm.201904162
- T. Wang, D. Legut, Y. Fan, J. Qin, X. Li et al., Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode. Nano Lett. 20, 6199–6205 (2020). https://doi.org/10.1021/acs.nanolett.0c02595
- S. Yao, J. Cui, J. Huang, Z. Lu, Y. Deng et al., Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance. Adv. Energy Mater. 8, 1800710 (2018). https://doi.org/10.1002/aenm.201800710
- Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao et al., Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14, 6673–6682 (2020). https://doi.org/10.1021/acsnano.9b09371
- S. Zhang, F. Ling, L. Wang, R. Xu, M. Ma et al., An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 34, e2201420 (2022). https://doi.org/10.1002/adma.202201420
- H. Lu, S. Ghosh, N. Katyal, V.S. Lakhanpal, I.R. Gearba-Dolocan et al., Synthesis and dual-mode electrochromism of anisotropic monoclinic Nb12O29 colloidal nanoplatelets. ACS Nano 14, 10068–10082 (2020). https://doi.org/10.1021/acsnano.0c03283
- Y. Huan, J. Shi, X. Zou, Y. Gong, C. Xie et al., Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 141, 18694–18703 (2019). https://doi.org/10.1021/jacs.9b06044
- M. Chen, L. Wang, X. Sheng, T. Wang, J. Zhou et al., An ultrastable nonaqueous potassium-ion hybrid capacitor. Adv. Funct. Mater. 30, 2004247 (2020). https://doi.org/10.1002/adfm.202004247
- D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: A 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv. Energy Mater. 11, 2101250 (2021). https://doi.org/10.1002/aenm.202101250
- L. Zhou, X. Gao, T. Du, H. Gong, L. Liu et al., Two-dimensional NbSSe as anode material for low-temperature sodium-ion batteries. Chem. Eng. J. 435, 134838 (2022). https://doi.org/10.1016/j.cej.2022.134838
- Y. Bai, Y. Liu, C. Ma, K. Wang, J. Chen, Neuron-inspired design of high-performance electrode materials for sodium-ion batteries. ACS Nano 12, 11503–11510 (2018). https://doi.org/10.1021/acsnano.8b06585
- Z. Shi, W. Kang, J. Xu, Y. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
- Y. Liu, Y. Zhai, N. Wang, Y. Zhang, Z. Lu et al., Ultrathin MoSe2 nanosheets confined in N-doped macroporous carbon frame for enhanced potassium ion storage. ChemistrySelect 5, 2412–2418 (2020). https://doi.org/10.1002/slct.202000116
- D. Cheng, L. Yang, R. Hu, J. Liu, R. Che et al., Sn-C and Se-C co-bonding SnSe/few-layered graphene micro-nano structure: route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 36685–36696 (2019). https://doi.org/10.1021/acsami.9b12204
- M. Yan, Z. Zhao, T. Wang, R. Chen, C. Zhou et al., Synergistic effects in ultrafine molybdenum-tungsten bimetallic carbide hollow carbon architecture boost hydrogen evolution catalysis and lithium-ion storage. Small 18, e2203630 (2022). https://doi.org/10.1002/smll.202203630
- W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
- R. Xu, Y. Yao, H. Wang, Y. Yuan, J. Wang et al., Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers. Adv. Mater. 32, e2003879 (2020). https://doi.org/10.1002/adma.202003879
- Y. Wang, Y. Lai, J. Chu, Z. Yan, Y. Wang et al., Tunable electrocatalytic behavior of sodiated MoS2 active sites toward efficient sulfur redox reactions in room-temperature Na-S batteries. Adv. Mater. 33, e2100229 (2021). https://doi.org/10.1002/adma.202100229
- Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang et al., A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries. Adv. Mater. 32, e1906700 (2020). https://doi.org/10.1002/adma.201906700
- Y. Tan, S. Li, X. Zhao, Y. Wang, Q. Shen et al., Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv. Energy Mater. 12, 2104001 (2022). https://doi.org/10.1002/aenm.202104001
- G. Yang, Q. Li, K. Ma, C. Hong, C. Wang, The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J. Mater. Chem. A 8, 8084–8095 (2020). https://doi.org/10.1039/d0ta00615g
- S. Zhang, Y. Yao, X. Jiao, M. Ma, H. Huang et al., Mo2N-W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na-S batteries. Adv. Mater. 33, e2103846 (2021). https://doi.org/10.1002/adma.202103846
- Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li et al., Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12, 12578–12586 (2018). https://doi.org/10.1021/acsnano.8b07172
- Q. Peng, F. Ling, H. Yang, P. Duan, R. Xu et al., Boosting potassium storage performance via construction of NbSe2-based misfit layered chalcogenides. Energy Stor. Mater. 39, 265–270 (2021). https://doi.org/10.1016/j.ensm.2021.04.032
- X. Ou, X. Xiong, F. Zheng, C. Yang, Z. Lin et al., In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. J. Power Sourc. 325, 410–416 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.055
- C. Pan, J. Kang, Q. Xie, Q. Li, W. Yang et al., T-Nb2O5@NbS2@C composites based on the intercalation-conversion mechanism as an anode material for Li-ion batteries. ACS Appl. Energy Mater. 4, 12365–12373 (2021). https://doi.org/10.1021/acsaem.1c02165
- X. Wu, B. Wu, H. Wang, Q. Zhuang, Z. Xiong et al., Synthesis of flower-Like Nb2Se9 as high-performance anode materials for lithium-ion and sodium-ion batteries. Energy Fuels 35, 11563–11571 (2021). https://doi.org/10.1021/acs.energyfuels.1c01258
- K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
- X. Pan, B. Xi, H. Lu, Z. Zhang, X. An et al., Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 14, 163 (2022). https://doi.org/10.1007/s40820-022-00893-7
- Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 32, 2208049 (2022). https://doi.org/10.1002/adfm.202208049
- J. Sun, Z. Zhang, G. Lian, Y. Li, L. Jing et al., Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16, 12425–12436 (2022). https://doi.org/10.1021/acsnano.2c03623
- B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang et al., Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 17, e2006824 (2021). https://doi.org/10.1002/smll.202006824
- D. Yu, Q. Zhu, L. Cheng, S. Dong, X. Zhang et al., Anion solvation regulation enables long cycle stability of graphite cathodes. ACS Energy Lett. 6, 949–958 (2021). https://doi.org/10.1021/acsenergylett.1c00043
- D. Yu, W. Luo, H. Gu, K. Li, J. Liang et al., Subnano-sized tellurium@nitrogen/phosphorus co-doped carbon nanofibers as anode for potassium-based dual-ion batteries. Chem. Eng. J. 454, 139908 (2023). https://doi.org/10.1016/j.cej.2022.139908
- B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31, 2101066 (2021). https://doi.org/10.1002/adfm.202101066
- X. Wang, S. Wang, K. Shen, S. He, X. Hou et al., Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries. J. Mater. Chem. A 8, 4007–4016 (2020). https://doi.org/10.1002/adfm.202101066
- X. Wang, M. Hou, Z. Shi, X. Liu, I. Mizota et al., Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 13, 12059–12068 (2021). https://doi.org/10.1021/acsami.0c23165
- J. Chen, Y. Peng, Y. Yin, Z. Fang, Y. Cao et al., A desolvation-free sodium dual-ion chemistry for high power density and extremely low temperature. Angew. Chem. Int. Ed. 60, 23858–23862 (2021). https://doi.org/10.1002/anie.202110501
- S. Dong, Z. Li, I.A. Rodríguez-Pérez, H. Jiang, J. Lu et al., A novel coronene//Na2Ti3O7 dual-ion battery. Nano Energy 40, 233–239 (2017). https://doi.org/10.1016/j.nanoen.2017.08.022
References
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018). https://doi.org/10.1016/j.joule.2018.09.003
Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan et al., Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 13, 663 (2022). https://doi.org/10.1038/s41467-022-28176-0
C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32, e1908470 (2020). https://doi.org/10.1002/adma.201908470
P. Qin, M. Wang, N. Li, H. Zhu, X. Ding et al., Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 29, 1606805 (2017). https://doi.org/10.1002/adma.201606805
J. Zhou, Y. Shen, F. Lv, W. Zhang, F. Lin et al., Ultrathin metallic NbS2 nanosheets with unusual intercalation mechanism for ultra-stable potassium-ion storage. Adv. Funct. Mater. 32, 2204495 (2022). https://doi.org/10.1002/adfm.202204495
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2021). https://doi.org/10.1002/adfm.202108194
J. Zhang, C. Du, Z. Dai, W. Chen, Y. Zheng et al., NbS2 nanosheets with M/Se (M = Fe Co, Ni) codopants for Li+ and Na+ storage. ACS Nano 11, 10599–10607 (2017). https://doi.org/10.1021/acsnano.7b06133
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, London, 2007)
S. Nanda, A. Bhargav, A. Manthiram, Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 4, 1121–1135 (2020). https://doi.org/10.1016/j.joule.2020.03.020
H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 22, 4999–5008 (2022). https://doi.org/10.1021/acs.nanolett.2c01779
Y. Huang, Z. Wang, M. Guan, F. Wu, R. Chen, Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater. 32, 2003534 (2020). https://doi.org/10.1002/adma.202003534
H. Fan, X. Wang, H. Yu, Q. Gu, S. Chen et al., Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 10, 1904162 (2020). https://doi.org/10.1002/aenm.201904162
T. Wang, D. Legut, Y. Fan, J. Qin, X. Li et al., Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode. Nano Lett. 20, 6199–6205 (2020). https://doi.org/10.1021/acs.nanolett.0c02595
S. Yao, J. Cui, J. Huang, Z. Lu, Y. Deng et al., Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance. Adv. Energy Mater. 8, 1800710 (2018). https://doi.org/10.1002/aenm.201800710
Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao et al., Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14, 6673–6682 (2020). https://doi.org/10.1021/acsnano.9b09371
S. Zhang, F. Ling, L. Wang, R. Xu, M. Ma et al., An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 34, e2201420 (2022). https://doi.org/10.1002/adma.202201420
H. Lu, S. Ghosh, N. Katyal, V.S. Lakhanpal, I.R. Gearba-Dolocan et al., Synthesis and dual-mode electrochromism of anisotropic monoclinic Nb12O29 colloidal nanoplatelets. ACS Nano 14, 10068–10082 (2020). https://doi.org/10.1021/acsnano.0c03283
Y. Huan, J. Shi, X. Zou, Y. Gong, C. Xie et al., Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 141, 18694–18703 (2019). https://doi.org/10.1021/jacs.9b06044
M. Chen, L. Wang, X. Sheng, T. Wang, J. Zhou et al., An ultrastable nonaqueous potassium-ion hybrid capacitor. Adv. Funct. Mater. 30, 2004247 (2020). https://doi.org/10.1002/adfm.202004247
D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: A 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv. Energy Mater. 11, 2101250 (2021). https://doi.org/10.1002/aenm.202101250
L. Zhou, X. Gao, T. Du, H. Gong, L. Liu et al., Two-dimensional NbSSe as anode material for low-temperature sodium-ion batteries. Chem. Eng. J. 435, 134838 (2022). https://doi.org/10.1016/j.cej.2022.134838
Y. Bai, Y. Liu, C. Ma, K. Wang, J. Chen, Neuron-inspired design of high-performance electrode materials for sodium-ion batteries. ACS Nano 12, 11503–11510 (2018). https://doi.org/10.1021/acsnano.8b06585
Z. Shi, W. Kang, J. Xu, Y. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
Y. Liu, Y. Zhai, N. Wang, Y. Zhang, Z. Lu et al., Ultrathin MoSe2 nanosheets confined in N-doped macroporous carbon frame for enhanced potassium ion storage. ChemistrySelect 5, 2412–2418 (2020). https://doi.org/10.1002/slct.202000116
D. Cheng, L. Yang, R. Hu, J. Liu, R. Che et al., Sn-C and Se-C co-bonding SnSe/few-layered graphene micro-nano structure: route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 36685–36696 (2019). https://doi.org/10.1021/acsami.9b12204
M. Yan, Z. Zhao, T. Wang, R. Chen, C. Zhou et al., Synergistic effects in ultrafine molybdenum-tungsten bimetallic carbide hollow carbon architecture boost hydrogen evolution catalysis and lithium-ion storage. Small 18, e2203630 (2022). https://doi.org/10.1002/smll.202203630
W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
R. Xu, Y. Yao, H. Wang, Y. Yuan, J. Wang et al., Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers. Adv. Mater. 32, e2003879 (2020). https://doi.org/10.1002/adma.202003879
Y. Wang, Y. Lai, J. Chu, Z. Yan, Y. Wang et al., Tunable electrocatalytic behavior of sodiated MoS2 active sites toward efficient sulfur redox reactions in room-temperature Na-S batteries. Adv. Mater. 33, e2100229 (2021). https://doi.org/10.1002/adma.202100229
Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang et al., A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries. Adv. Mater. 32, e1906700 (2020). https://doi.org/10.1002/adma.201906700
Y. Tan, S. Li, X. Zhao, Y. Wang, Q. Shen et al., Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv. Energy Mater. 12, 2104001 (2022). https://doi.org/10.1002/aenm.202104001
G. Yang, Q. Li, K. Ma, C. Hong, C. Wang, The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J. Mater. Chem. A 8, 8084–8095 (2020). https://doi.org/10.1039/d0ta00615g
S. Zhang, Y. Yao, X. Jiao, M. Ma, H. Huang et al., Mo2N-W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na-S batteries. Adv. Mater. 33, e2103846 (2021). https://doi.org/10.1002/adma.202103846
Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li et al., Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12, 12578–12586 (2018). https://doi.org/10.1021/acsnano.8b07172
Q. Peng, F. Ling, H. Yang, P. Duan, R. Xu et al., Boosting potassium storage performance via construction of NbSe2-based misfit layered chalcogenides. Energy Stor. Mater. 39, 265–270 (2021). https://doi.org/10.1016/j.ensm.2021.04.032
X. Ou, X. Xiong, F. Zheng, C. Yang, Z. Lin et al., In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. J. Power Sourc. 325, 410–416 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.055
C. Pan, J. Kang, Q. Xie, Q. Li, W. Yang et al., T-Nb2O5@NbS2@C composites based on the intercalation-conversion mechanism as an anode material for Li-ion batteries. ACS Appl. Energy Mater. 4, 12365–12373 (2021). https://doi.org/10.1021/acsaem.1c02165
X. Wu, B. Wu, H. Wang, Q. Zhuang, Z. Xiong et al., Synthesis of flower-Like Nb2Se9 as high-performance anode materials for lithium-ion and sodium-ion batteries. Energy Fuels 35, 11563–11571 (2021). https://doi.org/10.1021/acs.energyfuels.1c01258
K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
X. Pan, B. Xi, H. Lu, Z. Zhang, X. An et al., Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 14, 163 (2022). https://doi.org/10.1007/s40820-022-00893-7
Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 32, 2208049 (2022). https://doi.org/10.1002/adfm.202208049
J. Sun, Z. Zhang, G. Lian, Y. Li, L. Jing et al., Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16, 12425–12436 (2022). https://doi.org/10.1021/acsnano.2c03623
B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang et al., Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 17, e2006824 (2021). https://doi.org/10.1002/smll.202006824
D. Yu, Q. Zhu, L. Cheng, S. Dong, X. Zhang et al., Anion solvation regulation enables long cycle stability of graphite cathodes. ACS Energy Lett. 6, 949–958 (2021). https://doi.org/10.1021/acsenergylett.1c00043
D. Yu, W. Luo, H. Gu, K. Li, J. Liang et al., Subnano-sized tellurium@nitrogen/phosphorus co-doped carbon nanofibers as anode for potassium-based dual-ion batteries. Chem. Eng. J. 454, 139908 (2023). https://doi.org/10.1016/j.cej.2022.139908
B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31, 2101066 (2021). https://doi.org/10.1002/adfm.202101066
X. Wang, S. Wang, K. Shen, S. He, X. Hou et al., Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries. J. Mater. Chem. A 8, 4007–4016 (2020). https://doi.org/10.1002/adfm.202101066
X. Wang, M. Hou, Z. Shi, X. Liu, I. Mizota et al., Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 13, 12059–12068 (2021). https://doi.org/10.1021/acsami.0c23165
J. Chen, Y. Peng, Y. Yin, Z. Fang, Y. Cao et al., A desolvation-free sodium dual-ion chemistry for high power density and extremely low temperature. Angew. Chem. Int. Ed. 60, 23858–23862 (2021). https://doi.org/10.1002/anie.202110501
S. Dong, Z. Li, I.A. Rodríguez-Pérez, H. Jiang, J. Lu et al., A novel coronene//Na2Ti3O7 dual-ion battery. Nano Energy 40, 233–239 (2017). https://doi.org/10.1016/j.nanoen.2017.08.022