High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management
Corresponding Author: Qiang Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 199
Abstract
High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands—particularly in the short-wave infrared (SWIR) band—along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB2–Al2O3–TiB2) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5–8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in 5–8 μm range—corresponding to a cooling power of 9.57 kW m−2. Moreover, under an input power of 17.3 kW m−2—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.
Highlights:
1 Simultaneous stealth across multiple infrared bands (short-wave infrared (SWIR), mid-wave infrared (MWIR), long-wave infrared (LWIR)) and microwaves at high temperatures (700 °C) is achieved.
2 At 700 °C, the device features low emissivity of 0.38/0.44/0.60 in MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in the 5–8 μm range.
3 Under an input power equivalent to Mach 2.2 aerodynamic heating, effective thermal management achieves a 72.4 °C temperature reduction compared to conventional low-emissivity molybdenum.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6, eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
- C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17, 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
- Z. Lin, Q. Wu, X. Liu, H. Ma, H. Liu et al., Flexible meta-tape with wide gamut, low lightness and low infrared emissivity for visible-infrared camouflage. Adv. Mater. 36, e2410336 (2024). https://doi.org/10.1002/adma.202410336
- Z. Li, L. Wang, X. Liu, J. Li, H.S. Yun et al., Brochosome-inspired binary metastructures for pixel-by-pixel thermal signature control. Sci. Adv. 10, eadl4027 (2024). https://doi.org/10.1126/sciadv.adl4027
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano–micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- Y. Zhao, S. Tan, J. Yu, R. Yu, T. Xu et al., A rapidly assembled and camouflage-monitoring-protection integrated modular unit. Adv. Mater. 37, e2412845 (2025). https://doi.org/10.1002/adma.202412845
- S. Tan, S. Guo, Y. Wu, T. Zhang, J. Tang et al., Achieving broadband microwave shielding, thermal management, and smart window in energy-efficient buildings. Adv. Funct. Mater. 35, 2415921 (2025). https://doi.org/10.1002/adfm.202415921
- X. Yang, L. Liang, C. Li, B. Zhang, Y. Zhao et al., Fluid-actuated nano–micro–macro structure morphing enables smart multispectrum compatible stealth. Nano Lett. 25, 569–577 (2025). https://doi.org/10.1021/acs.nanolett.4c05494
- H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
- L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
- X. Feng, M. Pu, F. Zhang, R. Pan, S. Wang et al., Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv. Funct. Mater. 32, 2205547 (2022). https://doi.org/10.1002/adfm.202205547
- X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
- H.B. Shim, K. Han, J. Song, J.W. Hahn, A multispectral single-layer frequency selective surface absorber for infrared and millimeter wave selective bi-stealth. Adv. Opt. Mater. 10, 2102107 (2022). https://doi.org/10.1002/adom.202102107
- Y. Wang, H. Luo, Y. Shao, H. Wang, T. Liu et al., Detection and anti-detection with microwave-infrared compatible camouflage using asymmetric composite metasurface. Adv. Sci. 11, 2410364 (2024). https://doi.org/10.1002/advs.202410364
- Y. Cui, J. Wang, H. Sun, Y. Zhu, R. Zhu et al., Visible transparent wideband microwave meta-absorber with designable digital infrared camouflage. Adv. Opt. Mater. 12, 2301712 (2024). https://doi.org/10.1002/adom.202301712
- N. Lee, J.S. Lim, I. Chang, H.M. Bae, J. Nam et al., Flexible assembled metamaterials for infrared and microwave camouflage. Adv. Opt. Mater. 10, 2200448 (2022). https://doi.org/10.1002/adom.202200448
- M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields et al., Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 15, 493–498 (2021). https://doi.org/10.1038/s41566-021-00791-1
- M. Chen, X. Jiang, J. Huang, J. Yang, J. Wu et al., Flexible wearable Ti3C2Tx composite carbon fabric textile with infrared stealth and electromagnetic interference shielding effect. Adv. Opt. Mater. 12, 2301694 (2024). https://doi.org/10.1002/adom.202301694
- Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
- Z. An, Y. Huang, R. Zhang, High-temperature multispectral stealth metastructure from the microwave-infrared compatible design. Compos. Part B Eng. 259, 110737 (2023). https://doi.org/10.1016/j.compositesb.2023.110737
- B. Gui, J. Wang, Y. Zhu, L. Zhang, M. Feng et al., High temperature infrared-radar compatible stealthy metamaterial based on an ultrathin high-entropy alloy. Opt. Express 30, 45426–45435 (2022). https://doi.org/10.1364/OE.475355
- Y. Zhu, L. Zhang, J. Wang, F. Zhou, B. Gui et al., High-entropy alloy: an alternative approach for high temperature microwave-infrared compatible stealth. Ceram. Int. 49, 25576–25584 (2023). https://doi.org/10.1016/j.ceramint.2023.05.098
- B. Qin, Y. Zhu, Y. Zhou, M. Qiu, Q. Li, Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12, 246 (2023). https://doi.org/10.1038/s41377-023-01287-z
- M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 14, 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
- H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
- Z. Xu, Q. Li, K. Du, S. Long, Y. Yang et al., Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser Photonics Rev. 14, 1900162 (2020). https://doi.org/10.1002/lpor.201900162
- H. Zhang, Z. Huang, M. Ding, Q. Wang, Y. Feng et al., A photon-recycling incandescent lighting device. Sci. Adv. 9, eadf3737 (2023). https://doi.org/10.1126/sciadv.adf3737
- M. He, J. Ryan Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20, 1663–1669 (2021). https://doi.org/10.1038/s41563-021-01094-0
- K. Sun, Y. Cai, L. Huang, Z. Han, Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices. Nat. Commun. 15, 4019 (2024). https://doi.org/10.1038/s41467-024-48499-4
- Y. Jia, D. Liu, D. Chen, Y. Jin, C. Chen et al., Transparent dynamic infrared emissivity regulators. Nat. Commun. 14, 5087 (2023). https://doi.org/10.1038/s41467-023-40902-w
- L. Li, M.K. Shi, X.Y. Liu, X.X. Jin, Y.X. Cao et al., Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31, 2101381 (2021). https://doi.org/10.1002/adfm.202101381
- Z. Huang, W. Zhou, X. Tang, F. Luo, D. Zhu, High-temperature application of the low-emissivity Au/Ni films on alloys. Appl. Surf. Sci. 256, 6893–6898 (2010). https://doi.org/10.1016/j.apsusc.2010.04.107
- W. Zhang, W. Shan, M. Qian, Y. Liu, K. Yu, A Mo/Si multilayer film based selective thermal emitter for high-temperature infrared stealth application. Infrared Phys. Technol. 131, 104643 (2023). https://doi.org/10.1016/j.infrared.2023.104643
- G. Dai, X. You, R. Deng, T. Zhang, H. Ouyang et al., Evaluation and failure mechanism of high-temperature microwave absorption for heterogeneous phase enhanced high-entropy transition metal oxides. Adv. Funct. Mater. 34, 2308710 (2024). https://doi.org/10.1002/adfm.202308710
- Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
- Y. Li, W. Li, Y. Wang, J. Cao, J. Guan, Refractory metamaterial microwave absorber with strong absorption insensitive to temperature. Adv. Opt. Mater. 6, 1800691 (2018). https://doi.org/10.1002/adom.201800691
- H. Luo, B. Ma, F. Chen, S. Zhang, X. Wang et al., Construction of hollow core–shelled nitrogen-doped carbon-coated yttrium aluminum garnet composites toward efficient microwave absorption. J. Colloid Interface Sci. 622, 181–191 (2022). https://doi.org/10.1016/j.jcis.2022.04.054
- S. Lv, H. Luo, Z. Wang, J. Yu, Y. Cheng et al., Size regulated N-doped carbon encapsulated NiFe alloys/Ni phosphide composites derived from bimetallic Prussian blue analogues for effective microwave absorption. Carbon 218, 118668 (2024). https://doi.org/10.1016/j.carbon.2023.118668
- B. Ma, F. Chen, Y. Cheng, X. Wang, S. Yan et al., Ti3C2Tx MXene@NiFe layered double hydroxide derived multiple interfacial composites with efficient microwave absorption. J. Alloys Compd. 936, 168162 (2023). https://doi.org/10.1016/j.jallcom.2022.168162
- J. Yu, H. Luo, Z. Wang, S. Lv, F. Chen et al., Construction of multi-interface magnetic FeMnC modified carbon/graphene aerogels for broadband microwave absorption. J. Alloys Compd. 1002, 175499 (2024). https://doi.org/10.1016/j.jallcom.2024.175499
- G. Wang, D. Li, W. Liao, T. Liu, X. Li et al., Multifunctional metamaterial with reconfigurable electromagnetic scattering properties for advanced stealth and adaptive applications. Adv. Mater. 36, e2408216 (2024). https://doi.org/10.1002/adma.202408216
- C. Ji, J. Peng, L. Yuan, C. Huang, X. Luo, All-ceramic coding metastructure for high-temperature RCS reduction. Adv. Eng. Mater. 24, 2101503 (2022). https://doi.org/10.1002/adem.202101503
- S. Zhao, H. Ma, S. Sui, J. Wang, J. Wang et al., High temperature insensitive ultra-thin electromagnetic metasurface based on ytterbium monosilicate ceramic coating. Ceram. Int. 47, 31860–31867 (2021). https://doi.org/10.1016/j.ceramint.2021.08.071
- G.P. Wood, Calculation of Surface Temperatures in Steady Supersonic Flight; National Advisory Committee for Aeronautics (1946).
- C. Quan, S. Gu, P. Liu, W. Xu, C. Guo et al., Spectrally selective radiation infrared stealth based on a simple Mo/Ge bilayer metafilm. Opt. Lasers Eng. 180, 108328 (2024). https://doi.org/10.1016/j.optlaseng.2024.108328
- M. Rahman, C.C. Wang, W. Chen, S.A. Akbar, C. Mroz, Electrical resistivity of titanium diboride and zirconium diboride. J. Am. Ceram. Soc. 78, 1380–1382 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08498.x
- D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù et al., Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019). https://doi.org/10.1038/s41563-019-0363-y
- M.S. Ergoktas, A. Kecebas, K. Despotelis, S. Soleymani, G. Bakan et al., Localized thermal emission from topological interfaces. Science 384, 1122–1126 (2024). https://doi.org/10.1126/science.ado0534
- J. Ryan Nolen, A.C. Overvig, M. Cotrufo, A. Alù, Local control of polarization and geometric phase in thermal metasurfaces. Nat. Nanotechnol. 19, 1627–1634 (2024). https://doi.org/10.1038/s41565-024-01763-6
- D. Langevin, C. Verlhac, J. Jaeck, L. Abou-Hamdan, E. Taupeau et al., Experimental investigation of the thermal emission cross section of nanoresonators using hierarchical Poisson-disk distributions. Phys. Rev. Lett. 132, 043801 (2024). https://doi.org/10.1103/PhysRevLett.132.043801
- J. Siegel, S. Kim, M. Fortman, C. Wan, M.A. Kats et al., Electrostatic steering of thermal emission with active metasurface control of delocalized modes. Nat. Commun. 15, 3376 (2024). https://doi.org/10.1038/s41467-024-47229-0
- Z. Fan, T. Hwang, S. Lin, Y. Chen, Z.J. Wong, Directional thermal emission and display using pixelated non-imaging micro-optics. Nat. Commun. 15, 4544 (2024). https://doi.org/10.1038/s41467-024-48826-9
- K.J. Shayegan, S. Biswas, B. Zhao, S. Fan, H.A. Atwater, Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photonics 17, 891–896 (2023). https://doi.org/10.1038/s41566-023-01261-6
- J. Xu, J. Mandal, A.P. Raman, Broadband directional control of thermal emission. Science 372, 393–397 (2021). https://doi.org/10.1126/science.abc5381
- J. Yu, R. Qin, Y. Ying, M. Qiu, Q. Li, Asymmetric directional control of thermal emission. Adv. Mater. 35, 2302478 (2023). https://doi.org/10.1002/adma.202302478
- S. Fang, N. Xu, L. Zhou, T. Wei, Y. Yang et al., Self-assembled skin-like metamaterials for dual-band camouflage. Sci. Adv. 10, eadl1896 (2024). https://doi.org/10.1126/sciadv.adl1896
- Z. Xu, H. Luo, H. Zhu, Y. Hong, W. Shen et al., Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Lett. 21, 5269–5276 (2021). https://doi.org/10.1021/acs.nanolett.1c01396
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- F. Xie, W. Jin, J. Ryan Nolen, H. Pan, N. Yi et al., Subambient daytime radiative cooling of vertical surfaces. Science 386, 788–794 (2024). https://doi.org/10.1126/science.adn2524
- Y. Zhu, Y. Zhou, B. Qin, R. Qin, M. Qiu et al., Night-time radiative warming using the atmosphere. Light Sci. Appl. 12, 268 (2023). https://doi.org/10.1038/s41377-023-01315-y
References
M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6, eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17, 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
Z. Lin, Q. Wu, X. Liu, H. Ma, H. Liu et al., Flexible meta-tape with wide gamut, low lightness and low infrared emissivity for visible-infrared camouflage. Adv. Mater. 36, e2410336 (2024). https://doi.org/10.1002/adma.202410336
Z. Li, L. Wang, X. Liu, J. Li, H.S. Yun et al., Brochosome-inspired binary metastructures for pixel-by-pixel thermal signature control. Sci. Adv. 10, eadl4027 (2024). https://doi.org/10.1126/sciadv.adl4027
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano–micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
Y. Zhao, S. Tan, J. Yu, R. Yu, T. Xu et al., A rapidly assembled and camouflage-monitoring-protection integrated modular unit. Adv. Mater. 37, e2412845 (2025). https://doi.org/10.1002/adma.202412845
S. Tan, S. Guo, Y. Wu, T. Zhang, J. Tang et al., Achieving broadband microwave shielding, thermal management, and smart window in energy-efficient buildings. Adv. Funct. Mater. 35, 2415921 (2025). https://doi.org/10.1002/adfm.202415921
X. Yang, L. Liang, C. Li, B. Zhang, Y. Zhao et al., Fluid-actuated nano–micro–macro structure morphing enables smart multispectrum compatible stealth. Nano Lett. 25, 569–577 (2025). https://doi.org/10.1021/acs.nanolett.4c05494
H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
X. Feng, M. Pu, F. Zhang, R. Pan, S. Wang et al., Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv. Funct. Mater. 32, 2205547 (2022). https://doi.org/10.1002/adfm.202205547
X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
H.B. Shim, K. Han, J. Song, J.W. Hahn, A multispectral single-layer frequency selective surface absorber for infrared and millimeter wave selective bi-stealth. Adv. Opt. Mater. 10, 2102107 (2022). https://doi.org/10.1002/adom.202102107
Y. Wang, H. Luo, Y. Shao, H. Wang, T. Liu et al., Detection and anti-detection with microwave-infrared compatible camouflage using asymmetric composite metasurface. Adv. Sci. 11, 2410364 (2024). https://doi.org/10.1002/advs.202410364
Y. Cui, J. Wang, H. Sun, Y. Zhu, R. Zhu et al., Visible transparent wideband microwave meta-absorber with designable digital infrared camouflage. Adv. Opt. Mater. 12, 2301712 (2024). https://doi.org/10.1002/adom.202301712
N. Lee, J.S. Lim, I. Chang, H.M. Bae, J. Nam et al., Flexible assembled metamaterials for infrared and microwave camouflage. Adv. Opt. Mater. 10, 2200448 (2022). https://doi.org/10.1002/adom.202200448
M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields et al., Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 15, 493–498 (2021). https://doi.org/10.1038/s41566-021-00791-1
M. Chen, X. Jiang, J. Huang, J. Yang, J. Wu et al., Flexible wearable Ti3C2Tx composite carbon fabric textile with infrared stealth and electromagnetic interference shielding effect. Adv. Opt. Mater. 12, 2301694 (2024). https://doi.org/10.1002/adom.202301694
Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
Z. An, Y. Huang, R. Zhang, High-temperature multispectral stealth metastructure from the microwave-infrared compatible design. Compos. Part B Eng. 259, 110737 (2023). https://doi.org/10.1016/j.compositesb.2023.110737
B. Gui, J. Wang, Y. Zhu, L. Zhang, M. Feng et al., High temperature infrared-radar compatible stealthy metamaterial based on an ultrathin high-entropy alloy. Opt. Express 30, 45426–45435 (2022). https://doi.org/10.1364/OE.475355
Y. Zhu, L. Zhang, J. Wang, F. Zhou, B. Gui et al., High-entropy alloy: an alternative approach for high temperature microwave-infrared compatible stealth. Ceram. Int. 49, 25576–25584 (2023). https://doi.org/10.1016/j.ceramint.2023.05.098
B. Qin, Y. Zhu, Y. Zhou, M. Qiu, Q. Li, Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12, 246 (2023). https://doi.org/10.1038/s41377-023-01287-z
M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 14, 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
Z. Xu, Q. Li, K. Du, S. Long, Y. Yang et al., Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser Photonics Rev. 14, 1900162 (2020). https://doi.org/10.1002/lpor.201900162
H. Zhang, Z. Huang, M. Ding, Q. Wang, Y. Feng et al., A photon-recycling incandescent lighting device. Sci. Adv. 9, eadf3737 (2023). https://doi.org/10.1126/sciadv.adf3737
M. He, J. Ryan Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20, 1663–1669 (2021). https://doi.org/10.1038/s41563-021-01094-0
K. Sun, Y. Cai, L. Huang, Z. Han, Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices. Nat. Commun. 15, 4019 (2024). https://doi.org/10.1038/s41467-024-48499-4
Y. Jia, D. Liu, D. Chen, Y. Jin, C. Chen et al., Transparent dynamic infrared emissivity regulators. Nat. Commun. 14, 5087 (2023). https://doi.org/10.1038/s41467-023-40902-w
L. Li, M.K. Shi, X.Y. Liu, X.X. Jin, Y.X. Cao et al., Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31, 2101381 (2021). https://doi.org/10.1002/adfm.202101381
Z. Huang, W. Zhou, X. Tang, F. Luo, D. Zhu, High-temperature application of the low-emissivity Au/Ni films on alloys. Appl. Surf. Sci. 256, 6893–6898 (2010). https://doi.org/10.1016/j.apsusc.2010.04.107
W. Zhang, W. Shan, M. Qian, Y. Liu, K. Yu, A Mo/Si multilayer film based selective thermal emitter for high-temperature infrared stealth application. Infrared Phys. Technol. 131, 104643 (2023). https://doi.org/10.1016/j.infrared.2023.104643
G. Dai, X. You, R. Deng, T. Zhang, H. Ouyang et al., Evaluation and failure mechanism of high-temperature microwave absorption for heterogeneous phase enhanced high-entropy transition metal oxides. Adv. Funct. Mater. 34, 2308710 (2024). https://doi.org/10.1002/adfm.202308710
Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
Y. Li, W. Li, Y. Wang, J. Cao, J. Guan, Refractory metamaterial microwave absorber with strong absorption insensitive to temperature. Adv. Opt. Mater. 6, 1800691 (2018). https://doi.org/10.1002/adom.201800691
H. Luo, B. Ma, F. Chen, S. Zhang, X. Wang et al., Construction of hollow core–shelled nitrogen-doped carbon-coated yttrium aluminum garnet composites toward efficient microwave absorption. J. Colloid Interface Sci. 622, 181–191 (2022). https://doi.org/10.1016/j.jcis.2022.04.054
S. Lv, H. Luo, Z. Wang, J. Yu, Y. Cheng et al., Size regulated N-doped carbon encapsulated NiFe alloys/Ni phosphide composites derived from bimetallic Prussian blue analogues for effective microwave absorption. Carbon 218, 118668 (2024). https://doi.org/10.1016/j.carbon.2023.118668
B. Ma, F. Chen, Y. Cheng, X. Wang, S. Yan et al., Ti3C2Tx MXene@NiFe layered double hydroxide derived multiple interfacial composites with efficient microwave absorption. J. Alloys Compd. 936, 168162 (2023). https://doi.org/10.1016/j.jallcom.2022.168162
J. Yu, H. Luo, Z. Wang, S. Lv, F. Chen et al., Construction of multi-interface magnetic FeMnC modified carbon/graphene aerogels for broadband microwave absorption. J. Alloys Compd. 1002, 175499 (2024). https://doi.org/10.1016/j.jallcom.2024.175499
G. Wang, D. Li, W. Liao, T. Liu, X. Li et al., Multifunctional metamaterial with reconfigurable electromagnetic scattering properties for advanced stealth and adaptive applications. Adv. Mater. 36, e2408216 (2024). https://doi.org/10.1002/adma.202408216
C. Ji, J. Peng, L. Yuan, C. Huang, X. Luo, All-ceramic coding metastructure for high-temperature RCS reduction. Adv. Eng. Mater. 24, 2101503 (2022). https://doi.org/10.1002/adem.202101503
S. Zhao, H. Ma, S. Sui, J. Wang, J. Wang et al., High temperature insensitive ultra-thin electromagnetic metasurface based on ytterbium monosilicate ceramic coating. Ceram. Int. 47, 31860–31867 (2021). https://doi.org/10.1016/j.ceramint.2021.08.071
G.P. Wood, Calculation of Surface Temperatures in Steady Supersonic Flight; National Advisory Committee for Aeronautics (1946).
C. Quan, S. Gu, P. Liu, W. Xu, C. Guo et al., Spectrally selective radiation infrared stealth based on a simple Mo/Ge bilayer metafilm. Opt. Lasers Eng. 180, 108328 (2024). https://doi.org/10.1016/j.optlaseng.2024.108328
M. Rahman, C.C. Wang, W. Chen, S.A. Akbar, C. Mroz, Electrical resistivity of titanium diboride and zirconium diboride. J. Am. Ceram. Soc. 78, 1380–1382 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08498.x
D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù et al., Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019). https://doi.org/10.1038/s41563-019-0363-y
M.S. Ergoktas, A. Kecebas, K. Despotelis, S. Soleymani, G. Bakan et al., Localized thermal emission from topological interfaces. Science 384, 1122–1126 (2024). https://doi.org/10.1126/science.ado0534
J. Ryan Nolen, A.C. Overvig, M. Cotrufo, A. Alù, Local control of polarization and geometric phase in thermal metasurfaces. Nat. Nanotechnol. 19, 1627–1634 (2024). https://doi.org/10.1038/s41565-024-01763-6
D. Langevin, C. Verlhac, J. Jaeck, L. Abou-Hamdan, E. Taupeau et al., Experimental investigation of the thermal emission cross section of nanoresonators using hierarchical Poisson-disk distributions. Phys. Rev. Lett. 132, 043801 (2024). https://doi.org/10.1103/PhysRevLett.132.043801
J. Siegel, S. Kim, M. Fortman, C. Wan, M.A. Kats et al., Electrostatic steering of thermal emission with active metasurface control of delocalized modes. Nat. Commun. 15, 3376 (2024). https://doi.org/10.1038/s41467-024-47229-0
Z. Fan, T. Hwang, S. Lin, Y. Chen, Z.J. Wong, Directional thermal emission and display using pixelated non-imaging micro-optics. Nat. Commun. 15, 4544 (2024). https://doi.org/10.1038/s41467-024-48826-9
K.J. Shayegan, S. Biswas, B. Zhao, S. Fan, H.A. Atwater, Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photonics 17, 891–896 (2023). https://doi.org/10.1038/s41566-023-01261-6
J. Xu, J. Mandal, A.P. Raman, Broadband directional control of thermal emission. Science 372, 393–397 (2021). https://doi.org/10.1126/science.abc5381
J. Yu, R. Qin, Y. Ying, M. Qiu, Q. Li, Asymmetric directional control of thermal emission. Adv. Mater. 35, 2302478 (2023). https://doi.org/10.1002/adma.202302478
S. Fang, N. Xu, L. Zhou, T. Wei, Y. Yang et al., Self-assembled skin-like metamaterials for dual-band camouflage. Sci. Adv. 10, eadl1896 (2024). https://doi.org/10.1126/sciadv.adl1896
Z. Xu, H. Luo, H. Zhu, Y. Hong, W. Shen et al., Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Lett. 21, 5269–5276 (2021). https://doi.org/10.1021/acs.nanolett.1c01396
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
F. Xie, W. Jin, J. Ryan Nolen, H. Pan, N. Yi et al., Subambient daytime radiative cooling of vertical surfaces. Science 386, 788–794 (2024). https://doi.org/10.1126/science.adn2524
Y. Zhu, Y. Zhou, B. Qin, R. Qin, M. Qiu et al., Night-time radiative warming using the atmosphere. Light Sci. Appl. 12, 268 (2023). https://doi.org/10.1038/s41377-023-01315-y