Boosting Zn||I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer
Corresponding Author: Litao Kang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 82
Abstract
The intrinsically safe Zn||I2 battery, one of the leading candidates aiming to replace traditional Pb-acid batteries, is still seriously suffering from short shelf and cycling lifespan, due to the uncontrolled I3−-shuttling and dynamic parasitic reactions on Zn anodes. Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes, modifying Zn anodes’ surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes. Herein, a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes. The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn2+, while blocking anions and electrolyte from passing through. This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge, anode corrosion/passivation, and Zn dendrite growth, awarding the Zn||I2 batteries with ultra-long cycle life (91.92% capacity retention after 5600 cycles at 2 A g−1), high coulombic efficiencies (99.76% in average) and large capacity (203–196 mAh g−1 at 0.2 A g−1). This work provides a highly affordable approach for the construction of high-performance Zn-I2 aqueous batteries.
Highlights:
1 High-performance Zn||I2 batteries were established by coating zeolite protecting layers.
2 The Zn2+-conductive layer suppresses I3− shuttling, Zn corrosion/dendrite growth.
3 The Zeolite-Zn||I2 batteries achieve long lifespan (91.92% capacity retention after 5600 cycles), high coulombic efficiencies (99.76% in average) and large capacity (203–196 mAh g−1 at 0.2 A g−1) simultaneously.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- M. Li, J. Lu, Cobalt in lithium-ion batteries. Science 367(6481), 979–980 (2020). https://doi.org/10.1126/science.aba9168
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- P.P. Lopes, V.R. Stamenkovic, Past, present, and future of lead-acid batteries. Science 369(6506), 923–924 (2020). https://doi.org/10.1126/science.abd3352
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019). https://doi.org/10.1016/j.ensm.2019.04.022
- Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
- C.P. Li, X.S. Xie, S.Q. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
- A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
- V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 6(5), 1773–1785 (2021). https://doi.org/10.1021/acsenergylett.1c00393
- X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
- S.H. Kim, S.M. Oh, Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources 72(2), 150–158 (1998). https://doi.org/10.1016/S0378-7753(97)02703-1
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- G. Li, Z. Yang, Y. Jiang, W. Zhang, Y. Huang, Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.058
- J. Ma, M. Liu, Y. He, J. Zhang, Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int Ed. 60(23), 12636–12647 (2021). https://doi.org/10.1002/anie.202009871
- H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.202004240
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
- C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A long cycle life, self-healing zinc–iodine flow battery with high power density. Angew. Chem. Int. Ed. 57(35), 11171–11176 (2018). https://doi.org/10.1002/anie.201803122
- L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60(7), 3791–3798 (2021). https://doi.org/10.1002/anie.202014447
- C. Bai, F. Cai, L. Wang, S. Guo, X. Liu et al., A sustainable aqueous Zn-I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9
- W. Li, K. Wang, K. Jiang, A high energy efficiency and long life aqueous Zn–I2 battery. J. Mater. Chem. A 8(7), 3785–3794 (2020). https://doi.org/10.1039/c9ta13081k
- Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15(9), 5982–5987 (2015). https://doi.org/10.1021/acs.nanolett.5b02116
- L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007
- Y. He, M. Liu, J. Zhang, Rational modulation of carbon fibers for high-performance zinc–iodine batteries. Adv. Sustain. Syst. 4(11), 2000138 (2020). https://doi.org/10.1002/adsu.202000138
- X. Li, N. Li, Z. Huang, Z. Chen, G. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I− conversion chemistry by mxene confinement. Adv. Mater. 33(8), 2006897 (2021). https://doi.org/10.1002/adma.202006897
- W. Shang, J. Zhu, Y. Liu, L. Kang, S. Liu et al., Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13(21), 24756–24764 (2021). https://doi.org/10.1021/acsami.1c03804
- G.M. Weng, Z. Li, G. Cong, Y. Zhou, Y.C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 10(3), 735–741 (2017). https://doi.org/10.1039/C6EE03554J
- Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5(5), 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
- J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- S. Liu, W. Shang, Y. Yang, D. Kang, C. Li et al., Effects of I3- electrolyte additive on the electrochemical performance of Zn anodes and Zn/α-MnO2 batteries. Batter. Supercaps 5(1), 202100221 (2021). https://doi.org/10.1002/batt.202100221
- X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
- H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu et al., Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 33(38), 2102415 (2021). https://doi.org/10.1002/adma.202102415
- M. Inoue, Y. Tada, K. Suganuma, H. Ishiguro, Thermal stability of poly(vinylidene fluoride) films pre-annealed at various temperatures. Polym. Degrad. Stab. 92(10), 1833–1840 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.003
- K. Okhotnikov, T. Charpentier, S. Cadars, Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8(1), 17 (2016). https://doi.org/10.1186/s13321-016-0129-3
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
- A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2(7), 457–460 (2003). https://doi.org/10.1038/nmat924
- S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19(21), 3423–3424 (2007). https://doi.org/10.1002/adma.200700934
- S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang et al., Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanops. ACS Appl. Mater. Interfaces 5(14), 6694–6703 (2013). https://doi.org/10.1021/am401462e
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- Y.M. Kwon, J. Kim, K.Y. Cho, S. Yoon, Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li–S batteries. J. Energy Chem. 60, 334–340 (2021). https://doi.org/10.1016/j.jechem.2021.01.029
- S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
- A. Ghosh, C. Wang, P. Kofinas, Block copolymer solid battery electrolyte with high Li-ion transference number. J. Electrochem. Soc. 157(7), A846 (2010). https://doi.org/10.1149/1.3428710
- R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
- L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional znse protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31(26), 2100186 (2021). https://doi.org/10.1002/adfm.202100186
- O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon et al., High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6(12), 4416–4425 (2021). https://doi.org/10.1021/acsenergylett.1c02224
- Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937
- Y. Li, L. Liu, H. Li, F. Cheng, J. Chen, Rechargeable aqueous zinc–iodine batteries: pore confining mechanism and flexible device application. Chem. Commun. 54(50), 6792–6795 (2018). https://doi.org/10.1039/C8CC02616E
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
M. Li, J. Lu, Cobalt in lithium-ion batteries. Science 367(6481), 979–980 (2020). https://doi.org/10.1126/science.aba9168
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
P.P. Lopes, V.R. Stamenkovic, Past, present, and future of lead-acid batteries. Science 369(6506), 923–924 (2020). https://doi.org/10.1126/science.abd3352
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019). https://doi.org/10.1016/j.ensm.2019.04.022
Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
C.P. Li, X.S. Xie, S.Q. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 6(5), 1773–1785 (2021). https://doi.org/10.1021/acsenergylett.1c00393
X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
S.H. Kim, S.M. Oh, Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources 72(2), 150–158 (1998). https://doi.org/10.1016/S0378-7753(97)02703-1
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
G. Li, Z. Yang, Y. Jiang, W. Zhang, Y. Huang, Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.058
J. Ma, M. Liu, Y. He, J. Zhang, Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int Ed. 60(23), 12636–12647 (2021). https://doi.org/10.1002/anie.202009871
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.202004240
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A long cycle life, self-healing zinc–iodine flow battery with high power density. Angew. Chem. Int. Ed. 57(35), 11171–11176 (2018). https://doi.org/10.1002/anie.201803122
L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60(7), 3791–3798 (2021). https://doi.org/10.1002/anie.202014447
C. Bai, F. Cai, L. Wang, S. Guo, X. Liu et al., A sustainable aqueous Zn-I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9
W. Li, K. Wang, K. Jiang, A high energy efficiency and long life aqueous Zn–I2 battery. J. Mater. Chem. A 8(7), 3785–3794 (2020). https://doi.org/10.1039/c9ta13081k
Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15(9), 5982–5987 (2015). https://doi.org/10.1021/acs.nanolett.5b02116
L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007
Y. He, M. Liu, J. Zhang, Rational modulation of carbon fibers for high-performance zinc–iodine batteries. Adv. Sustain. Syst. 4(11), 2000138 (2020). https://doi.org/10.1002/adsu.202000138
X. Li, N. Li, Z. Huang, Z. Chen, G. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I− conversion chemistry by mxene confinement. Adv. Mater. 33(8), 2006897 (2021). https://doi.org/10.1002/adma.202006897
W. Shang, J. Zhu, Y. Liu, L. Kang, S. Liu et al., Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13(21), 24756–24764 (2021). https://doi.org/10.1021/acsami.1c03804
G.M. Weng, Z. Li, G. Cong, Y. Zhou, Y.C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 10(3), 735–741 (2017). https://doi.org/10.1039/C6EE03554J
Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5(5), 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
S. Liu, W. Shang, Y. Yang, D. Kang, C. Li et al., Effects of I3- electrolyte additive on the electrochemical performance of Zn anodes and Zn/α-MnO2 batteries. Batter. Supercaps 5(1), 202100221 (2021). https://doi.org/10.1002/batt.202100221
X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu et al., Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 33(38), 2102415 (2021). https://doi.org/10.1002/adma.202102415
M. Inoue, Y. Tada, K. Suganuma, H. Ishiguro, Thermal stability of poly(vinylidene fluoride) films pre-annealed at various temperatures. Polym. Degrad. Stab. 92(10), 1833–1840 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.003
K. Okhotnikov, T. Charpentier, S. Cadars, Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8(1), 17 (2016). https://doi.org/10.1186/s13321-016-0129-3
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2(7), 457–460 (2003). https://doi.org/10.1038/nmat924
S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19(21), 3423–3424 (2007). https://doi.org/10.1002/adma.200700934
S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang et al., Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanops. ACS Appl. Mater. Interfaces 5(14), 6694–6703 (2013). https://doi.org/10.1021/am401462e
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
Y.M. Kwon, J. Kim, K.Y. Cho, S. Yoon, Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li–S batteries. J. Energy Chem. 60, 334–340 (2021). https://doi.org/10.1016/j.jechem.2021.01.029
S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
A. Ghosh, C. Wang, P. Kofinas, Block copolymer solid battery electrolyte with high Li-ion transference number. J. Electrochem. Soc. 157(7), A846 (2010). https://doi.org/10.1149/1.3428710
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional znse protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31(26), 2100186 (2021). https://doi.org/10.1002/adfm.202100186
O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon et al., High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6(12), 4416–4425 (2021). https://doi.org/10.1021/acsenergylett.1c02224
Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937
Y. Li, L. Liu, H. Li, F. Cheng, J. Chen, Rechargeable aqueous zinc–iodine batteries: pore confining mechanism and flexible device application. Chem. Commun. 54(50), 6792–6795 (2018). https://doi.org/10.1039/C8CC02616E
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873