Enhanced Conductivity of Multilayer Copper–Carbon Nanofilms via Plasma Immersion Deposition
Corresponding Author: Xiaolu Huang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 130
Abstract
Although room-temperature superconductivity is still difficult to achieve, researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy efficiency, reducing costs, lightening equipment weight, and enhancing overall performance. Herein, this study presents a novel copper–carbon nanofilm composite with enhanced conductivity which has great applications in the electronic devices and electrical equipment. Multilayer copper–carbon nanofilms and interfaces with superior electronic structures are formed based on copper materials using plasma immersion nanocarbon layer deposition technology, effectively enhancing conductivity. Experimental results show that for a five-layer copper–carbon nanofilm composite, the conductivity improves significantly when the thickness of the carbon nanofilm increases. When the carbon nanofilm accounts for 16% of the total thickness, the overall conductivity increases up to 30.20% compared to pure copper. The mechanism of the enhanced conductivity is analyzed including roles of copper atom adsorption sites and electron migration pathways by applying effective medium theory, first-principles calculations and density of states analysis. Under an applied electric field, the high-density electrons in the copper film can migrate into the nanocarbon film, forming highly efficient electron transport channels, which significantly enhance the material’s conductivity. Finally, large-area electrode coating equipment is developed based on this study, providing the novel and robust strategy to enhance the conductivity of copper materials, which enables industrial application of copper–carbon nanocomposite films in the field of high conductivity materials.
Highlights:
1 With plasma immersion deposition technology, multilayer copper–carbon nanofilms were fabricated and conductivity can achieve up to 30.20% increase compared to pure copper.
2 By applying effective medium theory, first-principles calculations, and density of states analysis, the critical roles of copper atom adsorption sites and electron migration pathways within the nanocarbon film were analyzed, elucidating the mechanism of the conductivity enhancement.
3 Large-scale electrode coating equipment suitable for industrial production was developed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.-J. Zhang, L. Huang, X.-J. Mi, H.-F. Xie, X. Feng et al., Researches for higher electrical conductivity copper-based materials. cMat 1, e13 (2024). https://doi.org/10.1002/cmt2.13
- H. Yang, Z. Ma, C. Lei, L. Meng, Y. Fang et al., High strength and high conductivity Cu alloys: a review. Sci. China Technol. Sci. 63, 2505–2517 (2020). https://doi.org/10.1007/s11431-020-1633-8
- J. Friis, B. Jiang, K. Marthinsen, R. Holmestad, A study of charge density in copper. Acta Crystallogr. Sect. A Found. Crystallogr. 61, 223–230 (2005). https://doi.org/10.1107/s0108767305001315
- D.B. Rorabacher, Electron transfer by copper centers. Chem. Rev. 104, 651–698 (2004). https://doi.org/10.1021/cr020630e
- R.H. Lasseter, P. Soven, Electronic density of states in Cu-based alloys. Phys. Rev. B 8, 2476–2484 (1973). https://doi.org/10.1103/physrevb.8.2476
- Y.C. Lin, S.H. Chen, P.H. Lee, K.H. Lai, T.J. Huang et al., Gallium nitride (GaN) high-electron-mobility transistors with thick copper metallization featuring a power density of 8.2 W/mm for Ka-band applications. Micromachines 11, 222 (2020). https://doi.org/10.3390/mi11020222
- M.E. Mendoza, A.P. Campos, Y. Xing, D.C. Bell, I.G. Solórzano, Significant decrease of electrical resistivity by carbon nanotube networks in copper-MWCNTs nanocomposites: a detailed microstructure study. Diam. Relat. Mater. 110, 108083 (2020). https://doi.org/10.1016/j.diamond.2020.108083
- K. Singh, V. Khanna, V. Chaudhary, Effect of hybrid reinforcements on the mechanical properties of copper nanocomposites. ECS J. Solid State Sci. Technol. 11, 097001 (2022). https://doi.org/10.1149/2162-8777/ac8bf9
- X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
- L.L. Dong, Y.Q. Fu, Y. Liu, J.W. Lu, W. Zhang et al., Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties. Carbon 173, 41–53 (2021). https://doi.org/10.1016/j.carbon.2020.10.091
- S. Gupta, P. Joshi, J. Narayan, Electron mobility modulation in graphene oxide by controlling carbon melt lifetime. Carbon 170, 327–337 (2020). https://doi.org/10.1016/j.carbon.2020.07.073
- C.K. Ullal, J. Shi, R. Sundararaman, Electron mobility in graphene without invoking the Dirac equation. Am. J. Phys. 87, 291–295 (2019). https://doi.org/10.1119/1.5092453
- W. Norimatsu, A review on carrier mobilities of epitaxial graphene on silicon carbide. Materials (Basel) 16, 7668 (2023). https://doi.org/10.3390/ma16247668
- L. Wang, Y. Zhang, Electronic and magnetic properties of metal atom adsorption on SWNT. Phys. E Low Dimens. Syst. Nanostruct. 43, 889–892 (2011). https://doi.org/10.1016/j.physe.2010.11.007
- J.H. Gosling, O. Makarovsky, F. Wang, N.D. Cottam, M.T. Greenaway et al., Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Commun. Phys. 4, 30 (2021). https://doi.org/10.1038/s42005-021-00518-2
- K.A. Madurani, S. Suprapto, N.I. Machrita, S.L. Bahar, W. Illiya et al., Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 9, 093013 (2020). https://doi.org/10.1149/2162-8777/abbb6f
- K. Jagannadham, Electrical conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 30, 03D109 (2012). https://doi.org/10.1116/1.3701701
- K. Jagannadham, Volume fraction of graphene platelets in copper-graphene composites. Metall. Mater. Trans. A 44, 552–559 (2013). https://doi.org/10.1007/s11661-012-1387-y
- G. Xie, M. Forslund, J. Pan, Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl. Mater. Interfaces 6, 7444–7455 (2014). https://doi.org/10.1021/am500768g
- G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun et al., Preparation and characterization of the graphene-Cu composite film by electrodeposition process. Microelectron. Eng. 157, 7–12 (2016). https://doi.org/10.1016/j.mee.2016.02.006
- L. Dong, W. Chen, C. Zheng, N. Deng, Microstructure and properties characterization of tungsten–copper composite materials doped with graphene. J. Alloys Compd. 695, 1637–1646 (2017). https://doi.org/10.1016/j.jallcom.2016.10.310
- H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei et al., Copper matrix composites enhanced by silver/reduced graphene oxide hybrids. Mater. Lett. 196, 354–357 (2017). https://doi.org/10.1016/j.matlet.2017.03.084
- P. Liu, D. Xu, Z. Li, B. Zhao, E.S.-W. Kong et al., Fabrication of CNTs/Cu composite thin films for interconnects application. Microelectron. Eng. 85, 1984–1987 (2008). https://doi.org/10.1016/j.mee.2008.04.046
- S. Naghdi, K.Y. Rhee, D. Hui, S.J. Park, A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings 8, 278 (2018). https://doi.org/10.3390/coatings8080278
- Z. Chu, M. PourhosseiniAsl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51, 243001 (2018). https://doi.org/10.1088/1361-6463/aac29b
- R. Serra, F. Ferreira, A. Cavaleiro, J.C. Oliveira, HiPIMS pulse shape influence on the deposition of diamond-like carbon films. Surf. Coat. Technol. 432, 128059 (2022). https://doi.org/10.1016/j.surfcoat.2021.128059
- D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, Recent progress of reinforcement materials: a comprehensive overview of composite materials. J. Mater. Res. Technol. 8, 6354–6374 (2019). https://doi.org/10.1016/j.jmrt.2019.09.068
- G. Fedosenko, A. Schwabedissen, J. Engemann, E. Braca, L. Valentini et al., Pulsed PECVD deposition of diamond-like carbon films. Diam. Relat. Mater. 11, 1047–1052 (2002). https://doi.org/10.1016/S0925-9635(01)00612-4
- R. Sheng, L. Li, D. Su, J. Peng, J. Gao et al., Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment. Diam. Relat. Mater. 81, 146–153 (2018). https://doi.org/10.1016/j.diamond.2017.12.002
- T. Chunjaemsri, E. Chongsereecharoen, N. Chanlek, P. Kidkhunthod, H. Nakajima et al., Influence of RF power and CH4 flow rate on properties of diamond-like carbon films deposited by PECVD technique. Radiat. Phys. Chem. 176, 109073 (2020). https://doi.org/10.1016/j.radphyschem.2020.109073
- V. Cech, M. Branecky, Nonthermal tetravinylsilane plasma used for thin-film deposition: plasma chemistry controls thin-film chemistry. Plasma Process. Polym. 19, 202100192 (2022). https://doi.org/10.1002/ppap.202100192
- J. Li, H. Hong, L. Sun, Y. Yang, D. Li et al., Argon ion sputtering bridging plasma nitriding and GLC film deposition: effects on the mechanical and tribological properties. Surf. Coat. Technol. 479, 130559 (2024). https://doi.org/10.1016/j.surfcoat.2024.130559
- Y. Wang, Y. Gao, Y. Cai, M. Su, C. Dong, Study on diagnosis and film characterization of TiO2 plasma in pulsed laser deposition process. J. Northwest Normal Univ. (Nat. Sci.) 60, 51–57 (2024). https://doi.org/10.16783/j.cnki.nwnuz.2024.02.009
- M. Otaka, H. Otomo, K. Ikeda, J. Lai, D. Wakita et al., Deposition of hydrogenated amorphous carbon films by CH4/Ar capacitively coupled plasma using tailored voltage waveform discharges. Jpn. J. Appl. Phys. 63, 076001 (2024). https://doi.org/10.35848/1347-4065/ad53b0
- K.-D. Weltmann, J.F. Kolb, M. Holub, D. Uhrlandt, M. Šimek et al., The future for plasma science and technology. Plasma Process. Polym. 16, 1800118 (2019). https://doi.org/10.1002/ppap.201800118
- Y. Hirata, K. Kawai, T. Kato, H. Fujimoto, Y. Tameno et al., Characterization of structural and mechanical properties of DLC films deposited on the surface of minute-scale 3D objects: comparison of PECVD and FCVA deposition technique. Surf. Coat. Technol. 460, 129401 (2023). https://doi.org/10.1016/j.surfcoat.2023.129401
- Y. Yerlanuly, R. Zhumadilov, R. Nemkayeva, B. Uzakbaiuly, A.R. Beisenbayev et al., Physical properties of carbon nanowalls synthesized by the ICP-PECVD method vs. the growth time. Sci. Rep. 11, 19287 (2021). https://doi.org/10.1038/s41598-021-97997-8
- M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12, 205–216 (2003). https://doi.org/10.1088/0963-0252/12/2/312
- Z. Zeng, Q. Zong, S. Sun, Y. Wang, Y. Wu et al., Microwave plasma CVD of diamond films on high concentration alloys: microstructure, hardness and wear properties. Vacuum 222, 113078 (2024). https://doi.org/10.1016/j.vacuum.2024.113078
- T. Yanase, M. Ebashi, K. Takamure, W. Ise, H. Waizumi et al., Unidirectional growth of epitaxial tantalum disulfide triangle crystals grown on sapphire by chemical vapour deposition with a separate-flow system. CrystEngComm 26, 341–348 (2024). https://doi.org/10.1039/D3CE00906H
- S. Kumar, C.M.S. Rauthan, P.N. Dixit, K.M.K. Srivatsa, M.Y. Khan et al., Versatile microwave PECVD technique for deposition of DLC and other ordered carbon nanostructures. Vacuum 63, 433–439 (2001). https://doi.org/10.1016/S0042-207X(01)00362-1
- N. Ravi, V.L. Bukhovets, I.G. Varshavskaya, G. Sundararajan, Deposition of diamond-like carbon films on aluminium substrates by RF-PECVD technique: influence of process parameters. Diam. Relat. Mater. 16, 90–97 (2007). https://doi.org/10.1016/j.diamond.2006.04.001
- M.-L. Theye, V. Paret, A. Sadki, Relations between the deposition conditions, the microstructure and the defects in PECVD hydrogenated amorphous carbon films; influence on the electronic density of states. Diam. Relat. Mater. 10, 182–190 (2001). https://doi.org/10.1016/s0925-9635(00)00466-0
- P. Liu, J. Wu, D. Xu, Y. Pan, C. You et al., CNTs/Cu composite thin films fabricated by electrophoresis and electroplating techniques, in 2008 2nd IEEE International Nanoelectronics Conference, March 24–27, 2008, Shanghai, China (IEEE, 2008), pp. 975–978
- K.W. Jacobsen, J.K. Norskov, M.J. Puska, Interatomic interactions in the effective-medium theory. Phys. Rev. B Condens. Matter 35, 7423–7442 (1987). https://doi.org/10.1103/physrevb.35.7423
- D. Stroud, Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 12, 3368–3373 (1975). https://doi.org/10.1103/physrevb.12.3368
- I.A. Faĭzrakhmanov, V.V. Bazarov, A.L. Stepanov, I.B. Khaĭbullin, Effect of copper ion implantation on the optical properties and low-temperature conductivity of carbon films. Semiconductors 40, 414–419 (2006). https://doi.org/10.1134/s1063782606040087
- S. Poncé, W. Li, S. Reichardt, F. Giustino, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep. Prog. Phys. 83, 036501 (2020). https://doi.org/10.1088/1361-6633/ab6a43
- SciNet
- M. Pozzo, M.P. Desjarlais, D. Alfè, Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B 84, 054203 (2011). https://doi.org/10.1103/physrevb.84.054203
- S. Dag, O. Gülseren, S. Ciraci, T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 83, 3180–3182 (2003). https://doi.org/10.1063/1.1616662
- J. Zhang, B.I. Shklovskii, Density of states and conductivity of a granular metal or an array of quantum dots. Phys. Rev. B 70, 115317 (2004). https://doi.org/10.1103/physrevb.70.115317
- K. Elk, J. Richter, V. Christoph, Density of states and electrical conductivity of disordered alloys with strong electron correlation. J. Phys. F Met. Phys. 9, 307–316 (1979). https://doi.org/10.1088/0305-4608/9/2/019
References
W.-J. Zhang, L. Huang, X.-J. Mi, H.-F. Xie, X. Feng et al., Researches for higher electrical conductivity copper-based materials. cMat 1, e13 (2024). https://doi.org/10.1002/cmt2.13
H. Yang, Z. Ma, C. Lei, L. Meng, Y. Fang et al., High strength and high conductivity Cu alloys: a review. Sci. China Technol. Sci. 63, 2505–2517 (2020). https://doi.org/10.1007/s11431-020-1633-8
J. Friis, B. Jiang, K. Marthinsen, R. Holmestad, A study of charge density in copper. Acta Crystallogr. Sect. A Found. Crystallogr. 61, 223–230 (2005). https://doi.org/10.1107/s0108767305001315
D.B. Rorabacher, Electron transfer by copper centers. Chem. Rev. 104, 651–698 (2004). https://doi.org/10.1021/cr020630e
R.H. Lasseter, P. Soven, Electronic density of states in Cu-based alloys. Phys. Rev. B 8, 2476–2484 (1973). https://doi.org/10.1103/physrevb.8.2476
Y.C. Lin, S.H. Chen, P.H. Lee, K.H. Lai, T.J. Huang et al., Gallium nitride (GaN) high-electron-mobility transistors with thick copper metallization featuring a power density of 8.2 W/mm for Ka-band applications. Micromachines 11, 222 (2020). https://doi.org/10.3390/mi11020222
M.E. Mendoza, A.P. Campos, Y. Xing, D.C. Bell, I.G. Solórzano, Significant decrease of electrical resistivity by carbon nanotube networks in copper-MWCNTs nanocomposites: a detailed microstructure study. Diam. Relat. Mater. 110, 108083 (2020). https://doi.org/10.1016/j.diamond.2020.108083
K. Singh, V. Khanna, V. Chaudhary, Effect of hybrid reinforcements on the mechanical properties of copper nanocomposites. ECS J. Solid State Sci. Technol. 11, 097001 (2022). https://doi.org/10.1149/2162-8777/ac8bf9
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
L.L. Dong, Y.Q. Fu, Y. Liu, J.W. Lu, W. Zhang et al., Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties. Carbon 173, 41–53 (2021). https://doi.org/10.1016/j.carbon.2020.10.091
S. Gupta, P. Joshi, J. Narayan, Electron mobility modulation in graphene oxide by controlling carbon melt lifetime. Carbon 170, 327–337 (2020). https://doi.org/10.1016/j.carbon.2020.07.073
C.K. Ullal, J. Shi, R. Sundararaman, Electron mobility in graphene without invoking the Dirac equation. Am. J. Phys. 87, 291–295 (2019). https://doi.org/10.1119/1.5092453
W. Norimatsu, A review on carrier mobilities of epitaxial graphene on silicon carbide. Materials (Basel) 16, 7668 (2023). https://doi.org/10.3390/ma16247668
L. Wang, Y. Zhang, Electronic and magnetic properties of metal atom adsorption on SWNT. Phys. E Low Dimens. Syst. Nanostruct. 43, 889–892 (2011). https://doi.org/10.1016/j.physe.2010.11.007
J.H. Gosling, O. Makarovsky, F. Wang, N.D. Cottam, M.T. Greenaway et al., Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Commun. Phys. 4, 30 (2021). https://doi.org/10.1038/s42005-021-00518-2
K.A. Madurani, S. Suprapto, N.I. Machrita, S.L. Bahar, W. Illiya et al., Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 9, 093013 (2020). https://doi.org/10.1149/2162-8777/abbb6f
K. Jagannadham, Electrical conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 30, 03D109 (2012). https://doi.org/10.1116/1.3701701
K. Jagannadham, Volume fraction of graphene platelets in copper-graphene composites. Metall. Mater. Trans. A 44, 552–559 (2013). https://doi.org/10.1007/s11661-012-1387-y
G. Xie, M. Forslund, J. Pan, Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl. Mater. Interfaces 6, 7444–7455 (2014). https://doi.org/10.1021/am500768g
G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun et al., Preparation and characterization of the graphene-Cu composite film by electrodeposition process. Microelectron. Eng. 157, 7–12 (2016). https://doi.org/10.1016/j.mee.2016.02.006
L. Dong, W. Chen, C. Zheng, N. Deng, Microstructure and properties characterization of tungsten–copper composite materials doped with graphene. J. Alloys Compd. 695, 1637–1646 (2017). https://doi.org/10.1016/j.jallcom.2016.10.310
H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei et al., Copper matrix composites enhanced by silver/reduced graphene oxide hybrids. Mater. Lett. 196, 354–357 (2017). https://doi.org/10.1016/j.matlet.2017.03.084
P. Liu, D. Xu, Z. Li, B. Zhao, E.S.-W. Kong et al., Fabrication of CNTs/Cu composite thin films for interconnects application. Microelectron. Eng. 85, 1984–1987 (2008). https://doi.org/10.1016/j.mee.2008.04.046
S. Naghdi, K.Y. Rhee, D. Hui, S.J. Park, A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings 8, 278 (2018). https://doi.org/10.3390/coatings8080278
Z. Chu, M. PourhosseiniAsl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51, 243001 (2018). https://doi.org/10.1088/1361-6463/aac29b
R. Serra, F. Ferreira, A. Cavaleiro, J.C. Oliveira, HiPIMS pulse shape influence on the deposition of diamond-like carbon films. Surf. Coat. Technol. 432, 128059 (2022). https://doi.org/10.1016/j.surfcoat.2021.128059
D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, Recent progress of reinforcement materials: a comprehensive overview of composite materials. J. Mater. Res. Technol. 8, 6354–6374 (2019). https://doi.org/10.1016/j.jmrt.2019.09.068
G. Fedosenko, A. Schwabedissen, J. Engemann, E. Braca, L. Valentini et al., Pulsed PECVD deposition of diamond-like carbon films. Diam. Relat. Mater. 11, 1047–1052 (2002). https://doi.org/10.1016/S0925-9635(01)00612-4
R. Sheng, L. Li, D. Su, J. Peng, J. Gao et al., Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment. Diam. Relat. Mater. 81, 146–153 (2018). https://doi.org/10.1016/j.diamond.2017.12.002
T. Chunjaemsri, E. Chongsereecharoen, N. Chanlek, P. Kidkhunthod, H. Nakajima et al., Influence of RF power and CH4 flow rate on properties of diamond-like carbon films deposited by PECVD technique. Radiat. Phys. Chem. 176, 109073 (2020). https://doi.org/10.1016/j.radphyschem.2020.109073
V. Cech, M. Branecky, Nonthermal tetravinylsilane plasma used for thin-film deposition: plasma chemistry controls thin-film chemistry. Plasma Process. Polym. 19, 202100192 (2022). https://doi.org/10.1002/ppap.202100192
J. Li, H. Hong, L. Sun, Y. Yang, D. Li et al., Argon ion sputtering bridging plasma nitriding and GLC film deposition: effects on the mechanical and tribological properties. Surf. Coat. Technol. 479, 130559 (2024). https://doi.org/10.1016/j.surfcoat.2024.130559
Y. Wang, Y. Gao, Y. Cai, M. Su, C. Dong, Study on diagnosis and film characterization of TiO2 plasma in pulsed laser deposition process. J. Northwest Normal Univ. (Nat. Sci.) 60, 51–57 (2024). https://doi.org/10.16783/j.cnki.nwnuz.2024.02.009
M. Otaka, H. Otomo, K. Ikeda, J. Lai, D. Wakita et al., Deposition of hydrogenated amorphous carbon films by CH4/Ar capacitively coupled plasma using tailored voltage waveform discharges. Jpn. J. Appl. Phys. 63, 076001 (2024). https://doi.org/10.35848/1347-4065/ad53b0
K.-D. Weltmann, J.F. Kolb, M. Holub, D. Uhrlandt, M. Šimek et al., The future for plasma science and technology. Plasma Process. Polym. 16, 1800118 (2019). https://doi.org/10.1002/ppap.201800118
Y. Hirata, K. Kawai, T. Kato, H. Fujimoto, Y. Tameno et al., Characterization of structural and mechanical properties of DLC films deposited on the surface of minute-scale 3D objects: comparison of PECVD and FCVA deposition technique. Surf. Coat. Technol. 460, 129401 (2023). https://doi.org/10.1016/j.surfcoat.2023.129401
Y. Yerlanuly, R. Zhumadilov, R. Nemkayeva, B. Uzakbaiuly, A.R. Beisenbayev et al., Physical properties of carbon nanowalls synthesized by the ICP-PECVD method vs. the growth time. Sci. Rep. 11, 19287 (2021). https://doi.org/10.1038/s41598-021-97997-8
M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12, 205–216 (2003). https://doi.org/10.1088/0963-0252/12/2/312
Z. Zeng, Q. Zong, S. Sun, Y. Wang, Y. Wu et al., Microwave plasma CVD of diamond films on high concentration alloys: microstructure, hardness and wear properties. Vacuum 222, 113078 (2024). https://doi.org/10.1016/j.vacuum.2024.113078
T. Yanase, M. Ebashi, K. Takamure, W. Ise, H. Waizumi et al., Unidirectional growth of epitaxial tantalum disulfide triangle crystals grown on sapphire by chemical vapour deposition with a separate-flow system. CrystEngComm 26, 341–348 (2024). https://doi.org/10.1039/D3CE00906H
S. Kumar, C.M.S. Rauthan, P.N. Dixit, K.M.K. Srivatsa, M.Y. Khan et al., Versatile microwave PECVD technique for deposition of DLC and other ordered carbon nanostructures. Vacuum 63, 433–439 (2001). https://doi.org/10.1016/S0042-207X(01)00362-1
N. Ravi, V.L. Bukhovets, I.G. Varshavskaya, G. Sundararajan, Deposition of diamond-like carbon films on aluminium substrates by RF-PECVD technique: influence of process parameters. Diam. Relat. Mater. 16, 90–97 (2007). https://doi.org/10.1016/j.diamond.2006.04.001
M.-L. Theye, V. Paret, A. Sadki, Relations between the deposition conditions, the microstructure and the defects in PECVD hydrogenated amorphous carbon films; influence on the electronic density of states. Diam. Relat. Mater. 10, 182–190 (2001). https://doi.org/10.1016/s0925-9635(00)00466-0
P. Liu, J. Wu, D. Xu, Y. Pan, C. You et al., CNTs/Cu composite thin films fabricated by electrophoresis and electroplating techniques, in 2008 2nd IEEE International Nanoelectronics Conference, March 24–27, 2008, Shanghai, China (IEEE, 2008), pp. 975–978
K.W. Jacobsen, J.K. Norskov, M.J. Puska, Interatomic interactions in the effective-medium theory. Phys. Rev. B Condens. Matter 35, 7423–7442 (1987). https://doi.org/10.1103/physrevb.35.7423
D. Stroud, Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 12, 3368–3373 (1975). https://doi.org/10.1103/physrevb.12.3368
I.A. Faĭzrakhmanov, V.V. Bazarov, A.L. Stepanov, I.B. Khaĭbullin, Effect of copper ion implantation on the optical properties and low-temperature conductivity of carbon films. Semiconductors 40, 414–419 (2006). https://doi.org/10.1134/s1063782606040087
S. Poncé, W. Li, S. Reichardt, F. Giustino, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep. Prog. Phys. 83, 036501 (2020). https://doi.org/10.1088/1361-6633/ab6a43
SciNet
M. Pozzo, M.P. Desjarlais, D. Alfè, Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B 84, 054203 (2011). https://doi.org/10.1103/physrevb.84.054203
S. Dag, O. Gülseren, S. Ciraci, T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 83, 3180–3182 (2003). https://doi.org/10.1063/1.1616662
J. Zhang, B.I. Shklovskii, Density of states and conductivity of a granular metal or an array of quantum dots. Phys. Rev. B 70, 115317 (2004). https://doi.org/10.1103/physrevb.70.115317
K. Elk, J. Richter, V. Christoph, Density of states and electrical conductivity of disordered alloys with strong electron correlation. J. Phys. F Met. Phys. 9, 307–316 (1979). https://doi.org/10.1088/0305-4608/9/2/019