Exploration of the Existence Forms and Patterns of Dissolved Oxygen Molecules in Water
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 208
Abstract
The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds, and dissolved oxygen is one of the most important indicators for assessing water quality. In this work, distilled water with different concentration of dissolved oxygen were prepared, and a clear negative correlation between the size of water clusters and dissolved oxygen concentration was observed. Besides, a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled, suggesting that oxygen molecules predominantly exist at the interfaces of water clusters. Oxygen molecules can move rapidly through the interfaces among water clusters, allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature. Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters. A semi-empirical formula relating the average number of water molecules in a cluster (n) to 17O NMR half-peak width (W) was summarized: n = 0.1 W + 0.85. These findings provide a foundation for exploring the structure and properties of water.
Highlights:
1 A clear negative correlation between the size of water clusters and the concentration of dissolved oxygen was observed. This implied that smaller clusters water exhibits higher concentrations of dissolved oxygen.
2 Oxygen molecules are primarily existed at the surfaces or interfaces of water clusters and can rapidly traverse the gas liquid interface.
3 A semi empirical formula relating the average number of water molecules in a cluster to 17O NMR half peak width was derived, demonstrating an approximate lin ear relationship.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Brini, C.J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič et al., How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 117, 12385–12414 (2017). https://doi.org/10.1021/acs.chemrev.7b00259
- N. Agmon, Liquid water: from symmetry distortions to diffusive motion. Acc. Chem. Res. 45, 63–73 (2012). https://doi.org/10.1021/ar200076s
- M.F. Chaplin, Water: its importance to life. Biochem. Mol. Biol. Educ. 29, 54–59 (2001). https://doi.org/10.1111/j.1539-3429.2001.tb00070.x
- R. Shi, X. Huang, Y. Su, H.-G. Lu, S.-D. Li et al., Which density functional should be used to describe protonated water clusters? J. Phys. Chem. A 121, 3117–3127 (2017). https://doi.org/10.1021/acs.jpca.7b00058
- S.S. Xantheas, Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 258, 225–231 (2000). https://doi.org/10.1016/S0301-0104(00)00189-0
- M.M. Hoffmann, M.S. Conradi, Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 119, 3811–3817 (1997). https://doi.org/10.1021/ja964331g
- R. Ludwig, Water: from clusters to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001). https://doi.org/10.1002/1521-3773
- L. Turi, W.-S. Sheu, P.J. Rossky, Characterization of excess electrons in water-cluster anions by quantum simulations. Science 309, 914–917 (2005). https://doi.org/10.1126/science.1115808
- C.-C. Wu, C.-K. Lin, H.-C. Chang, J.-C. Jiang, J.-L. Kuo et al., Protonated clathrate cages enclosing neutral water molecules: (H+)(H2O)21 and (H+)(H2O)28. J. Chem. Phys. 122, 074315 (2005). https://doi.org/10.1063/1.1843816
- A. Zabardasti, M. Solimannejad, Theoretical study of hydrogen bonded clusters of water and fulminic acid. J. Mol. Struct. Theochem. 810, 73–79 (2007). https://doi.org/10.1016/j.theochem.2007.02.001
- J.S. Medina, R. Prosmiti, P. Villarreal, G. Delgado-Barrio, G. Winter et al., Molecular dynamics simulations of rigid and flexible water models: temperature dependence of viscosity. Chem. Phys. 388, 9–18 (2011). https://doi.org/10.1016/j.chemphys.2011.07.001
- R.M. Shields, B. Temelso, K.A. Archer, T.E. Morrell, G.C. Shields, Accurate predictions of water cluster formation, (H2O)(n=2-10). J. Phys. Chem. A 114, 11725–11737 (2010). https://doi.org/10.1021/jp104865w
- N. Agmon, H.J. Bakker, R.K. Campen, R.H. Henchman, P. Pohl et al., Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016). https://doi.org/10.1021/acs.chemrev.5b00736
- G. Albiser, A. Lamiri, S. Premilat, The A: B transition: temperature and base composition effects on hydration of DNA. Int. J. Biol. Macromol. 28, 199–203 (2001). https://doi.org/10.1016/s0141-8130(00)00160-4
- M.-C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl et al., Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016). https://doi.org/10.1021/acs.chemrev.5b00664
- M. Fuxreiter, M. Mezei, I. Simon, R. Osman, Interfacial water as a “hydration fingerprint” in the noncognate complex of BamHI. Biophys. J. 89, 903–911 (2005). https://doi.org/10.1529/biophysj.105.063263
- F.H. Stillinger, Water revisited. Science 209, 451–457 (1980). https://doi.org/10.1126/science.209.4455.451
- B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101, 219–260 (2002). https://doi.org/10.1016/S0167-7322(02)00094-6
- M. Miyazaki, A. Fujii, T. Ebata, N. Mikami, Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004). https://doi.org/10.1126/science.1096037
- T. Fransson, Y. Harada, N. Kosugi, N.A. Besley, B. Winter et al., X-ray and electron spectroscopy of water. Chem. Rev. 116, 7551–7569 (2016). https://doi.org/10.1021/acs.chemrev.5b00672
- Y.-Y. Liu, Y.-L. Ying, X. Hua, Y.-T. Long, In-situ discrimination of the water cluster size distribution in aqueous solution by ToF-SIMS. Sci. China Chem. 61, 159–163 (2018). https://doi.org/10.1007/s11426-017-9180-1
- N. Heine, M.R. Fagiani, K.R. Asmis, Disentangling the contribution of multiple isomers to the infrared spectrum of the protonated water heptamer. J. Phys. Chem. Lett. 6, 2298–2304 (2015). https://doi.org/10.1021/acs.jpclett.5b00879
- F.N. Keutsch, R.J. Saykally, Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc. Natl. Acad. Sci. U.S.A. 98, 10533–10540 (2001). https://doi.org/10.1073/pnas.191266498
- J.O. Richardson, C. Pérez, S. Lobsiger, A.A. Reid, B. Temelso et al., Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351, 1310–1313 (2016). https://doi.org/10.1126/science.aae0012
- S. Maeda, K. Ohno, Structures of water octamers (H2O)8: exploration on ab initio potential energy surfaces by the scaled hypersphere search method. J. Phys. Chem. A 111, 4527–4534 (2007). https://doi.org/10.1021/jp070606a
- M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko, Density functional theory is straying from the path toward the exact functional. Science 355, 49–52 (2017). https://doi.org/10.1126/science.aah5975
- A.T. Hagler, H.A. Scheraga, G. Nemethy, Structure of liquid water. Statistical thermodynamic theory. J. Phys. Chem. 76, 3229–3243 (1972). https://doi.org/10.1021/j100666a022
- G. Nemethy, H.A. Scheraga, Structure of water and hydrophobic bonding in proteins. iii. Thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773 (1962). https://doi.org/10.1021/j100816a004
- A. Rahman, F.H. Stillinger, Hydrogen-bond patterns in liquid water. J. Am. Chem. Soc. 95, 7943–7948 (1973). https://doi.org/10.1021/ja00805a003
- K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271, 929–933 (1996). https://doi.org/10.1126/science.271.5251.929
- J. Sadlej, V. Buch, J.K. Kazimirski, U. Buck, Theoretical study of structure and spectra of cage clusters (H2O)n, n = 7–10. J. Phys. Chem. A 103, 4933–4947 (1999). https://doi.org/10.1021/jp990546b
- U. Buck, I. Ettischer, M. Melzer, V. Buch, J. Sadlej, Structure and spectra of three-dimensional (H2O)n clusters, n=8, 9, 10. Phys. Rev. Lett. 80, 2578–2581 (1998). https://doi.org/10.1103/physrevlett.80.2578
- H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, K.S. Kim, Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 112, 9759–9772 (2000). https://doi.org/10.1063/1.481613
- C.H. Uffindell, A.I. Kolesnikov, J.C. Li et al., Inelastic neutron scattering study of water in the subcritical and supercritical region. Phys. Rev. B 62, 5492–5495 (2000). https://doi.org/10.1103/PhysRevB.62.5492
- F.O. Libnau, J. Toft, A.A. Christy, O.M. Kvalheim, Structure of liquid water determined from infrared temperature profiling and evolutionary curve resolution. J. Am. Chem. Soc. 116, 8311–8316 (1994). https://doi.org/10.1021/ja00097a043
- G.E. Walrafen, Raman spectral studies of the effects of temperature on water and electrolyte solutions. J. Chem. Phys. 44, 1546–1558 (1966). https://doi.org/10.1063/1.1726891
- J.C. Dore, Structural studies of water and other hydrogen—bonded liquids by neutron diffraction. J. Mol. Struct. 250, 193–211 (1991). https://doi.org/10.1016/0022-2860(91)85028-2
- N. Matubayasi, C. Wakai, M. Nakahara, Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy. J. Chem. Phys. 107, 9133–9140 (1997). https://doi.org/10.1063/1.475205
- T.R. Dyke, K.M. Mack, J.S. Muenter, Structure of water dimer from molecular-beam electric resonance spectroscopy. J. Chem. Phys. 66, 498–510 (1977). https://doi.org/10.1063/1.433969
- N. Pugliano, R.J. Saykally, Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science 257, 1937–1940 (1992). https://doi.org/10.1126/science.1411509
- Y.-Y. Liu, S.-Z. Zhang, Y.-L. Ying, H.-L. Xia, X. Hua et al., Ion-specific effects on hydrogen bond network at a submicropore confined liquid-vacuum interface: an in situ liquid ToF-SIMS study. J. Phys. Chem. Lett. 10, 4935–4941 (2019). https://doi.org/10.1021/acs.jpclett.9b02047
- L.I. Yeh, M. Okumura, J.D. Myers, J.M. Price, Y.T. Lee, Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+⋅(H2O)n(n=1, 2, 3). J. Chem. Phys. 91, 7319–7330 (1989). https://doi.org/10.1063/1.457305
- X.A. Conlan, J.S. Fletcher, N.P. Lockyer et al., A comparative study of secondary ion emission from water ice under ion bombardment by Au+, Au3+, and C60+. J. Phys. Chem. C 114, 5468–5479 (2010). https://doi.org/10.1021/jp906030x
- K.A. Servage, J.A. Silveira, K.L. Fort, D.H. Russell, Evolution of hydrogen-bond networks in protonated water clusters H+(H2O)n (n = 1 to 120) studied by cryogenic ion mobility-mass spectrometry. J. Phys. Chem. Lett. 5, 1825–1830 (2014). https://doi.org/10.1021/jz500693k
- M. Kusakari, M. Fujii, T. Seki, T. Aoki, J. Matsuo, Development of ambient SIMS using mega-electron-volt-energy ion probe. J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. Process. Meas. Phenom. (2016). https://doi.org/10.1116/1.4941724
- M. Packard, W.W. Hansen, F. Bloch, Nuclear introduction. Phys. Rev. 69, 680–680 (1946). https://doi.org/10.1103/PhysRev.70.460
- D.E. Barnaal, I.J. Lowe, Proton spin–lattice relaxation in hexagonal ice. J. Chem. Phys. 48, 4614–4618 (1968). https://doi.org/10.1063/1.1668036
- D.D. Traficante, Relaxation. Can T2 be longer than T1? Concepts Magn. Reson. 3, 171–177 (1991). https://doi.org/10.1002/cmr.1820030305
- K. Yoshida, A. Kitajo, T. Yamaguchi, 17O NMR relaxation study of dynamics of water molecules in aqueous mixtures of methanol, ethanol, and 1-propanol over a temperature range of 283–403 K. J. Mol. Liq. 125, 158–163 (2006). https://doi.org/10.1016/j.molliq.2005.11.009
- S. Zhang, Y. Zhang, C. Wu, H. Yang, Q. Zhang et al., A facile strategy to prepare small water clusters via interacting with functional molecules. Int. J. Mol. Sci. 22, 8250 (2021). https://doi.org/10.3390/ijms22158250
- M. Mahesh, The essential physics of medical imaging third edition. Med. Phys. (2013). https://doi.org/10.1118/1.4811156
- I.P. Gerothanassis, Oxygen-17 NMR spectroscopy: basic principles and applications. Part II. Prog. Nucl. Magn. Reson. Spectrosc. 57, 1–110 (2010). https://doi.org/10.1016/j.pnmrs.2009.12.001
- I.P. Gerothanassis, Oxygen-17 NMR spectroscopy: basic principles and applications (part I). Prog. Nucl. Magn. Reson. Spectrosc. 56, 95–197 (2010). https://doi.org/10.1016/j.pnmrs.2009.09.002
- A. Luzar, Extent of inter-hydrogen bond correlations in water Temperature effect. Chem. Phys. 258, 267–276 (2000). https://doi.org/10.1016/S0301-0104(00)00163-4
- R. Li, Z. Jiang, S. Shi, H. Yang, Raman spectra and 17O NMR study effects of CaCl2 and MgCl2 on water structure. J. Mol. Struct. 645, 69–75 (2003). https://doi.org/10.1016/S0022-2860(02)00528-8
- R. Li, Z. Jiang, H. Yang, Y. Guan, Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster. J. Mol. Liq. 126, 14–18 (2006). https://doi.org/10.1016/j.molliq.2004.04.004
- D. Rai, A.D. Kulkarni, S.P. Gejji, R.K. Pathak, Water clusters (H2O)n, n=6–8, in external electric fields. J. Chem. Phys. (2008). https://doi.org/10.1063/1.2816565
- T. Wu, J.A. Brant, Magnetic field effects on pH and electrical conductivity: implications for water and wastewater treatment. Environ. Eng. Sci. 37, 717–727 (2020). https://doi.org/10.1089/ees.2020.0182
- C. Sronsri, K. U-yen, W. Sittipol, Analyses of vibrational spectroscopy, thermal property and salt solubility of magnetized water. J. Mol. Liq. 323, 114613 (2021). https://doi.org/10.1016/j.molliq.2020.114613
- A.C.W. Yap, H.S. Lee, J.L. Loo, N.S. Mohd, Electron generation in water induced by magnetic effect and its impact on dissolved oxygen concentration. Sustain. Environ. Res. 31, 7 (2021). https://doi.org/10.1186/s42834-021-00080-0
- E.E. Fesenko, A.Y. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Lett. 367, 53–55 (1995). https://doi.org/10.1016/0014-5793(95)00506-5
- S.V. Shevkunov, A. Vegiri, Electric field induced transitions in water clusters. J. Mol. Struct.-Theochem. 593, 19–32 (2002). https://doi.org/10.1016/s0166-1280(02)00111-2
- Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
- N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
- L.E. Rodríguez-Gómez, J. Rodríguez-Sevilla, A. Hernández, M. Álvarez, Factors affecting nitrification with nitrite accumulation in treated wastewater by oxygen injection. Environ. Technol. 42, 813–825 (2021). https://doi.org/10.1080/09593330.2019.1645742
- H. Sun, F. He, W. Choi, Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 54, 6427–6437 (2020). https://doi.org/10.1021/acs.est.0c00817
- S. Schmidtko, L. Stramma, M. Visbeck, Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017). https://doi.org/10.1038/nature21399
- D. Breitburg, L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez et al., Declining oxygen in the global ocean and coastal waters. Science (2018). https://doi.org/10.1126/science.aam7240
- C.S. Lin, R.Q. Zhang, S.T. Lee, M. Elstner, T. Frauenheim et al., Simulation of water cluster assembly on a graphite surface. J. Phys. Chem. B 109, 14183–14188 (2005). https://doi.org/10.1021/jp050459l
- G.M. Costa, Suspended pores boost gas solubility in water. Nature 608, 672–673 (2022). https://doi.org/10.1038/d41586-022-02224-7
- Y. Gao, H. Fang, K. Ni, Y. Feng, Water clusters and density fluctuations in liquid water based on extended hierarchical clustering methods. Sci. Rep. 12, 8036 (2022). https://doi.org/10.1038/s41598-022-11947-6
- M.P. Andersson, The shape of water–how cluster formation provides a unifying explanation of water’s anomalous properties. J. Mol. Liq. 383, 122169 (2023). https://doi.org/10.1016/j.molliq.2023.122169
- A.N. Troganis, C. Tsanaktsidis, I.P. Gerothanassis, 14N NMR relaxation times of several protein amino acids in aqueous solution—comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms. J. Magn. Reson. 164, 294–303 (2003). https://doi.org/10.1016/S1090-7807(03)00249-0
- F.X. Li, Is Water Medicine or Poison, 1st edn. (China Market Press, Beijing, 2007), pp.122–125
- SOHU (2017) What do you know about small molecule cluster water.
References
E. Brini, C.J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič et al., How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 117, 12385–12414 (2017). https://doi.org/10.1021/acs.chemrev.7b00259
N. Agmon, Liquid water: from symmetry distortions to diffusive motion. Acc. Chem. Res. 45, 63–73 (2012). https://doi.org/10.1021/ar200076s
M.F. Chaplin, Water: its importance to life. Biochem. Mol. Biol. Educ. 29, 54–59 (2001). https://doi.org/10.1111/j.1539-3429.2001.tb00070.x
R. Shi, X. Huang, Y. Su, H.-G. Lu, S.-D. Li et al., Which density functional should be used to describe protonated water clusters? J. Phys. Chem. A 121, 3117–3127 (2017). https://doi.org/10.1021/acs.jpca.7b00058
S.S. Xantheas, Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 258, 225–231 (2000). https://doi.org/10.1016/S0301-0104(00)00189-0
M.M. Hoffmann, M.S. Conradi, Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 119, 3811–3817 (1997). https://doi.org/10.1021/ja964331g
R. Ludwig, Water: from clusters to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001). https://doi.org/10.1002/1521-3773
L. Turi, W.-S. Sheu, P.J. Rossky, Characterization of excess electrons in water-cluster anions by quantum simulations. Science 309, 914–917 (2005). https://doi.org/10.1126/science.1115808
C.-C. Wu, C.-K. Lin, H.-C. Chang, J.-C. Jiang, J.-L. Kuo et al., Protonated clathrate cages enclosing neutral water molecules: (H+)(H2O)21 and (H+)(H2O)28. J. Chem. Phys. 122, 074315 (2005). https://doi.org/10.1063/1.1843816
A. Zabardasti, M. Solimannejad, Theoretical study of hydrogen bonded clusters of water and fulminic acid. J. Mol. Struct. Theochem. 810, 73–79 (2007). https://doi.org/10.1016/j.theochem.2007.02.001
J.S. Medina, R. Prosmiti, P. Villarreal, G. Delgado-Barrio, G. Winter et al., Molecular dynamics simulations of rigid and flexible water models: temperature dependence of viscosity. Chem. Phys. 388, 9–18 (2011). https://doi.org/10.1016/j.chemphys.2011.07.001
R.M. Shields, B. Temelso, K.A. Archer, T.E. Morrell, G.C. Shields, Accurate predictions of water cluster formation, (H2O)(n=2-10). J. Phys. Chem. A 114, 11725–11737 (2010). https://doi.org/10.1021/jp104865w
N. Agmon, H.J. Bakker, R.K. Campen, R.H. Henchman, P. Pohl et al., Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016). https://doi.org/10.1021/acs.chemrev.5b00736
G. Albiser, A. Lamiri, S. Premilat, The A: B transition: temperature and base composition effects on hydration of DNA. Int. J. Biol. Macromol. 28, 199–203 (2001). https://doi.org/10.1016/s0141-8130(00)00160-4
M.-C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl et al., Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016). https://doi.org/10.1021/acs.chemrev.5b00664
M. Fuxreiter, M. Mezei, I. Simon, R. Osman, Interfacial water as a “hydration fingerprint” in the noncognate complex of BamHI. Biophys. J. 89, 903–911 (2005). https://doi.org/10.1529/biophysj.105.063263
F.H. Stillinger, Water revisited. Science 209, 451–457 (1980). https://doi.org/10.1126/science.209.4455.451
B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101, 219–260 (2002). https://doi.org/10.1016/S0167-7322(02)00094-6
M. Miyazaki, A. Fujii, T. Ebata, N. Mikami, Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004). https://doi.org/10.1126/science.1096037
T. Fransson, Y. Harada, N. Kosugi, N.A. Besley, B. Winter et al., X-ray and electron spectroscopy of water. Chem. Rev. 116, 7551–7569 (2016). https://doi.org/10.1021/acs.chemrev.5b00672
Y.-Y. Liu, Y.-L. Ying, X. Hua, Y.-T. Long, In-situ discrimination of the water cluster size distribution in aqueous solution by ToF-SIMS. Sci. China Chem. 61, 159–163 (2018). https://doi.org/10.1007/s11426-017-9180-1
N. Heine, M.R. Fagiani, K.R. Asmis, Disentangling the contribution of multiple isomers to the infrared spectrum of the protonated water heptamer. J. Phys. Chem. Lett. 6, 2298–2304 (2015). https://doi.org/10.1021/acs.jpclett.5b00879
F.N. Keutsch, R.J. Saykally, Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc. Natl. Acad. Sci. U.S.A. 98, 10533–10540 (2001). https://doi.org/10.1073/pnas.191266498
J.O. Richardson, C. Pérez, S. Lobsiger, A.A. Reid, B. Temelso et al., Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351, 1310–1313 (2016). https://doi.org/10.1126/science.aae0012
S. Maeda, K. Ohno, Structures of water octamers (H2O)8: exploration on ab initio potential energy surfaces by the scaled hypersphere search method. J. Phys. Chem. A 111, 4527–4534 (2007). https://doi.org/10.1021/jp070606a
M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko, Density functional theory is straying from the path toward the exact functional. Science 355, 49–52 (2017). https://doi.org/10.1126/science.aah5975
A.T. Hagler, H.A. Scheraga, G. Nemethy, Structure of liquid water. Statistical thermodynamic theory. J. Phys. Chem. 76, 3229–3243 (1972). https://doi.org/10.1021/j100666a022
G. Nemethy, H.A. Scheraga, Structure of water and hydrophobic bonding in proteins. iii. Thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773 (1962). https://doi.org/10.1021/j100816a004
A. Rahman, F.H. Stillinger, Hydrogen-bond patterns in liquid water. J. Am. Chem. Soc. 95, 7943–7948 (1973). https://doi.org/10.1021/ja00805a003
K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271, 929–933 (1996). https://doi.org/10.1126/science.271.5251.929
J. Sadlej, V. Buch, J.K. Kazimirski, U. Buck, Theoretical study of structure and spectra of cage clusters (H2O)n, n = 7–10. J. Phys. Chem. A 103, 4933–4947 (1999). https://doi.org/10.1021/jp990546b
U. Buck, I. Ettischer, M. Melzer, V. Buch, J. Sadlej, Structure and spectra of three-dimensional (H2O)n clusters, n=8, 9, 10. Phys. Rev. Lett. 80, 2578–2581 (1998). https://doi.org/10.1103/physrevlett.80.2578
H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, K.S. Kim, Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 112, 9759–9772 (2000). https://doi.org/10.1063/1.481613
C.H. Uffindell, A.I. Kolesnikov, J.C. Li et al., Inelastic neutron scattering study of water in the subcritical and supercritical region. Phys. Rev. B 62, 5492–5495 (2000). https://doi.org/10.1103/PhysRevB.62.5492
F.O. Libnau, J. Toft, A.A. Christy, O.M. Kvalheim, Structure of liquid water determined from infrared temperature profiling and evolutionary curve resolution. J. Am. Chem. Soc. 116, 8311–8316 (1994). https://doi.org/10.1021/ja00097a043
G.E. Walrafen, Raman spectral studies of the effects of temperature on water and electrolyte solutions. J. Chem. Phys. 44, 1546–1558 (1966). https://doi.org/10.1063/1.1726891
J.C. Dore, Structural studies of water and other hydrogen—bonded liquids by neutron diffraction. J. Mol. Struct. 250, 193–211 (1991). https://doi.org/10.1016/0022-2860(91)85028-2
N. Matubayasi, C. Wakai, M. Nakahara, Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy. J. Chem. Phys. 107, 9133–9140 (1997). https://doi.org/10.1063/1.475205
T.R. Dyke, K.M. Mack, J.S. Muenter, Structure of water dimer from molecular-beam electric resonance spectroscopy. J. Chem. Phys. 66, 498–510 (1977). https://doi.org/10.1063/1.433969
N. Pugliano, R.J. Saykally, Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science 257, 1937–1940 (1992). https://doi.org/10.1126/science.1411509
Y.-Y. Liu, S.-Z. Zhang, Y.-L. Ying, H.-L. Xia, X. Hua et al., Ion-specific effects on hydrogen bond network at a submicropore confined liquid-vacuum interface: an in situ liquid ToF-SIMS study. J. Phys. Chem. Lett. 10, 4935–4941 (2019). https://doi.org/10.1021/acs.jpclett.9b02047
L.I. Yeh, M. Okumura, J.D. Myers, J.M. Price, Y.T. Lee, Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+⋅(H2O)n(n=1, 2, 3). J. Chem. Phys. 91, 7319–7330 (1989). https://doi.org/10.1063/1.457305
X.A. Conlan, J.S. Fletcher, N.P. Lockyer et al., A comparative study of secondary ion emission from water ice under ion bombardment by Au+, Au3+, and C60+. J. Phys. Chem. C 114, 5468–5479 (2010). https://doi.org/10.1021/jp906030x
K.A. Servage, J.A. Silveira, K.L. Fort, D.H. Russell, Evolution of hydrogen-bond networks in protonated water clusters H+(H2O)n (n = 1 to 120) studied by cryogenic ion mobility-mass spectrometry. J. Phys. Chem. Lett. 5, 1825–1830 (2014). https://doi.org/10.1021/jz500693k
M. Kusakari, M. Fujii, T. Seki, T. Aoki, J. Matsuo, Development of ambient SIMS using mega-electron-volt-energy ion probe. J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. Process. Meas. Phenom. (2016). https://doi.org/10.1116/1.4941724
M. Packard, W.W. Hansen, F. Bloch, Nuclear introduction. Phys. Rev. 69, 680–680 (1946). https://doi.org/10.1103/PhysRev.70.460
D.E. Barnaal, I.J. Lowe, Proton spin–lattice relaxation in hexagonal ice. J. Chem. Phys. 48, 4614–4618 (1968). https://doi.org/10.1063/1.1668036
D.D. Traficante, Relaxation. Can T2 be longer than T1? Concepts Magn. Reson. 3, 171–177 (1991). https://doi.org/10.1002/cmr.1820030305
K. Yoshida, A. Kitajo, T. Yamaguchi, 17O NMR relaxation study of dynamics of water molecules in aqueous mixtures of methanol, ethanol, and 1-propanol over a temperature range of 283–403 K. J. Mol. Liq. 125, 158–163 (2006). https://doi.org/10.1016/j.molliq.2005.11.009
S. Zhang, Y. Zhang, C. Wu, H. Yang, Q. Zhang et al., A facile strategy to prepare small water clusters via interacting with functional molecules. Int. J. Mol. Sci. 22, 8250 (2021). https://doi.org/10.3390/ijms22158250
M. Mahesh, The essential physics of medical imaging third edition. Med. Phys. (2013). https://doi.org/10.1118/1.4811156
I.P. Gerothanassis, Oxygen-17 NMR spectroscopy: basic principles and applications. Part II. Prog. Nucl. Magn. Reson. Spectrosc. 57, 1–110 (2010). https://doi.org/10.1016/j.pnmrs.2009.12.001
I.P. Gerothanassis, Oxygen-17 NMR spectroscopy: basic principles and applications (part I). Prog. Nucl. Magn. Reson. Spectrosc. 56, 95–197 (2010). https://doi.org/10.1016/j.pnmrs.2009.09.002
A. Luzar, Extent of inter-hydrogen bond correlations in water Temperature effect. Chem. Phys. 258, 267–276 (2000). https://doi.org/10.1016/S0301-0104(00)00163-4
R. Li, Z. Jiang, S. Shi, H. Yang, Raman spectra and 17O NMR study effects of CaCl2 and MgCl2 on water structure. J. Mol. Struct. 645, 69–75 (2003). https://doi.org/10.1016/S0022-2860(02)00528-8
R. Li, Z. Jiang, H. Yang, Y. Guan, Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster. J. Mol. Liq. 126, 14–18 (2006). https://doi.org/10.1016/j.molliq.2004.04.004
D. Rai, A.D. Kulkarni, S.P. Gejji, R.K. Pathak, Water clusters (H2O)n, n=6–8, in external electric fields. J. Chem. Phys. (2008). https://doi.org/10.1063/1.2816565
T. Wu, J.A. Brant, Magnetic field effects on pH and electrical conductivity: implications for water and wastewater treatment. Environ. Eng. Sci. 37, 717–727 (2020). https://doi.org/10.1089/ees.2020.0182
C. Sronsri, K. U-yen, W. Sittipol, Analyses of vibrational spectroscopy, thermal property and salt solubility of magnetized water. J. Mol. Liq. 323, 114613 (2021). https://doi.org/10.1016/j.molliq.2020.114613
A.C.W. Yap, H.S. Lee, J.L. Loo, N.S. Mohd, Electron generation in water induced by magnetic effect and its impact on dissolved oxygen concentration. Sustain. Environ. Res. 31, 7 (2021). https://doi.org/10.1186/s42834-021-00080-0
E.E. Fesenko, A.Y. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Lett. 367, 53–55 (1995). https://doi.org/10.1016/0014-5793(95)00506-5
S.V. Shevkunov, A. Vegiri, Electric field induced transitions in water clusters. J. Mol. Struct.-Theochem. 593, 19–32 (2002). https://doi.org/10.1016/s0166-1280(02)00111-2
Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
L.E. Rodríguez-Gómez, J. Rodríguez-Sevilla, A. Hernández, M. Álvarez, Factors affecting nitrification with nitrite accumulation in treated wastewater by oxygen injection. Environ. Technol. 42, 813–825 (2021). https://doi.org/10.1080/09593330.2019.1645742
H. Sun, F. He, W. Choi, Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 54, 6427–6437 (2020). https://doi.org/10.1021/acs.est.0c00817
S. Schmidtko, L. Stramma, M. Visbeck, Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017). https://doi.org/10.1038/nature21399
D. Breitburg, L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez et al., Declining oxygen in the global ocean and coastal waters. Science (2018). https://doi.org/10.1126/science.aam7240
C.S. Lin, R.Q. Zhang, S.T. Lee, M. Elstner, T. Frauenheim et al., Simulation of water cluster assembly on a graphite surface. J. Phys. Chem. B 109, 14183–14188 (2005). https://doi.org/10.1021/jp050459l
G.M. Costa, Suspended pores boost gas solubility in water. Nature 608, 672–673 (2022). https://doi.org/10.1038/d41586-022-02224-7
Y. Gao, H. Fang, K. Ni, Y. Feng, Water clusters and density fluctuations in liquid water based on extended hierarchical clustering methods. Sci. Rep. 12, 8036 (2022). https://doi.org/10.1038/s41598-022-11947-6
M.P. Andersson, The shape of water–how cluster formation provides a unifying explanation of water’s anomalous properties. J. Mol. Liq. 383, 122169 (2023). https://doi.org/10.1016/j.molliq.2023.122169
A.N. Troganis, C. Tsanaktsidis, I.P. Gerothanassis, 14N NMR relaxation times of several protein amino acids in aqueous solution—comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms. J. Magn. Reson. 164, 294–303 (2003). https://doi.org/10.1016/S1090-7807(03)00249-0
F.X. Li, Is Water Medicine or Poison, 1st edn. (China Market Press, Beijing, 2007), pp.122–125
SOHU (2017) What do you know about small molecule cluster water.