Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection
Corresponding Author: Yong Yang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 52
Abstract
The outbreak of coronavirus disease 2019 has seriously threatened human health. Rapidly and sensitively detecting SARS-CoV-2 viruses can help control the spread of viruses. However, it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity. Therefore, it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity. Herein we report, for the first time, Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement, which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement. Their SERS sensitivity is optimized to 3.0 × 106 and 1.4 × 106 under the optimal resonance excitation wavelength of 532 nm. Additionally, remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein. Moreover, its detection limit is as low as 5 × 10−9 M, which is beneficial to achieve real-time monitoring and early warning of novel coronavirus. This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology.
Highlights:
1 Nb2C and Ta2C MXenes exhibit remarkable SERS performance with the enhancement factors of 3.0 × 106 and 1.4 × 106, which is synergistically enabled by the PICT resonance enhancement and electromagnetic enhancement.
2 The excellent SERS sensitivity endows Ta2C MXene with the capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein, which is beneficial to achieve real-time monitoring and early warning of novel coronavirus.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Lengert, A.M. Yashchenok, V. Atkin, A. Lapanje, D.A. Gorin et al., Hollow silver alginate microspheres for drug delivery and surface enhanced Raman scattering detection. RSC Adv. 6, 20447–20452 (2016). https://doi.org/10.1039/C6RA02019D
- R.A. Halvorson, P.J. Vikesland, Surface-enhanced raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010). https://doi.org/10.1021/es101228z
- C. Zong, M.X. Xu, L.J. Xu, T. Wei, X. Ma et al., Surface-enhanced raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118, 4946–4980 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
- C.Y. Song, B.Y. Yang, Y. Zhu, Y.J. Yang, L.H. Wang, Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosens. Bioelectron. 87, 59–65 (2017). https://doi.org/10.1016/j.bios.2016.07.097
- J.F. Li, R. Panneerselvam, Z.Q. Tian, Shell-isolated nanoparticle-enhanced raman spectroscopy. Nature 464, 392–395 (2010). https://doi.org/10.1038/nature08907
- L. Peng, J. Liu, W.X. Xu, Q.M. Luo, D. Chen et al., SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J. Med. Virol. (2020). https://doi.org/10.1002/jmv.25936
- L. Brus, Noble metal nanocrystals plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008). https://doi.org/10.1021/ar800121r
- H.K. Yu, Y.S. Peng, Y. Yang, Z.Y. Li, Plasmon-enhanced light–matter interactions and applications. NPJ Comput. Mater. 5, 45 (2019). https://doi.org/10.1038/s41524-019-0184-1
- Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z.R. Huang et al., Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012). https://doi.org/10.1039/C2NR12110G
- L.L. Yang, Y.S. Peng, Y. Yang, J.J. Liu, J.R. Lombardi et al., A novel ultra-sensitive semiconductor sers substrate boosted by the “coupled resonance” effect. Adv. Sci. (2019). https://doi.org/10.1002/advs.201900310
- Y.F. Shan, Z.H. Zheng, J.J. Liu, Y. Yang, Z.Y. Li et al., Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate. npj Comput. Mater. 11, 3 (2017). https://doi.org/10.1038/s41524-017-0008-0
- L.L. Yang, Y.S. Peng, Y. Yang, J.J. Liu, Z.Y. Li et al., Green and sensitive flexible semiconductor SERS substrates: hydrogenated black TiO2 nanowires. ACS Appl. Nano Mater. 1, 4516–4527 (2018). https://doi.org/10.1021/acsanm.8b00796
- D.Y. Qi, L.J. Lu, L.Z. Wang, J.L. Zhang, Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J. Am. Chem. Soc. 136, 9886–9889 (2014). https://doi.org/10.1021/ja5052632
- X.T. Wang, W.X. Shi, S.X. Wang, H.W. Zhao, J. Lin et al., Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 141, 5856–5862 (2019). https://doi.org/10.1021/jacs.9b00029
- S. Cong, Y.Y. Yuan, Z.G. Chen, J.Y. Hou, Z.G. Zhao et al., Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 6, 7800 (2015). https://doi.org/10.1038/ncomms8800
- C.Y. He, H. Bai, W.C. Yi, J.Y. Liu, X.S. Li et al., A highly sensitive and stable SERS substrate using hybrid tungsten dioxide/carbon ultrathin nanowire beams. J. Mater. Chem. C 6, 3200–3205 (2018). https://doi.org/10.1039/C8TC00573G
- G.C. Xi, S.X. Ouyang, P. Li, J.H. Ye, C. Wang et al., Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 51, 2395–2399 (2012). https://doi.org/10.1002/anie.201107681
- J. Lin, W. Hao, Y. Shang, X.T. Wang, D.L. Qiu et al., Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 14, 8 (2018). https://doi.org/10.1002/smll.201703274
- X.X. Li, Y. Shang, J. Lin, A.R. Li, X.T. Wang et al., Temperature-induced stacking to create Cu2O concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering. Adv. Funct. Mater. 28, 1801868 (2018). https://doi.org/10.1002/adfm.201801868
- J. Lin, Y. Shang, X.X. Li, J. Yu, X.T. Wang et al., Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 29, 1604797 (2017). https://doi.org/10.1002/adma.201604797
- Z.H. Zheng, S. Cong, W.B. Gong, J.N. Xuan, Z.G. Zhao et al., Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 8, 1993 (2017). https://doi.org/10.1038/s41467-017-02166-z
- G.L. Zhang, C.Y. Deng, H.L. Shi, B. Zou, Y.C. Li et al., ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering. Appl. Surf. Sci. 402, 154–160 (2017). https://doi.org/10.1016/j.apsusc.2017.01.042
- X.T. Wang, W.X. Shi, Z. Jin, W.F. Huang, J. Lin et al., Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem. Int. Ed. 56, 9851–9855 (2017). https://doi.org/10.1002/anie.201705187
- Q. Cao, R.C. Che, N. Chen, Facile and rapid growth of Ag2S microrod arrays as efficient substrates for both SERS detection and photocatalytic degradation of organic dyes. Chem. Commun. 50, 4931–4933 (2014). https://doi.org/10.1039/C4CC00107A
- S.K. Islam, M. Tamargo, R. Moug, J.R. Lombardi, Surface-enhanced raman scattering on a chemically etched ZnSe surface. J. Phys. Chem. C 117, 23372–23377 (2013). https://doi.org/10.1021/jp407647f
- S. Hayashi, R. Koh, K. Yamamoto, Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles. Phys. Rev. Lett. 60, 1085–1088 (1988). https://doi.org/10.1103/PhysRevLett.60.1085
- J.R. Lombardi, R.L. Birke, L.A. Sanchez, I. Bernard, S.C. Sun, The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering. Chem. Phys. Lett. 104, 240–247 (1984). https://doi.org/10.1016/0009-2614(84)80203-1
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- P.K. Kannan, P. Shankar, C. Blackman, C.H. Chung, Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 31, 1803432 (2019). https://doi.org/10.1002/adma.201803432
- Q. Song, F. Ye, X.W. Yin, W. Li, B.Q. Wei et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- Q.S. Guo, C. Li, B.C. Deng, S.F. Yuan, F. Guinea et al., Infrared nanophotonics based on graphene plasmonics. ACS Photonics 4, 2989–2999 (2017). https://doi.org/10.1021/acsphotonics.7b00547
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- C. Muehlethaler, C.R. Considine, V. Menon, W.C. Lin, Y.H. Lee et al., Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics 3, 1164–1169 (2016). https://doi.org/10.1021/acsphotonics.6b00213
- P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile et al., Exciton band structure in two-dimensional materials. Phys. Rev. Lett. 116, 066803 (2016). https://doi.org/10.1103/PhysRevLett.116.066803
- A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017). https://doi.org/10.1021/acs.jpcc.7b08180
- B. Soundiraraju, B.K. George, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017). https://doi.org/10.1021/acsnano.7b03129
- K.Y. Chen, X. Yan, J.K. Li, T.F. Jiao, Q.M. Peng et al., Preparation of self-assembled composite films constructed by chemically-modified MXene and dyes with surface-enhanced Raman scattering characterization. Nanomaterials 9, 284 (2019). https://doi.org/10.3390/nano9020284
- Y.T. Ye, W.C. Yi, W. Liu, Y. Zhou, H. Bai et al., Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci. China Mater. 63(5), 794–805 (2020). https://doi.org/10.1007/s40843-020-1283-8
- W. Ji, L.F. Li, W. Song, X.N. Wang, B. Zhao et al., Enhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances. Angew. Chem. Int. Ed. 58, 14452 (2019). https://doi.org/10.1002/anie.201907283
- Z. Mao, W. Song, X.X. Xue, W. Ji, B. Zhao et al., Interfacial charge-transfer effects in semiconductor-molecule-metal structures: influence of contact variation. J. Phys. Chem. C 116, 14701–14710 (2012). https://doi.org/10.1021/jp304051r
- J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2008). https://doi.org/10.1021/ar800249y
- I. Alessandri, J.R. Lombardi, Enhanced Raman scattering with dielectrics. Chem. Rev. 116, 14921–14981 (2016). https://doi.org/10.1021/acs.chemrev.6b00365
- P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864
- P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985). https://doi.org/10.1063/1.448799
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- C.F. Hu, F.Z. Li, L.F. He, M.Y. Liu, Y.C. Zhou et al., In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 91, 2258–2263 (2008). https://doi.org/10.1111/j.1551-2916.2008.02424.x
- H. Lin, S.S. Gao, C. Dai, Y. Chen, J.L. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139, 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
- X.X. Han, J. Huang, H. Lin, Z.G. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7, 1701394 (2018). https://doi.org/10.1002/adhm.201701394
- Y.D. Huang, J. Zhou, G.J. Wang, Z.M. Sun, Abnormally strong electron-phonon scattering induced unprecedented reduction in lattice thermal conductivity of two-dimensional Nb2C. J. Am. Chem. Soc. 141, 8503–8508 (2019). https://doi.org/10.1021/jacs.9b01742
- J. Zhu, E.N. Ha, G.L. Zhao, Y. Zhou, P.X. Zhao et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
- H. Kitadai, X.Z. Wang, N.N. Mao, S.X. Huang, X. Ling, Enhanced raman scattering on nine 2D van der Waals materials. J. Phys. Chem. Lett. 10, 3043–3050 (2019). https://doi.org/10.1021/acs.jpclett.9b01146
- X.T. Wang, L. Guo, SERS activity of semiconductors: crystalline and amorphous nanomaterials. Angew. Chem. Int. Ed. 59, 4231–4239 (2020). https://doi.org/10.1002/anie.201913375
- X.T. Wang, W.S. Shi, G.W. She, L.X. Mu, Using Si and Ge nanostructures as substrates for surface-enhanced raman scattering based on photoinduced charge transfer mechanism. J. Am. Chem. Soc. 133, 16518–16523 (2011). https://doi.org/10.1021/ja2057874
- T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- D. Wrapp, N.S. Wang, K.S. Corbett, J.A. Goldsmith, C.L. Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020)
- S.F. Zheng, J. Fan, F. Yu, B.H. Feng, B. Lou et al., Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ 369, m1443 (2020). https://doi.org/10.1136/bmj.m1443
- Y. Pan, D. Zhang, P. Yang, L.L.M. Poon, Q. Wang, Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411–412 (2020). https://doi.org/10.1016/S1473-3099(20)30113-4
- L.R. Zou, F. Ruan, M.X. Huang, L.J. Liang, J. Wu et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 1177–1179 (2020)
References
E. Lengert, A.M. Yashchenok, V. Atkin, A. Lapanje, D.A. Gorin et al., Hollow silver alginate microspheres for drug delivery and surface enhanced Raman scattering detection. RSC Adv. 6, 20447–20452 (2016). https://doi.org/10.1039/C6RA02019D
R.A. Halvorson, P.J. Vikesland, Surface-enhanced raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010). https://doi.org/10.1021/es101228z
C. Zong, M.X. Xu, L.J. Xu, T. Wei, X. Ma et al., Surface-enhanced raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118, 4946–4980 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
C.Y. Song, B.Y. Yang, Y. Zhu, Y.J. Yang, L.H. Wang, Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosens. Bioelectron. 87, 59–65 (2017). https://doi.org/10.1016/j.bios.2016.07.097
J.F. Li, R. Panneerselvam, Z.Q. Tian, Shell-isolated nanoparticle-enhanced raman spectroscopy. Nature 464, 392–395 (2010). https://doi.org/10.1038/nature08907
L. Peng, J. Liu, W.X. Xu, Q.M. Luo, D. Chen et al., SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J. Med. Virol. (2020). https://doi.org/10.1002/jmv.25936
L. Brus, Noble metal nanocrystals plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008). https://doi.org/10.1021/ar800121r
H.K. Yu, Y.S. Peng, Y. Yang, Z.Y. Li, Plasmon-enhanced light–matter interactions and applications. NPJ Comput. Mater. 5, 45 (2019). https://doi.org/10.1038/s41524-019-0184-1
Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z.R. Huang et al., Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012). https://doi.org/10.1039/C2NR12110G
L.L. Yang, Y.S. Peng, Y. Yang, J.J. Liu, J.R. Lombardi et al., A novel ultra-sensitive semiconductor sers substrate boosted by the “coupled resonance” effect. Adv. Sci. (2019). https://doi.org/10.1002/advs.201900310
Y.F. Shan, Z.H. Zheng, J.J. Liu, Y. Yang, Z.Y. Li et al., Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate. npj Comput. Mater. 11, 3 (2017). https://doi.org/10.1038/s41524-017-0008-0
L.L. Yang, Y.S. Peng, Y. Yang, J.J. Liu, Z.Y. Li et al., Green and sensitive flexible semiconductor SERS substrates: hydrogenated black TiO2 nanowires. ACS Appl. Nano Mater. 1, 4516–4527 (2018). https://doi.org/10.1021/acsanm.8b00796
D.Y. Qi, L.J. Lu, L.Z. Wang, J.L. Zhang, Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J. Am. Chem. Soc. 136, 9886–9889 (2014). https://doi.org/10.1021/ja5052632
X.T. Wang, W.X. Shi, S.X. Wang, H.W. Zhao, J. Lin et al., Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 141, 5856–5862 (2019). https://doi.org/10.1021/jacs.9b00029
S. Cong, Y.Y. Yuan, Z.G. Chen, J.Y. Hou, Z.G. Zhao et al., Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 6, 7800 (2015). https://doi.org/10.1038/ncomms8800
C.Y. He, H. Bai, W.C. Yi, J.Y. Liu, X.S. Li et al., A highly sensitive and stable SERS substrate using hybrid tungsten dioxide/carbon ultrathin nanowire beams. J. Mater. Chem. C 6, 3200–3205 (2018). https://doi.org/10.1039/C8TC00573G
G.C. Xi, S.X. Ouyang, P. Li, J.H. Ye, C. Wang et al., Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 51, 2395–2399 (2012). https://doi.org/10.1002/anie.201107681
J. Lin, W. Hao, Y. Shang, X.T. Wang, D.L. Qiu et al., Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 14, 8 (2018). https://doi.org/10.1002/smll.201703274
X.X. Li, Y. Shang, J. Lin, A.R. Li, X.T. Wang et al., Temperature-induced stacking to create Cu2O concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering. Adv. Funct. Mater. 28, 1801868 (2018). https://doi.org/10.1002/adfm.201801868
J. Lin, Y. Shang, X.X. Li, J. Yu, X.T. Wang et al., Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 29, 1604797 (2017). https://doi.org/10.1002/adma.201604797
Z.H. Zheng, S. Cong, W.B. Gong, J.N. Xuan, Z.G. Zhao et al., Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 8, 1993 (2017). https://doi.org/10.1038/s41467-017-02166-z
G.L. Zhang, C.Y. Deng, H.L. Shi, B. Zou, Y.C. Li et al., ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering. Appl. Surf. Sci. 402, 154–160 (2017). https://doi.org/10.1016/j.apsusc.2017.01.042
X.T. Wang, W.X. Shi, Z. Jin, W.F. Huang, J. Lin et al., Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem. Int. Ed. 56, 9851–9855 (2017). https://doi.org/10.1002/anie.201705187
Q. Cao, R.C. Che, N. Chen, Facile and rapid growth of Ag2S microrod arrays as efficient substrates for both SERS detection and photocatalytic degradation of organic dyes. Chem. Commun. 50, 4931–4933 (2014). https://doi.org/10.1039/C4CC00107A
S.K. Islam, M. Tamargo, R. Moug, J.R. Lombardi, Surface-enhanced raman scattering on a chemically etched ZnSe surface. J. Phys. Chem. C 117, 23372–23377 (2013). https://doi.org/10.1021/jp407647f
S. Hayashi, R. Koh, K. Yamamoto, Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles. Phys. Rev. Lett. 60, 1085–1088 (1988). https://doi.org/10.1103/PhysRevLett.60.1085
J.R. Lombardi, R.L. Birke, L.A. Sanchez, I. Bernard, S.C. Sun, The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering. Chem. Phys. Lett. 104, 240–247 (1984). https://doi.org/10.1016/0009-2614(84)80203-1
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
P.K. Kannan, P. Shankar, C. Blackman, C.H. Chung, Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 31, 1803432 (2019). https://doi.org/10.1002/adma.201803432
Q. Song, F. Ye, X.W. Yin, W. Li, B.Q. Wei et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
Q.S. Guo, C. Li, B.C. Deng, S.F. Yuan, F. Guinea et al., Infrared nanophotonics based on graphene plasmonics. ACS Photonics 4, 2989–2999 (2017). https://doi.org/10.1021/acsphotonics.7b00547
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
C. Muehlethaler, C.R. Considine, V. Menon, W.C. Lin, Y.H. Lee et al., Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics 3, 1164–1169 (2016). https://doi.org/10.1021/acsphotonics.6b00213
P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile et al., Exciton band structure in two-dimensional materials. Phys. Rev. Lett. 116, 066803 (2016). https://doi.org/10.1103/PhysRevLett.116.066803
A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017). https://doi.org/10.1021/acs.jpcc.7b08180
B. Soundiraraju, B.K. George, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017). https://doi.org/10.1021/acsnano.7b03129
K.Y. Chen, X. Yan, J.K. Li, T.F. Jiao, Q.M. Peng et al., Preparation of self-assembled composite films constructed by chemically-modified MXene and dyes with surface-enhanced Raman scattering characterization. Nanomaterials 9, 284 (2019). https://doi.org/10.3390/nano9020284
Y.T. Ye, W.C. Yi, W. Liu, Y. Zhou, H. Bai et al., Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci. China Mater. 63(5), 794–805 (2020). https://doi.org/10.1007/s40843-020-1283-8
W. Ji, L.F. Li, W. Song, X.N. Wang, B. Zhao et al., Enhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances. Angew. Chem. Int. Ed. 58, 14452 (2019). https://doi.org/10.1002/anie.201907283
Z. Mao, W. Song, X.X. Xue, W. Ji, B. Zhao et al., Interfacial charge-transfer effects in semiconductor-molecule-metal structures: influence of contact variation. J. Phys. Chem. C 116, 14701–14710 (2012). https://doi.org/10.1021/jp304051r
J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2008). https://doi.org/10.1021/ar800249y
I. Alessandri, J.R. Lombardi, Enhanced Raman scattering with dielectrics. Chem. Rev. 116, 14921–14981 (2016). https://doi.org/10.1021/acs.chemrev.6b00365
P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864
P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985). https://doi.org/10.1063/1.448799
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
C.F. Hu, F.Z. Li, L.F. He, M.Y. Liu, Y.C. Zhou et al., In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 91, 2258–2263 (2008). https://doi.org/10.1111/j.1551-2916.2008.02424.x
H. Lin, S.S. Gao, C. Dai, Y. Chen, J.L. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139, 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
X.X. Han, J. Huang, H. Lin, Z.G. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7, 1701394 (2018). https://doi.org/10.1002/adhm.201701394
Y.D. Huang, J. Zhou, G.J. Wang, Z.M. Sun, Abnormally strong electron-phonon scattering induced unprecedented reduction in lattice thermal conductivity of two-dimensional Nb2C. J. Am. Chem. Soc. 141, 8503–8508 (2019). https://doi.org/10.1021/jacs.9b01742
J. Zhu, E.N. Ha, G.L. Zhao, Y. Zhou, P.X. Zhao et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
H. Kitadai, X.Z. Wang, N.N. Mao, S.X. Huang, X. Ling, Enhanced raman scattering on nine 2D van der Waals materials. J. Phys. Chem. Lett. 10, 3043–3050 (2019). https://doi.org/10.1021/acs.jpclett.9b01146
X.T. Wang, L. Guo, SERS activity of semiconductors: crystalline and amorphous nanomaterials. Angew. Chem. Int. Ed. 59, 4231–4239 (2020). https://doi.org/10.1002/anie.201913375
X.T. Wang, W.S. Shi, G.W. She, L.X. Mu, Using Si and Ge nanostructures as substrates for surface-enhanced raman scattering based on photoinduced charge transfer mechanism. J. Am. Chem. Soc. 133, 16518–16523 (2011). https://doi.org/10.1021/ja2057874
T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
D. Wrapp, N.S. Wang, K.S. Corbett, J.A. Goldsmith, C.L. Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020)
S.F. Zheng, J. Fan, F. Yu, B.H. Feng, B. Lou et al., Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ 369, m1443 (2020). https://doi.org/10.1136/bmj.m1443
Y. Pan, D. Zhang, P. Yang, L.L.M. Poon, Q. Wang, Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411–412 (2020). https://doi.org/10.1016/S1473-3099(20)30113-4
L.R. Zou, F. Ruan, M.X. Huang, L.J. Liang, J. Wu et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 1177–1179 (2020)