Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance
Corresponding Author: Jun Ding
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 80-93
Abstract
Magnetic hyperthermia is a fast emerging, non-invasive cancer treatment method which is used synergistically with the existing cancer therapeutics. We have attempted to address the current challenges in clinical magnetic hyperthermia-improved biocompatibility and enhanced heating characteristics, through a single combinatorial approach. Both superparamagnetic iron oxide nanoparticles (SPIONs) of size 10 nm and ferrimagnetic iron oxide nanoparticles (FIONs) of size 30 nm were synthesized by thermal decomposition method for comparison studies. Two different surface modifying agents, viz, Cetyl Trimethyl Ammonium Bromide and 3-Aminopropyltrimethoxysilane, were used to conjugate Bovine Serum Albumin (BSA) over the iron oxide nanoparticles via two different methods—surface charge adsorption and covalent amide bonding, respectively. The preliminary haemolysis and cell viability experiments show that BSA conjugation mitigates the haemolytic effect of the iron oxide nanoparticles on erythrocytes and is non-cytotoxic to the healthy Baby Hamster Kidney cells. It was observed from the results that due to better colloidal stability, the SAR value of the BSA-iron oxide nanoparticles is higher than the iron oxide nanoparticles without BSA, irrespective of the size of the iron oxide nanoparticles and method of conjugation. The BSA-FIONs seem to show improved biocompatibility, as the haemolytic index is less than 2 % and cell viability is up to 120 %, when normalized with the control. The SAR value of BSA-FIONs is 2300 W g−1 when compared to 1700 W g−1 of FIONs without BSA conjugation. Thus, we report here that BSA conjugation over FIONs (with a high saturation magnetization of 87 emu g−1) provide a single combinatorial approach to improve the biocompatibility and enhance the SAR value for magnetic hyperthermia, thus addressing both the current challenges of the same.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Mamiya, B. Jeyadevan, Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 1, 1–7 (2011). doi:10.1038/srep00157
- R. Siegal, J. Ma, Z. Zou, A. Jemal, Cancer statistics, 2014. CA-Cancer J. Clin. 64(1), 9–29 (2014). doi:10.3322/caac.21208
- A.J. Guistini, A.A. Petryk, S.M. Cassim, J.A. Tate, I. Baker, P.J. Hookes, Magnetic nanoparticles hyperthermia in cancer treatment. Nano Life 17(1), 17–32 (2010). doi:10.1142/S1793984410000067
- T. Kobayashi, Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 6(11), 1342–1347 (2011). doi:10.1002/biot.201100045
- A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005). doi:10.1016/j.biomaterials.2004.10.012
- M. Chastellain, A. Petri, A. Gupta, K.V. Rao, H. Hofmann, Superparamagnetic silica–iron oxide nanocomposites for application in hyperthermia. Adv. Eng. Mater. 6(4), 235–241 (2004). doi:10.1002/adem.200300574
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008). doi:10.1021/cr068445e
- H. Yousef, B. al-Ramadi, B. Issa, S.Qadri1, S. Hayek, H. Hijaze, Multifunctional nanoparticles for imaging guided interventions. Available from Nature Precedings http://hdl.handle.net/10101/npre.2008.2190.1 (2008)
- A. Itoa, M. Shinkaib, H. Hondaa, T. Kobayashi, Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100(1), 1–11 (2005). doi:10.1263/jbb.100.1
- M. Mitsumori, M. Hiraoka, T. Shibata, Y. Okuno, Y. Nagata, Y. Nishimura, M. Abe, M. Hasegawa, H. Nagae, Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepato Gastroenterology 43(12), 1431–1437 (1996)
- Robert W. Rand, Harold D. Snow, David G. Elliott, Melvin Snyder, Thermomagnetic surgery for cancer. Appl. Biochem. Biotechnol. 6(4), 265 (1981). doi:10.1007/BF02798277
- G.L. DeNardo, S.J. DeNardo, Update: turning the heat on cancer. Cancer Biother. Radiopharm. 23(6), 671–679 (2008). doi:10.1089/cbr.2008.0591
- F. Herranz, J. Ruiz-Cabello, M.P. Morales, A.G. Roca, R. Vilar, Superparamagnetic nanoparticles for atherosclerosis imaging. Contrast Media Mol. Imaging 3, 215–222 (2008). doi:10.1002/cmmi.254
- F. Herranz, C.B. Schmidt-Weber, M.H. Shamji, A. Narkus, J. Ruiz-Cabello, R. Vilar, Superparamagnetic iron oxide nanoparticles conjugated to a grass pollen allergen and an optical probe. Contrast Media Mol. Imaging 7, 435–439 (2012). doi:10.1002/cmmi.1466
- B. Salinas, J. Ruiz Cabello, M.P. Morales, F. Herranz, Olefin metathesis for the functionalization of superparamagnetic nanoparticles. Bioinspired Biomim. Nanobiomater. 1, 166–172 (2012). doi:10.1680/bbn.12.00001
- Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C.N. Sukenik, G. Markovich, Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17, 7907–7911 (2001). doi:10.1021/la010703+
- L.M. Bronstein, E.V. Shtykova, A. Malyutin, J.C. Dyke, E. Gunn, X. Gao, B. Stein et al., Hydrophilization of magnetic nanoparticles with modified alternating copolymers. Part 1: the influence of the grafting. J. Phys. Chem. C 114(50), 21900–21907 (2010). doi:10.1021/jp107283w
- H. Su, Y. Liu, D. Wang, C. Wu, C. Xia, Q. Gong, B. Song, H. Ai, Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials 34(4), 1193–1203 (2013). doi:10.1016/j.biomaterials.2012.10.056
- C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Grüttner, R. Ivkov, Nearly complete regression of tumors via collective behavior of magnetic nanoparticles hyperthermia. Nanotechnology 20(39), 395103 (2009). doi:10.1088/0957-4484/20/39/395103
- E.L. Verde, G.T. Landi, M.S. Carrião, A.L. Drummond, J.A. Gomes, E.D. Vieira, M.H. Sousa, A.F. Bakuzis, Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Advances 2(3), 032120–032142 (2012). doi:10.1063/1.4739533
- J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921–083937 (2011). doi:10.1063/1.3551582
- A. Attaluri, R. Ma, Y. Qiu, W. Li, L. Zhu, Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. Int. J. Hyperthermia 27(5), 491–502 (2011). doi:10.3109/02656736.2011.584856
- P. Guardia, R.D. Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M.G. Hernandez, F. Gazeau, L. Manna, T. Pellegrino, Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4), 3080–3091 (2012). doi:10.1021/nn2048137
- S. Patra, E. Roy, P. Karfa, S. Kumar, R. Madhuri, P.K. Sharma, Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl. Mater. Interfaces 7(17), 9235–9246 (2015). doi:10.1021/acsami.5b01786
- L. Lartigue, C. Innocenti, T. Kalaivani, A. Awwad, M. del Mar Sanchez Duque et al., Water-dispersible sugar-coated iron oxide nanoparticles. an evaluation of their relaxometric and magnetic hyperthermia properties. JACS 133(27), 10459–10472 (2011). doi:10.1021/ja111448t
- P. Businova, J. Chomoucka, J. Prasek, R. Hrdy, J. Drbohlavov, P. Sedlacek, J. Hubalek, Polymer coated iron oxide magnetic nanoparticles: preparation and characterization. Nanocon 9, 21–23 (2011)
- K.M. Seemann, B. Kuhn, Multi-photon excited luminescence of magnetic FePt core–shell nanoparticles. Biomedical Optics Express 5(7), 2446–2457 (2014). doi:10.1364/BOE.5.002446
- K.M. Seemann, M. Luysberg, Z. Révay, P. Kudejova, B. Sanz et al., Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core–shell nanoparticles. J. Control. Release 197, 131–137 (2015). doi:10.1016/j.jconrel.2014.11.007
- Y. Liu, M.J. Welch, Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug. Chem. 23, 671–682 (2012). doi:10.1021/bc200264c
- Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.L. Yang, S.-K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf. Physicochem. Eng. Asp. 262, 87–93 (2005). doi:10.1016/j.colsurfa.2005.04.009
- S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2005)
- J. Hankins, The role of albumin in fluid and electrolyte balance. J. Infusion Nursing 29(5), 260–265 (2009). doi:10.1097/00129804-200609000-00004
- K. Hirayama, S. Akashi, M. Furuya, K. Fukuhara, K, Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem. Biophys. Res. Commun. 173(2), 639–646 (1990). doi:10.1016/S0006291X(05)80083-X
- P. Green, A.E. Woglom, P. Genereux, B. Daneault, J.M. Paradis et al., The impact of frailty status on survival after transcatheter. JACC Cardiovasc. Interv. 5(9), 974–981 (2012). doi:10.1016/j.jcin.2012.06.011
- S. Ge, K. Kojio, A. Takahara, T. Kajiyama, Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J. Biomater. Sci. Polym. E 9(2), 131–150 (1998). doi:10.1163/156856298X00479
- A. Juríková, K. Csach, J. Miškuf, M. Koneracká, V. Závišová, P. Kopčanský, Thermal analysis of magnetic polymer nanospheres for drug targeting. Acta Phys. Pol. A 118(5), 990–992 (2010)
- M. Keshavarz, Z. Ghasemi, Coating of iron oxide nanoparticles with human and bovine serum albumins: a thermodynamic approach. J. Phys. Theor. Chem. IAU Iran 8(2), 85–95 (2011)
- B. Samanta, H. Yan, N.O. Fischer, J. Shi, D.J. Jerry, V.M. Rotelloa, Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. J. Mater. Chem. 18(11), 1204–1208 (2008). doi:10.1039/b718745a
- J.-H. Lee, J.-T. Jang, J.-S. Choi, S.-H. Moon, S.-H. Noh et al., Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011). doi:10.1038/nnano.2011.95
- L.C. Branquinho, M.S. Carrião, A.S. Costa, N. Zufelato, M.H. Sousa, R. Miotto, R. Ivkov, A.F. Bakuzis, Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3, 2887 (2013). doi:10.1038/srep02887
- C.M. Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias et al., Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013). doi:10.1038/srep01652
- M. Hu, J.-S. Jiang, F.-X. Bu, X.-L. Cheng, C.-C. Lin, Y. Zeng, Hierarchical magnetic iron (III) oxides prepared by solid-state thermal decomposition of coordination polymers. RSC Adv. 2, 4782–4786 (2012). doi:10.1039/C2RA01190E
- W. Baaziz, B.P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, S.B. Colin, Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C 118(7), 3795–3810 (2014). doi:10.1021/jp411481p
- P. Guardia, A. Labarta, X. Batlle, Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C 115, 390 (2010). doi:10.1021/jp1084982
- R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L.N. Brush, N.D. Browning, K.M. Krishnan, Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142–11154 (2015). doi:10.1039/C5NR01651G
- W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. (2015). doi:10.1088/1468-6996/16/2/023501
- R. Qiao, C. Yang, M. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem. 19, 6274–6293 (2009). doi:10.1039/b902394a
- G. Kim, M. Wutzler, H.J. Radusch, G.H. Michler, P. Simon, R.A. Sperling, W.J. Parak, One-dimensional arrangement of gold nanoparticles by electrospinning. Chem. Mater. 17, 4949–4957 (2005). doi:10.1021/cm0508120
- X.M. Lin, A.C.S. Samia, Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater. 305(1), 100–109 (2006). doi:10.1016/j.jmmm.2005.11.042
- J. Huang, L. Wang, R. Lin, A.Y. Wang, L. Yang, M. Kuang, W. Qian, H. Mao, Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl. Mater. Interfaces 5(11), 4632–4639 (2013). doi:10.1021/am400713j
- M.-H. Liao, D-H. Chen, Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol. Lett. 23(20), 1723–1727 (2001). doi:10.1023/A:1012485221802
- H. Huang, R. Christmann, R. Ulber, V. Schünemann, Mössbauer spectroscopy of protein-passivated iron oxide nanoparticles. Hyperfine Interactions 205(1–3), 121–124 (2012). doi:10.1007/s10751-011-0502-6
- S. Pathak, S.K. Choi, N. Arnheim, M.E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization. JACS 123(17), 4103–4104 (2001). doi:10.1021/ja0058334
- F. Shamsipour, A.H. Zarnani, R. Ghods, M. Chamankhah, F. Forouzesh et al., Conjugation of monoclonal antibodies to super paramagnetic iron oxide nanoparticles for detection of her2/neu antigen on breast cancer cell lines. Avicenna J. Med. Biotechnol. 1(1), 27–31 (2009)
- C.L. Priya, G. Kumar, L. Karthik, K.V.B. Rao, Phytochemical composition and in vitro antioxidant activity of achyranthes aspera linn (amaranthaceae) leaf extracts. Int. J. Agric. Technol. 8, 143–156 (2012)
- M. Nakaya, R. Nishida, A. Muramatsu, Size control of magnetite nanoparticles in excess ligands as a function of reaction temperature and time. Molecules 19(8), 11395–11403 (2014). doi:10.3390/molecules190811395
- D. Ling, N. Lee, T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48(5), 1276–1285 (2015). doi:10.1021/acs.accounts.5b00038
- A. Hu, A. Apblett, Nanotechnology for Water Treatment and Purification. Lecture Notes in Nanoscale Science and Technology, vol. 22. (Springer, New York, 2014)
- A. Mitra, J. Mohapatra, S.S. Meena, C.V. Tomy, M. Aslam, Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles. J. Phys. Chem. C 118, 19356–19362 (2014). doi:10.1021/jp501652e
- K. Šliužienė, V. Lisauskas, R. Butkutė, B. Vengalis, S. Tamulevicius, M. Andrulevicius, Growth and investigation of p-n structures based on Fe3O4 thin films. J. Phys. Conf. Ser. 100(8), 082028 (2008). doi:10.1088/1742-6596/100/8/082028
- A. Nemati, S. Shadpourab, H. Khalafbeygia, M. Barkhi, Hydrothermal synthesis and size control of Fe3O4 nanoparticles in the presence of 2,2′,2″,2″′-(ethane-1,2-diylbis(azanetriyl))tetraacetohydrazide. Syn. React. Inorg. Metal- Org. Nano-Metal Chem. 44(8), 1161–1165 (2014). doi:10.1080/15533174.2013.797443
- G.K. Kouassi, J. Irudayaraj, Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem. 78, 3234–3241 (2006). doi:10.1021/ac051621j
- J.F. Sun, X. Liu, Y. Chen, Y. Zhang, N. Gu, Exploiting BSA to inhibit the fibrous aggregation of magnetic nanoparticles under an alternating magnetic field. Int. J. Mol. Sci. 14(3), 5775–5783 (2013). doi:10.3390/ijms14035775
- M.L. Etheridge, K.R. Hurley, J. Zhang, S. Jeon, H.L. Ring, C. Hogan, C.L. Haynes, M. Garwood, J.C. Bischof, Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology (Singap. World Sci.) 2(3), 214–228 (2014). doi:10.1142/S2339547814500198
References
H. Mamiya, B. Jeyadevan, Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 1, 1–7 (2011). doi:10.1038/srep00157
R. Siegal, J. Ma, Z. Zou, A. Jemal, Cancer statistics, 2014. CA-Cancer J. Clin. 64(1), 9–29 (2014). doi:10.3322/caac.21208
A.J. Guistini, A.A. Petryk, S.M. Cassim, J.A. Tate, I. Baker, P.J. Hookes, Magnetic nanoparticles hyperthermia in cancer treatment. Nano Life 17(1), 17–32 (2010). doi:10.1142/S1793984410000067
T. Kobayashi, Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 6(11), 1342–1347 (2011). doi:10.1002/biot.201100045
A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005). doi:10.1016/j.biomaterials.2004.10.012
M. Chastellain, A. Petri, A. Gupta, K.V. Rao, H. Hofmann, Superparamagnetic silica–iron oxide nanocomposites for application in hyperthermia. Adv. Eng. Mater. 6(4), 235–241 (2004). doi:10.1002/adem.200300574
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008). doi:10.1021/cr068445e
H. Yousef, B. al-Ramadi, B. Issa, S.Qadri1, S. Hayek, H. Hijaze, Multifunctional nanoparticles for imaging guided interventions. Available from Nature Precedings http://hdl.handle.net/10101/npre.2008.2190.1 (2008)
A. Itoa, M. Shinkaib, H. Hondaa, T. Kobayashi, Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100(1), 1–11 (2005). doi:10.1263/jbb.100.1
M. Mitsumori, M. Hiraoka, T. Shibata, Y. Okuno, Y. Nagata, Y. Nishimura, M. Abe, M. Hasegawa, H. Nagae, Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepato Gastroenterology 43(12), 1431–1437 (1996)
Robert W. Rand, Harold D. Snow, David G. Elliott, Melvin Snyder, Thermomagnetic surgery for cancer. Appl. Biochem. Biotechnol. 6(4), 265 (1981). doi:10.1007/BF02798277
G.L. DeNardo, S.J. DeNardo, Update: turning the heat on cancer. Cancer Biother. Radiopharm. 23(6), 671–679 (2008). doi:10.1089/cbr.2008.0591
F. Herranz, J. Ruiz-Cabello, M.P. Morales, A.G. Roca, R. Vilar, Superparamagnetic nanoparticles for atherosclerosis imaging. Contrast Media Mol. Imaging 3, 215–222 (2008). doi:10.1002/cmmi.254
F. Herranz, C.B. Schmidt-Weber, M.H. Shamji, A. Narkus, J. Ruiz-Cabello, R. Vilar, Superparamagnetic iron oxide nanoparticles conjugated to a grass pollen allergen and an optical probe. Contrast Media Mol. Imaging 7, 435–439 (2012). doi:10.1002/cmmi.1466
B. Salinas, J. Ruiz Cabello, M.P. Morales, F. Herranz, Olefin metathesis for the functionalization of superparamagnetic nanoparticles. Bioinspired Biomim. Nanobiomater. 1, 166–172 (2012). doi:10.1680/bbn.12.00001
Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C.N. Sukenik, G. Markovich, Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17, 7907–7911 (2001). doi:10.1021/la010703+
L.M. Bronstein, E.V. Shtykova, A. Malyutin, J.C. Dyke, E. Gunn, X. Gao, B. Stein et al., Hydrophilization of magnetic nanoparticles with modified alternating copolymers. Part 1: the influence of the grafting. J. Phys. Chem. C 114(50), 21900–21907 (2010). doi:10.1021/jp107283w
H. Su, Y. Liu, D. Wang, C. Wu, C. Xia, Q. Gong, B. Song, H. Ai, Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials 34(4), 1193–1203 (2013). doi:10.1016/j.biomaterials.2012.10.056
C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Grüttner, R. Ivkov, Nearly complete regression of tumors via collective behavior of magnetic nanoparticles hyperthermia. Nanotechnology 20(39), 395103 (2009). doi:10.1088/0957-4484/20/39/395103
E.L. Verde, G.T. Landi, M.S. Carrião, A.L. Drummond, J.A. Gomes, E.D. Vieira, M.H. Sousa, A.F. Bakuzis, Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Advances 2(3), 032120–032142 (2012). doi:10.1063/1.4739533
J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921–083937 (2011). doi:10.1063/1.3551582
A. Attaluri, R. Ma, Y. Qiu, W. Li, L. Zhu, Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. Int. J. Hyperthermia 27(5), 491–502 (2011). doi:10.3109/02656736.2011.584856
P. Guardia, R.D. Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M.G. Hernandez, F. Gazeau, L. Manna, T. Pellegrino, Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4), 3080–3091 (2012). doi:10.1021/nn2048137
S. Patra, E. Roy, P. Karfa, S. Kumar, R. Madhuri, P.K. Sharma, Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl. Mater. Interfaces 7(17), 9235–9246 (2015). doi:10.1021/acsami.5b01786
L. Lartigue, C. Innocenti, T. Kalaivani, A. Awwad, M. del Mar Sanchez Duque et al., Water-dispersible sugar-coated iron oxide nanoparticles. an evaluation of their relaxometric and magnetic hyperthermia properties. JACS 133(27), 10459–10472 (2011). doi:10.1021/ja111448t
P. Businova, J. Chomoucka, J. Prasek, R. Hrdy, J. Drbohlavov, P. Sedlacek, J. Hubalek, Polymer coated iron oxide magnetic nanoparticles: preparation and characterization. Nanocon 9, 21–23 (2011)
K.M. Seemann, B. Kuhn, Multi-photon excited luminescence of magnetic FePt core–shell nanoparticles. Biomedical Optics Express 5(7), 2446–2457 (2014). doi:10.1364/BOE.5.002446
K.M. Seemann, M. Luysberg, Z. Révay, P. Kudejova, B. Sanz et al., Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core–shell nanoparticles. J. Control. Release 197, 131–137 (2015). doi:10.1016/j.jconrel.2014.11.007
Y. Liu, M.J. Welch, Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug. Chem. 23, 671–682 (2012). doi:10.1021/bc200264c
Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.L. Yang, S.-K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf. Physicochem. Eng. Asp. 262, 87–93 (2005). doi:10.1016/j.colsurfa.2005.04.009
S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2005)
J. Hankins, The role of albumin in fluid and electrolyte balance. J. Infusion Nursing 29(5), 260–265 (2009). doi:10.1097/00129804-200609000-00004
K. Hirayama, S. Akashi, M. Furuya, K. Fukuhara, K, Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem. Biophys. Res. Commun. 173(2), 639–646 (1990). doi:10.1016/S0006291X(05)80083-X
P. Green, A.E. Woglom, P. Genereux, B. Daneault, J.M. Paradis et al., The impact of frailty status on survival after transcatheter. JACC Cardiovasc. Interv. 5(9), 974–981 (2012). doi:10.1016/j.jcin.2012.06.011
S. Ge, K. Kojio, A. Takahara, T. Kajiyama, Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J. Biomater. Sci. Polym. E 9(2), 131–150 (1998). doi:10.1163/156856298X00479
A. Juríková, K. Csach, J. Miškuf, M. Koneracká, V. Závišová, P. Kopčanský, Thermal analysis of magnetic polymer nanospheres for drug targeting. Acta Phys. Pol. A 118(5), 990–992 (2010)
M. Keshavarz, Z. Ghasemi, Coating of iron oxide nanoparticles with human and bovine serum albumins: a thermodynamic approach. J. Phys. Theor. Chem. IAU Iran 8(2), 85–95 (2011)
B. Samanta, H. Yan, N.O. Fischer, J. Shi, D.J. Jerry, V.M. Rotelloa, Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. J. Mater. Chem. 18(11), 1204–1208 (2008). doi:10.1039/b718745a
J.-H. Lee, J.-T. Jang, J.-S. Choi, S.-H. Moon, S.-H. Noh et al., Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011). doi:10.1038/nnano.2011.95
L.C. Branquinho, M.S. Carrião, A.S. Costa, N. Zufelato, M.H. Sousa, R. Miotto, R. Ivkov, A.F. Bakuzis, Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3, 2887 (2013). doi:10.1038/srep02887
C.M. Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias et al., Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013). doi:10.1038/srep01652
M. Hu, J.-S. Jiang, F.-X. Bu, X.-L. Cheng, C.-C. Lin, Y. Zeng, Hierarchical magnetic iron (III) oxides prepared by solid-state thermal decomposition of coordination polymers. RSC Adv. 2, 4782–4786 (2012). doi:10.1039/C2RA01190E
W. Baaziz, B.P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, S.B. Colin, Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C 118(7), 3795–3810 (2014). doi:10.1021/jp411481p
P. Guardia, A. Labarta, X. Batlle, Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C 115, 390 (2010). doi:10.1021/jp1084982
R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L.N. Brush, N.D. Browning, K.M. Krishnan, Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142–11154 (2015). doi:10.1039/C5NR01651G
W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. (2015). doi:10.1088/1468-6996/16/2/023501
R. Qiao, C. Yang, M. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem. 19, 6274–6293 (2009). doi:10.1039/b902394a
G. Kim, M. Wutzler, H.J. Radusch, G.H. Michler, P. Simon, R.A. Sperling, W.J. Parak, One-dimensional arrangement of gold nanoparticles by electrospinning. Chem. Mater. 17, 4949–4957 (2005). doi:10.1021/cm0508120
X.M. Lin, A.C.S. Samia, Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater. 305(1), 100–109 (2006). doi:10.1016/j.jmmm.2005.11.042
J. Huang, L. Wang, R. Lin, A.Y. Wang, L. Yang, M. Kuang, W. Qian, H. Mao, Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl. Mater. Interfaces 5(11), 4632–4639 (2013). doi:10.1021/am400713j
M.-H. Liao, D-H. Chen, Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol. Lett. 23(20), 1723–1727 (2001). doi:10.1023/A:1012485221802
H. Huang, R. Christmann, R. Ulber, V. Schünemann, Mössbauer spectroscopy of protein-passivated iron oxide nanoparticles. Hyperfine Interactions 205(1–3), 121–124 (2012). doi:10.1007/s10751-011-0502-6
S. Pathak, S.K. Choi, N. Arnheim, M.E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization. JACS 123(17), 4103–4104 (2001). doi:10.1021/ja0058334
F. Shamsipour, A.H. Zarnani, R. Ghods, M. Chamankhah, F. Forouzesh et al., Conjugation of monoclonal antibodies to super paramagnetic iron oxide nanoparticles for detection of her2/neu antigen on breast cancer cell lines. Avicenna J. Med. Biotechnol. 1(1), 27–31 (2009)
C.L. Priya, G. Kumar, L. Karthik, K.V.B. Rao, Phytochemical composition and in vitro antioxidant activity of achyranthes aspera linn (amaranthaceae) leaf extracts. Int. J. Agric. Technol. 8, 143–156 (2012)
M. Nakaya, R. Nishida, A. Muramatsu, Size control of magnetite nanoparticles in excess ligands as a function of reaction temperature and time. Molecules 19(8), 11395–11403 (2014). doi:10.3390/molecules190811395
D. Ling, N. Lee, T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48(5), 1276–1285 (2015). doi:10.1021/acs.accounts.5b00038
A. Hu, A. Apblett, Nanotechnology for Water Treatment and Purification. Lecture Notes in Nanoscale Science and Technology, vol. 22. (Springer, New York, 2014)
A. Mitra, J. Mohapatra, S.S. Meena, C.V. Tomy, M. Aslam, Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles. J. Phys. Chem. C 118, 19356–19362 (2014). doi:10.1021/jp501652e
K. Šliužienė, V. Lisauskas, R. Butkutė, B. Vengalis, S. Tamulevicius, M. Andrulevicius, Growth and investigation of p-n structures based on Fe3O4 thin films. J. Phys. Conf. Ser. 100(8), 082028 (2008). doi:10.1088/1742-6596/100/8/082028
A. Nemati, S. Shadpourab, H. Khalafbeygia, M. Barkhi, Hydrothermal synthesis and size control of Fe3O4 nanoparticles in the presence of 2,2′,2″,2″′-(ethane-1,2-diylbis(azanetriyl))tetraacetohydrazide. Syn. React. Inorg. Metal- Org. Nano-Metal Chem. 44(8), 1161–1165 (2014). doi:10.1080/15533174.2013.797443
G.K. Kouassi, J. Irudayaraj, Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem. 78, 3234–3241 (2006). doi:10.1021/ac051621j
J.F. Sun, X. Liu, Y. Chen, Y. Zhang, N. Gu, Exploiting BSA to inhibit the fibrous aggregation of magnetic nanoparticles under an alternating magnetic field. Int. J. Mol. Sci. 14(3), 5775–5783 (2013). doi:10.3390/ijms14035775
M.L. Etheridge, K.R. Hurley, J. Zhang, S. Jeon, H.L. Ring, C. Hogan, C.L. Haynes, M. Garwood, J.C. Bischof, Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology (Singap. World Sci.) 2(3), 214–228 (2014). doi:10.1142/S2339547814500198