Visualized SERS Imaging of Single Molecule by Ag/Black Phosphorus Nanosheets
Corresponding Author: Yong Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 75
Abstract
Single-molecule detection and imaging are of great value in chemical analysis, biomarker identification and other trace detection fields. However, the localization and visualization of single molecule are still quite a challenge. Here, we report a special-engineered nanostructure of Ag nanoparticles embedded in multi-layer black phosphorus nanosheets (Ag/BP-NS) synthesized by a unique photoreduction method as a surface-enhanced Raman scattering (SERS) sensor. Such a SERS substrate features the lowest detection limit of 10–20 mol L−1 for R6G, which is due to the three synergistic resonance enhancement of molecular resonance, photo-induced charge transfer resonance and electromagnetic resonance. We propose a polarization-mapping strategy to realize the detection and visualization of single molecule. In addition, combined with machine learning, Ag/BP-NS substrates are capable of recognition of different tumor exosomes, which is meaningful for monitoring and early warning of the cancer. This work provides a reliable strategy for the detection of single molecule and a potential candidate for the practical bio-application of SERS technology.
Highlights:
1 Ag/BP-NS exhibit remarkable surface-enhanced Raman scattering performance with single-molecule detection ability. This remarkable enhancement can be attributed to the synergistic resonance enhancement of R6G molecular resonance, photo-induced charge transfer resonance and electromagnetic resonance.
2 A new polarization-mapping method was proposed, which can quickly screen out single-molecule signals and prove that the obtained spectra are emitted by single molecule.
3 The recognition of different tumor exosomes can be realized combining the method of machine learning.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Halvorson, P.J. Vikesland, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44(20), 7749–7755 (2010). https://doi.org/10.1021/es101228z
- Z. Han, H. Liu, J. Meng, L. Yang, J. Liu et al., Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal. Chem. 87(18), 9500–9506 (2015). https://doi.org/10.1021/acs.analchem.5b02899
- Y. Yang, Y. Peng, C. Lin, L. Long, J. Hu et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett. 13, 109 (2021). https://doi.org/10.1007/s40820-021-00620-8
- B.Y. Wen, A. Wang, J.S. Lin, P.C. Guan, P.M. Radjenovic et al., A new approach for quantitative surface-enhanced Raman spectroscopy through the kinetics of chemisorption. Small Methods 5(3), 2000993 (2021). https://doi.org/10.1002/smtd.202000993
- X. Jiang, Z.Y. Tan, L. Lin, J. He, C. He et al., Surface-enhanced Raman nanoprobes with embedded standards for quantitative cholesterol detection. Small Methods 2(11), 1800182 (2018). https://doi.org/10.1002/smtd.201800182
- J.D. Spitzberg, A. Zrehen, X.F. Kooten, A. Meller, Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 31(23), 1900422 (2019). https://doi.org/10.1002/adma.201900422
- E. Anastasiadou, F.J. Slack, Malicious exosomes. Science 346(6216), 1459–1460 (2014). https://doi.org/10.1126/science.aaa4024
- L. Zhao, W.T. Liu, J. Xiao, B.W. Cao, The role of exosomes and “exosomal shuttle microrna” in tumorigenesis and drug resistance. Cancer Lett. 356(2), 339–346 (2015). https://doi.org/10.1016/j.canlet.2014.10.027
- J.C. Fraire, S. Stremersch, D. Bouckaert, T. Monteyne, T.D. Beer et al., Improved label-free identification of individual exosome-like vesicles with au@ag nanops as SERS substrate. ACS Appl. Mater. Interfaces 11(43), 39424–39435 (2019). https://doi.org/10.1021/acsami.9b11473
- J. Langer, D.J. Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguie et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14(1), 28–117 (2020). https://doi.org/10.1021/acsnano.9b04224
- M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrod. J. Am. Chem. Soc. 99(15), 5215–5217 (1977). https://doi.org/10.1021/ja00457a071
- D.L. Jeanmaire, R.P. Vanduyne, Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84(1), 1–20 (1977). https://doi.org/10.1016/s0022-0728(77)80224-6
- A.B. Zrimsek, N.H. Chiang, M. Mattei, S. Zaleski, M.O. McAnally et al., Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117(11), 7583–7613 (2017). https://doi.org/10.1021/acs.chemrev.6b00552
- Y. Peng, C. Lin, Y. Li, Y. Gao, J. Wang et al., Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter 5, 694–709 (2022). https://doi.org/10.1016/j.matt.2021.11.028
- R. Haldavnekar, K. Venkatakrishnan, B. Tan, Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nat. Commun. 9(1), 3065 (2018). https://doi.org/10.1038/s41467-018-05237-x
- F. Yu, M. Su, L. Tian, H. Wang, H. Liu, Organic solvent as internal standards for quantitative and high-throughput liquid interfacial SERS analysis in complex media. Anal. Chem. 90(8), 5232–5238 (2018). https://doi.org/10.1021/acs.analchem.8b00008
- J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
- Z. Liu, H. Chen, Y. Jia, W. Zhang, H. Zhao et al., A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 10(39), 18795–18804 (2018). https://doi.org/10.1039/c8nr05300f
- X. Luo, R. Pan, M. Cai, W. Liu, C. Chen et al., Atto-molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment. Sens. Actuat. B Chem. 326, 128826 (2021). https://doi.org/10.1016/j.snb.2020.128826
- C. Yang, Y. Xu, M. Wang, T. Li, Y. Huo et al., Multifunctional paper strip based on GO-veiled Ag nanops with highly SERS sensitive and deliverable properties for high-performance molecular detection. Opt. Express 26(8), 10023–10037 (2018). https://doi.org/10.1364/OE.26.010023
- P. Etchegoin, R.C. Maher, L.F. Cohen, H. Hartigan, R.J.C. Brown et al., New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS). Chem. Phys. Lett. 375(1–2), 84–90 (2003). https://doi.org/10.1016/s0009-2614(03)00821-2
- S.M. Nie, S.R. Emery, Probing single molecules and single nanops by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102
- M. Keshavarz, P. Kassanos, B. Tan, K. Venkatakrishnan, Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 5(2), 294–307 (2020). https://doi.org/10.1039/c9nh00590k
- P.K. Kannan, P. Shankar, C. Blackman, C.H. Chung, Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 31(34), 1803432 (2019). https://doi.org/10.1002/adma.201803432
- H.H. Tian, N. Zhang, L.M. Tong, J. Zhang, In situ quantitative graphene-based surface-enhanced Raman spectroscopy. Small Methods 1(6), 1700126 (2017). https://doi.org/10.1002/smtd.201700126
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- L.C. Bai, X. Wang, S.B. Tang, Y.H. Kang, J.H. Wang et al., Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater. 30(40), 1803641 (2018). https://doi.org/10.1002/adma.201803641
- D. Huang, Z. Zhuang, Z. Wang, S. Li, H. Zhong et al., Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria. Appl. Surf. Sci. 497, 143825 (2019). https://doi.org/10.1016/j.apsusc.2019.143825
- F. Liu, R. Shi, Z. Wang, Y. Weng, C.M. Che et al., Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew. Chem. Int. Ed. 58(34), 11791–11795 (2019). https://doi.org/10.1002/anie.201906416
- J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
- L. Li, G.J. Ye, V. Tran, R. Fei, G. Chen et al., Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10(7), 608–613 (2015). https://doi.org/10.1038/nnano.2015.91
- H. Wang, X. Yang, W. Shao, S. Chen, J. Xie et al., Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137(35), 11376–11382 (2015). https://doi.org/10.1021/jacs.5b06025
- A. Kundu, R. Rani, K.S. Hazra, Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation. Nanoscale 11(35), 16245–16252 (2019). https://doi.org/10.1039/c9nr02615k
- P. Li, W. Chen, D. Liu, H. Huang, K. Dan et al., Template growth of Au/Ag nanocomposites on phosphorene for sensitive SERS detection of pesticides. Nanotechnology 30(27), 275604 (2019). https://doi.org/10.1088/1361-6528/ab12fb
- T. Zhang, Y. Wan, H. Xie, Y. Mu, P. Du et al., Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J. Am. Chem. Soc. 140(24), 7561–7567 (2018). https://doi.org/10.1021/jacs.8b02156
- X.H. Niu, Y.H. Li, Y.H. Zhang, Q. Li, Q.H. Zhou et al., Photo-oxidative degradation and protection mechanism of black phosphorus: insights from ultrafast dynamics. J. Phys. Chem. Lett. 9(17), 5034–5039 (2018). https://doi.org/10.1021/acs.jpclett.8b02060
- Y.T. Lei, D.W. Li, T.C. Zhang, X. Huang, L. Liu et al., One-step selective formation of silver nanops on atomic layered MoS2 by laser-induced defect engineering and photoreduction. J. Mater. Chem. C 5(34), 8883–8892 (2017). https://doi.org/10.1039/c7tc01863k
- P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88(24), 5935–5944 (1984). https://doi.org/10.1021/j150668a038
- Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z.R. Huang et al., Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4(8), 2663–2669 (2012). https://doi.org/10.1039/c2nr12110g
- L. Yang, Y. Peng, Y. Yang, J. Liu, Z. Li et al., Green and sensitive flexible semiconductor SERS substrates: hydrogenated black TiO2 nanowires. ACS Appl. Nano Mater. 1(9), 4516–4527 (2018). https://doi.org/10.1021/acsanm.8b00796
- A. Kudelski, Analytical applications of Raman spectroscopy. Talanta 76(1), 1–8 (2008). https://doi.org/10.1016/j.talanta.2008.02.042
- S. Yadav, J. Satija, The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J. Mater. Chem. B 9(2), 267–282 (2021). https://doi.org/10.1039/d0tb02137g
- J.E. Kim, J.H. Choi, M. Colas, D.H. Kim, H. Lee, Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens. Bioelectron. 80, 543–559 (2016). https://doi.org/10.1016/j.bios.2016.02.015
- Z.H. Zhou, L. Liu, G.Y. Wang, Z.Z. Xu, Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules. Chinese Phys. 15(1), 126–131 (2006). https://doi.org/10.1088/1009-1963/15/1/020
- K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari et al., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 76(14), 2444–2447 (1996). https://doi.org/10.1103/PhysRevLett.76.2444
- M. Hashimoto, K. Yoshiki, M. Kurihara, N. Hashimoto, T. Araki, Orientation detection of a single molecule using pupil filter with electrically controllable polarization pattern. Opt. Rev. 22(6), 875–881 (2015). https://doi.org/10.1007/s10043-015-0143-0
- K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condes. Matter 14(18), R597–R624 (2002). https://doi.org/10.1088/0953-8984/14/18/202
- J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 112(14), 5605–5617 (2008). https://doi.org/10.1021/jp800167v
- J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42(6), 734–742 (2009). https://doi.org/10.1021/ar800249y
- Y.S. Peng, C.L. Lin, L. Long, T. Masaki, M. Tang et al., Charge-transfer resonance and electromagnetic enhancement synergistically enabling mxenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 13, 52 (2021). https://doi.org/10.1007/s40820-020-00565-4
- W.Y. Lei, T.T. Zhang, P. Liu, J.A. Rodriguez, G. Liu et al., Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids. ACS Catal. 6(12), 8009–8020 (2016). https://doi.org/10.1021/acscatal.6b02520
- R.J. Simpson, J.W.E. Lim, R.L. Moritz, S. Mathivanan, Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomic. 6(3), 267–283 (2009). https://doi.org/10.1586/epr.09.17
- S. Mathivanan, H. Ji, R.J. Simpson, Exosomes: extracellular organelles important in intercellular communication. J. Proteomic. 73(10), 1907–1920 (2010). https://doi.org/10.1016/j.jprot.2010.06.006
- Y.F. Pang, J.M. Shi, X.S. Yang, C.W. Wang, Z.W. Sun et al., Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosens. Bioelectron. 148, 111800 (2020). https://doi.org/10.1016/j.bios.2019.111800
- R. Kalluri, V.S. Lebleu, The biology, function, and biomedical applications of exosomes. Science 367(6478), aau6977 (2020). https://doi.org/10.1126/science.aau6977
- A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta Gen. Subj. 1820(7), 940–948 (2012). https://doi.org/10.1016/j.bbagen.2012.03.017
- A.J. Massey, D.S. Williamson, H. Browne, J.B. Murray, P. Dokurno et al., A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in Hct116 colon carcinoma cells. Cancer Chemother. Pharmacol. 66(3), 535–545 (2010). https://doi.org/10.1007/s00280-009-1194-3
- Y.L. Chang, S.T. Yang, J.H. Liu, E. Dong, Y.W. Wang et al., In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200(3), 201–210 (2011). https://doi.org/10.1016/j.toxlet.2010.11.016
- H. Cui, B. Seubert, E. Stahl, H. Dietz, U. Reuning et al., Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 34(28), 3640–3650 (2015). https://doi.org/10.1038/onc.2014.300
References
R.A. Halvorson, P.J. Vikesland, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44(20), 7749–7755 (2010). https://doi.org/10.1021/es101228z
Z. Han, H. Liu, J. Meng, L. Yang, J. Liu et al., Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal. Chem. 87(18), 9500–9506 (2015). https://doi.org/10.1021/acs.analchem.5b02899
Y. Yang, Y. Peng, C. Lin, L. Long, J. Hu et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett. 13, 109 (2021). https://doi.org/10.1007/s40820-021-00620-8
B.Y. Wen, A. Wang, J.S. Lin, P.C. Guan, P.M. Radjenovic et al., A new approach for quantitative surface-enhanced Raman spectroscopy through the kinetics of chemisorption. Small Methods 5(3), 2000993 (2021). https://doi.org/10.1002/smtd.202000993
X. Jiang, Z.Y. Tan, L. Lin, J. He, C. He et al., Surface-enhanced Raman nanoprobes with embedded standards for quantitative cholesterol detection. Small Methods 2(11), 1800182 (2018). https://doi.org/10.1002/smtd.201800182
J.D. Spitzberg, A. Zrehen, X.F. Kooten, A. Meller, Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 31(23), 1900422 (2019). https://doi.org/10.1002/adma.201900422
E. Anastasiadou, F.J. Slack, Malicious exosomes. Science 346(6216), 1459–1460 (2014). https://doi.org/10.1126/science.aaa4024
L. Zhao, W.T. Liu, J. Xiao, B.W. Cao, The role of exosomes and “exosomal shuttle microrna” in tumorigenesis and drug resistance. Cancer Lett. 356(2), 339–346 (2015). https://doi.org/10.1016/j.canlet.2014.10.027
J.C. Fraire, S. Stremersch, D. Bouckaert, T. Monteyne, T.D. Beer et al., Improved label-free identification of individual exosome-like vesicles with au@ag nanops as SERS substrate. ACS Appl. Mater. Interfaces 11(43), 39424–39435 (2019). https://doi.org/10.1021/acsami.9b11473
J. Langer, D.J. Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguie et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14(1), 28–117 (2020). https://doi.org/10.1021/acsnano.9b04224
M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrod. J. Am. Chem. Soc. 99(15), 5215–5217 (1977). https://doi.org/10.1021/ja00457a071
D.L. Jeanmaire, R.P. Vanduyne, Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84(1), 1–20 (1977). https://doi.org/10.1016/s0022-0728(77)80224-6
A.B. Zrimsek, N.H. Chiang, M. Mattei, S. Zaleski, M.O. McAnally et al., Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117(11), 7583–7613 (2017). https://doi.org/10.1021/acs.chemrev.6b00552
Y. Peng, C. Lin, Y. Li, Y. Gao, J. Wang et al., Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter 5, 694–709 (2022). https://doi.org/10.1016/j.matt.2021.11.028
R. Haldavnekar, K. Venkatakrishnan, B. Tan, Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nat. Commun. 9(1), 3065 (2018). https://doi.org/10.1038/s41467-018-05237-x
F. Yu, M. Su, L. Tian, H. Wang, H. Liu, Organic solvent as internal standards for quantitative and high-throughput liquid interfacial SERS analysis in complex media. Anal. Chem. 90(8), 5232–5238 (2018). https://doi.org/10.1021/acs.analchem.8b00008
J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
Z. Liu, H. Chen, Y. Jia, W. Zhang, H. Zhao et al., A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 10(39), 18795–18804 (2018). https://doi.org/10.1039/c8nr05300f
X. Luo, R. Pan, M. Cai, W. Liu, C. Chen et al., Atto-molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment. Sens. Actuat. B Chem. 326, 128826 (2021). https://doi.org/10.1016/j.snb.2020.128826
C. Yang, Y. Xu, M. Wang, T. Li, Y. Huo et al., Multifunctional paper strip based on GO-veiled Ag nanops with highly SERS sensitive and deliverable properties for high-performance molecular detection. Opt. Express 26(8), 10023–10037 (2018). https://doi.org/10.1364/OE.26.010023
P. Etchegoin, R.C. Maher, L.F. Cohen, H. Hartigan, R.J.C. Brown et al., New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS). Chem. Phys. Lett. 375(1–2), 84–90 (2003). https://doi.org/10.1016/s0009-2614(03)00821-2
S.M. Nie, S.R. Emery, Probing single molecules and single nanops by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102
M. Keshavarz, P. Kassanos, B. Tan, K. Venkatakrishnan, Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 5(2), 294–307 (2020). https://doi.org/10.1039/c9nh00590k
P.K. Kannan, P. Shankar, C. Blackman, C.H. Chung, Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 31(34), 1803432 (2019). https://doi.org/10.1002/adma.201803432
H.H. Tian, N. Zhang, L.M. Tong, J. Zhang, In situ quantitative graphene-based surface-enhanced Raman spectroscopy. Small Methods 1(6), 1700126 (2017). https://doi.org/10.1002/smtd.201700126
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
L.C. Bai, X. Wang, S.B. Tang, Y.H. Kang, J.H. Wang et al., Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater. 30(40), 1803641 (2018). https://doi.org/10.1002/adma.201803641
D. Huang, Z. Zhuang, Z. Wang, S. Li, H. Zhong et al., Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria. Appl. Surf. Sci. 497, 143825 (2019). https://doi.org/10.1016/j.apsusc.2019.143825
F. Liu, R. Shi, Z. Wang, Y. Weng, C.M. Che et al., Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew. Chem. Int. Ed. 58(34), 11791–11795 (2019). https://doi.org/10.1002/anie.201906416
J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
L. Li, G.J. Ye, V. Tran, R. Fei, G. Chen et al., Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10(7), 608–613 (2015). https://doi.org/10.1038/nnano.2015.91
H. Wang, X. Yang, W. Shao, S. Chen, J. Xie et al., Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137(35), 11376–11382 (2015). https://doi.org/10.1021/jacs.5b06025
A. Kundu, R. Rani, K.S. Hazra, Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation. Nanoscale 11(35), 16245–16252 (2019). https://doi.org/10.1039/c9nr02615k
P. Li, W. Chen, D. Liu, H. Huang, K. Dan et al., Template growth of Au/Ag nanocomposites on phosphorene for sensitive SERS detection of pesticides. Nanotechnology 30(27), 275604 (2019). https://doi.org/10.1088/1361-6528/ab12fb
T. Zhang, Y. Wan, H. Xie, Y. Mu, P. Du et al., Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J. Am. Chem. Soc. 140(24), 7561–7567 (2018). https://doi.org/10.1021/jacs.8b02156
X.H. Niu, Y.H. Li, Y.H. Zhang, Q. Li, Q.H. Zhou et al., Photo-oxidative degradation and protection mechanism of black phosphorus: insights from ultrafast dynamics. J. Phys. Chem. Lett. 9(17), 5034–5039 (2018). https://doi.org/10.1021/acs.jpclett.8b02060
Y.T. Lei, D.W. Li, T.C. Zhang, X. Huang, L. Liu et al., One-step selective formation of silver nanops on atomic layered MoS2 by laser-induced defect engineering and photoreduction. J. Mater. Chem. C 5(34), 8883–8892 (2017). https://doi.org/10.1039/c7tc01863k
P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88(24), 5935–5944 (1984). https://doi.org/10.1021/j150668a038
Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z.R. Huang et al., Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4(8), 2663–2669 (2012). https://doi.org/10.1039/c2nr12110g
L. Yang, Y. Peng, Y. Yang, J. Liu, Z. Li et al., Green and sensitive flexible semiconductor SERS substrates: hydrogenated black TiO2 nanowires. ACS Appl. Nano Mater. 1(9), 4516–4527 (2018). https://doi.org/10.1021/acsanm.8b00796
A. Kudelski, Analytical applications of Raman spectroscopy. Talanta 76(1), 1–8 (2008). https://doi.org/10.1016/j.talanta.2008.02.042
S. Yadav, J. Satija, The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J. Mater. Chem. B 9(2), 267–282 (2021). https://doi.org/10.1039/d0tb02137g
J.E. Kim, J.H. Choi, M. Colas, D.H. Kim, H. Lee, Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens. Bioelectron. 80, 543–559 (2016). https://doi.org/10.1016/j.bios.2016.02.015
Z.H. Zhou, L. Liu, G.Y. Wang, Z.Z. Xu, Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules. Chinese Phys. 15(1), 126–131 (2006). https://doi.org/10.1088/1009-1963/15/1/020
K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari et al., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 76(14), 2444–2447 (1996). https://doi.org/10.1103/PhysRevLett.76.2444
M. Hashimoto, K. Yoshiki, M. Kurihara, N. Hashimoto, T. Araki, Orientation detection of a single molecule using pupil filter with electrically controllable polarization pattern. Opt. Rev. 22(6), 875–881 (2015). https://doi.org/10.1007/s10043-015-0143-0
K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condes. Matter 14(18), R597–R624 (2002). https://doi.org/10.1088/0953-8984/14/18/202
J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 112(14), 5605–5617 (2008). https://doi.org/10.1021/jp800167v
J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42(6), 734–742 (2009). https://doi.org/10.1021/ar800249y
Y.S. Peng, C.L. Lin, L. Long, T. Masaki, M. Tang et al., Charge-transfer resonance and electromagnetic enhancement synergistically enabling mxenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 13, 52 (2021). https://doi.org/10.1007/s40820-020-00565-4
W.Y. Lei, T.T. Zhang, P. Liu, J.A. Rodriguez, G. Liu et al., Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids. ACS Catal. 6(12), 8009–8020 (2016). https://doi.org/10.1021/acscatal.6b02520
R.J. Simpson, J.W.E. Lim, R.L. Moritz, S. Mathivanan, Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomic. 6(3), 267–283 (2009). https://doi.org/10.1586/epr.09.17
S. Mathivanan, H. Ji, R.J. Simpson, Exosomes: extracellular organelles important in intercellular communication. J. Proteomic. 73(10), 1907–1920 (2010). https://doi.org/10.1016/j.jprot.2010.06.006
Y.F. Pang, J.M. Shi, X.S. Yang, C.W. Wang, Z.W. Sun et al., Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosens. Bioelectron. 148, 111800 (2020). https://doi.org/10.1016/j.bios.2019.111800
R. Kalluri, V.S. Lebleu, The biology, function, and biomedical applications of exosomes. Science 367(6478), aau6977 (2020). https://doi.org/10.1126/science.aau6977
A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta Gen. Subj. 1820(7), 940–948 (2012). https://doi.org/10.1016/j.bbagen.2012.03.017
A.J. Massey, D.S. Williamson, H. Browne, J.B. Murray, P. Dokurno et al., A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in Hct116 colon carcinoma cells. Cancer Chemother. Pharmacol. 66(3), 535–545 (2010). https://doi.org/10.1007/s00280-009-1194-3
Y.L. Chang, S.T. Yang, J.H. Liu, E. Dong, Y.W. Wang et al., In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200(3), 201–210 (2011). https://doi.org/10.1016/j.toxlet.2010.11.016
H. Cui, B. Seubert, E. Stahl, H. Dietz, U. Reuning et al., Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 34(28), 3640–3650 (2015). https://doi.org/10.1038/onc.2014.300