A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics
Corresponding Author: Desheng Kong
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 87
Abstract
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body. As the primary compliant conductors used in these devices, metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin. Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces. However, chemical modifications are typically needed for reliable bonding, which can alter their original properties. To overcome this limitation, this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes. In this physical process, soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface, which forms an interpenetrating network with the hydrogel. The microfoam-enabled bonding strategy is generally compatible with various polymers. The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids. These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels. They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing muscle contractions. Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.
Highlights:
1 Nanocomposite/hydrogel hybrid electrodes are created with high interfacial toughness by introducing soft microfoams as the mechanically interlocking layer.
2 In the hybrid electrodes, silver nanowires and hydrogels are electrically connected through the porous microfoams, achieving high conductivity and low contact impedance for high-quality biopotential recordings.
3 The microfoam-enabled bonding strategy is generally applicable to diverse polymer substrates.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). https://doi.org/10.1126/science.1182383
- S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
- Z. Ma, D. Kong, L. Pan, Z. Bao, Skin-inspired electronics: emerging semiconductor devices and systems. J. Semicond. 41, 041601 (2020). https://doi.org/10.1088/1674-4926/41/4/041601
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
- H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019). https://doi.org/10.1126/science.aau0780
- G.H. Lee, H. Woo, C. Yoon, C. Yang, J.Y. Bae et al., A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 34, e2204159 (2022). https://doi.org/10.1002/adma.202204159
- S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
- H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
- M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020). https://doi.org/10.1038/s41928-020-0422-z
- H. Zhao, Y. Zhou, S. Cao, Y. Wang, J. Zhang et al., Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human–machine interfaces. ACS Mater. Lett. 3, 912–920 (2021). https://doi.org/10.1021/acsmaterialslett.1c00128
- A. Chortos, G.I. Koleilat, R. Pfattner, D. Kong, P. Lin et al., Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016). https://doi.org/10.1002/adma.201501828
- J. Zhang, X. Liu, W. Xu, W. Luo, M. Li et al., Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 18, 2903–2911 (2018). https://doi.org/10.1021/acs.nanolett.8b00087
- N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba et al., Printable elastic conductors by in situ formation of silver nanops from silver flakes. Nat. Mater. 16, 834–840 (2017). https://doi.org/10.1038/nmat4904
- Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanop conductors with self-organized conductive pathways. Nature 500, 59–63 (2013). https://doi.org/10.1038/nature12401
- F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012). https://doi.org/10.1002/adma.201201886
- S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
- J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- W. Guo, P. Zheng, X. Huang, H. Zhuo, Y. Wu et al., Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl. Mater. Interfaces 11, 8567–8575 (2019). https://doi.org/10.1021/acsami.8b21836
- C. Ding, J. Wang, W. Yuan, X. Zhou, Y. Lin et al., Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS Appl. Mater. Interfaces 14, 29144–29155 (2022). https://doi.org/10.1021/acsami.2c03807
- W.H. Yeo, Y.S. Kim, J. Lee, A. Ameen, L. Shi et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013). https://doi.org/10.1002/adma.201204426
- S. Liu, Y. Rao, H. Jang, P. Tan, N. Lu, Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022). https://doi.org/10.1016/j.matt.2022.02.006
- Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35, e2211236 (2023). https://doi.org/10.1002/adma.202211236
- C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
- H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota et al., Enhancing the performance of stretchable conductors for E-textiles by controlled ink permeation. Adv. Mater. 29, 1605848 (2017). https://doi.org/10.1002/adma.201605848
- K.-I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y. Zhang et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). https://doi.org/10.1038/ncomms5779
- Y. Zhou, C. Zhao, J. Wang, Y. Li, C. Li et al., Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019). https://doi.org/10.1021/acsmaterialslett.9b00376
- O. Wichterle, D. Lím, Hydrophilic gels for biological use. Nature 185, 117–118 (1960). https://doi.org/10.1038/185117a0
- P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution. Biomaterials 22, 3273–3283 (2001). https://doi.org/10.1016/s0142-9612(01)00165-x
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- S.O. Blacklow, J. Li, B.R. Freedman, M. Zeidi, C. Chen et al., Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5, eaaw3963 (2019). https://doi.org/10.1126/sciadv.aaw3963
- J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017). https://doi.org/10.1126/science.aah6362
- S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Meth. 13, 405–414 (2016). https://doi.org/10.1038/nmeth.3839
- N. Peppas, J. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006). https://doi.org/10.1002/adma.200501612
- J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016). https://doi.org/10.1038/natrevmats.2016.71
- L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35, 2205326 (2023). https://doi.org/10.1002/adma.202205326
- H. Yuk, J. Wu, X. Zhao, Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022). https://doi.org/10.1038/s41578-022-00483-4
- L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 9, e372 (2017). https://doi.org/10.1038/am.2017.33
- C. Xie, X. Wang, H. He, Y. Ding, X. Lu, Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater. 30, 1909954 (2020). https://doi.org/10.1002/adfm.201909954
- G. Tian, D. Yang, C. Liang, Y. Liu, J. Chen et al., A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics. Adv. Mater. 35, e2212302 (2023). https://doi.org/10.1002/adma.202212302
- J. Tang, J. Li, J.J. Vlassak, Z. Suo, Adhesion between highly stretchable materials. Soft Matter 12, 1093–1099 (2016). https://doi.org/10.1039/c5sm02305j
- Q. Liu, G. Nian, C. Yang, S. Qu, Z. Suo, Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018). https://doi.org/10.1038/s41467-018-03269-x
- J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020). https://doi.org/10.1002/adfm.201901693
- K. Tian, J. Bae, Z. Suo, J.J. Vlassak, Adhesion between hydrophobic elastomer and hydrogel through hydrophilic modification and interfacial segregation. ACS Appl. Mater. Interfaces 10, 43252–43261 (2018). https://doi.org/10.1021/acsami.8b16445
- H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016). https://doi.org/10.1038/ncomms12028
- S.H. Kim, S. Jung, I.S. Yoon, C. Lee, Y. Oh et al., Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 30, e1800109 (2018). https://doi.org/10.1002/adma.201800109
- D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser et al., Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017). https://doi.org/10.1126/sciadv.1700053
- M. Zhu, F. Zhang, X. Chen, Bioinspired mechanically interlocking structures. Small Struct. 1, 2000045 (2020). https://doi.org/10.1002/sstr.202000045
- C.W. Jennings, Surface roughness and bond strength of adhesives. J. Adhes. 4, 25–38 (1972). https://doi.org/10.1080/00218467208072208
- S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30, 1909540 (2020). https://doi.org/10.1002/adfm.201909540
- T. Kurokawa, H. Furukawa, W. Wang, Y. Tanaka, J.P. Gong, Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010). https://doi.org/10.1016/j.actbio.2009.10.046
- Y. Lin, L. Wang, T. Ma, L. Ding, S. Cao et al., Highly conductive and compliant silver nanowire nanocomposites by direct spray deposition. ACS Appl. Mater. Interfaces 14, 57290–57298 (2022). https://doi.org/10.1021/acsami.2c18761
- T.B. Tierney, Å.C. Rasmuson, S.P. Hudson, Size and shape control of micron-sized salicylic acid crystals during antisolvent crystallization. Org. Process Res. Dev. 21, 1732–1740 (2017). https://doi.org/10.1021/acs.oprd.7b00181
- Y. Li, S. Wang, J. Zhang, X. Ma, S. Cao et al., A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 14, 13713–13721 (2022). https://doi.org/10.1021/acsami.1c25206
- C.-W. Tsao, D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6, 1–16 (2009). https://doi.org/10.1007/s10404-008-0361-x
- Y. Zhou, S. Cao, J. Wang, H. Zhu, J. Wang et al., Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl. Mater. Interfaces 10, 44760–44767 (2018). https://doi.org/10.1021/acsami.8b17423
- L. Mou, J. Qi, L. Tang, R. Dong, Y. Xia et al., Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 16, e2005336 (2020). https://doi.org/10.1002/smll.202005336
- S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353–376 (1992). https://doi.org/10.1016/0022-0728(92)80162-w
- D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanops grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897–4900 (2014). https://doi.org/10.1021/ja501497n
- H. Jung, M.K. Kim, J.Y. Lee, S.W. Choi, J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 30, 2004407 (2020). https://doi.org/10.1002/adfm.202004407
- L. Wang, N. Lu, Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. 83, 041007 (2016). https://doi.org/10.1115/1.4032466
- N. Isakadze, S.S. Martin, How useful is the smartwatch ECG? Trends Cardiovasc. Med. 30, 442–448 (2020). https://doi.org/10.1016/j.tcm.2019.10.010
- J.M. Kwon, Y. Cho, K.H. Jeon, S. Cho, K.H. Kim et al., A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study. Lancet Digit. Health 2, e358–e367 (2020). https://doi.org/10.1016/S2589-7500(20)30108-4
References
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). https://doi.org/10.1126/science.1182383
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
Z. Ma, D. Kong, L. Pan, Z. Bao, Skin-inspired electronics: emerging semiconductor devices and systems. J. Semicond. 41, 041601 (2020). https://doi.org/10.1088/1674-4926/41/4/041601
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019). https://doi.org/10.1126/science.aau0780
G.H. Lee, H. Woo, C. Yoon, C. Yang, J.Y. Bae et al., A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 34, e2204159 (2022). https://doi.org/10.1002/adma.202204159
S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020). https://doi.org/10.1038/s41928-020-0422-z
H. Zhao, Y. Zhou, S. Cao, Y. Wang, J. Zhang et al., Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human–machine interfaces. ACS Mater. Lett. 3, 912–920 (2021). https://doi.org/10.1021/acsmaterialslett.1c00128
A. Chortos, G.I. Koleilat, R. Pfattner, D. Kong, P. Lin et al., Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016). https://doi.org/10.1002/adma.201501828
J. Zhang, X. Liu, W. Xu, W. Luo, M. Li et al., Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 18, 2903–2911 (2018). https://doi.org/10.1021/acs.nanolett.8b00087
N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba et al., Printable elastic conductors by in situ formation of silver nanops from silver flakes. Nat. Mater. 16, 834–840 (2017). https://doi.org/10.1038/nmat4904
Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanop conductors with self-organized conductive pathways. Nature 500, 59–63 (2013). https://doi.org/10.1038/nature12401
F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012). https://doi.org/10.1002/adma.201201886
S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
W. Guo, P. Zheng, X. Huang, H. Zhuo, Y. Wu et al., Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl. Mater. Interfaces 11, 8567–8575 (2019). https://doi.org/10.1021/acsami.8b21836
C. Ding, J. Wang, W. Yuan, X. Zhou, Y. Lin et al., Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS Appl. Mater. Interfaces 14, 29144–29155 (2022). https://doi.org/10.1021/acsami.2c03807
W.H. Yeo, Y.S. Kim, J. Lee, A. Ameen, L. Shi et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013). https://doi.org/10.1002/adma.201204426
S. Liu, Y. Rao, H. Jang, P. Tan, N. Lu, Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022). https://doi.org/10.1016/j.matt.2022.02.006
Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35, e2211236 (2023). https://doi.org/10.1002/adma.202211236
C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota et al., Enhancing the performance of stretchable conductors for E-textiles by controlled ink permeation. Adv. Mater. 29, 1605848 (2017). https://doi.org/10.1002/adma.201605848
K.-I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y. Zhang et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). https://doi.org/10.1038/ncomms5779
Y. Zhou, C. Zhao, J. Wang, Y. Li, C. Li et al., Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019). https://doi.org/10.1021/acsmaterialslett.9b00376
O. Wichterle, D. Lím, Hydrophilic gels for biological use. Nature 185, 117–118 (1960). https://doi.org/10.1038/185117a0
P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution. Biomaterials 22, 3273–3283 (2001). https://doi.org/10.1016/s0142-9612(01)00165-x
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
S.O. Blacklow, J. Li, B.R. Freedman, M. Zeidi, C. Chen et al., Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5, eaaw3963 (2019). https://doi.org/10.1126/sciadv.aaw3963
J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017). https://doi.org/10.1126/science.aah6362
S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Meth. 13, 405–414 (2016). https://doi.org/10.1038/nmeth.3839
N. Peppas, J. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006). https://doi.org/10.1002/adma.200501612
J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016). https://doi.org/10.1038/natrevmats.2016.71
L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35, 2205326 (2023). https://doi.org/10.1002/adma.202205326
H. Yuk, J. Wu, X. Zhao, Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022). https://doi.org/10.1038/s41578-022-00483-4
L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 9, e372 (2017). https://doi.org/10.1038/am.2017.33
C. Xie, X. Wang, H. He, Y. Ding, X. Lu, Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater. 30, 1909954 (2020). https://doi.org/10.1002/adfm.201909954
G. Tian, D. Yang, C. Liang, Y. Liu, J. Chen et al., A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics. Adv. Mater. 35, e2212302 (2023). https://doi.org/10.1002/adma.202212302
J. Tang, J. Li, J.J. Vlassak, Z. Suo, Adhesion between highly stretchable materials. Soft Matter 12, 1093–1099 (2016). https://doi.org/10.1039/c5sm02305j
Q. Liu, G. Nian, C. Yang, S. Qu, Z. Suo, Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018). https://doi.org/10.1038/s41467-018-03269-x
J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020). https://doi.org/10.1002/adfm.201901693
K. Tian, J. Bae, Z. Suo, J.J. Vlassak, Adhesion between hydrophobic elastomer and hydrogel through hydrophilic modification and interfacial segregation. ACS Appl. Mater. Interfaces 10, 43252–43261 (2018). https://doi.org/10.1021/acsami.8b16445
H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016). https://doi.org/10.1038/ncomms12028
S.H. Kim, S. Jung, I.S. Yoon, C. Lee, Y. Oh et al., Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 30, e1800109 (2018). https://doi.org/10.1002/adma.201800109
D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser et al., Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017). https://doi.org/10.1126/sciadv.1700053
M. Zhu, F. Zhang, X. Chen, Bioinspired mechanically interlocking structures. Small Struct. 1, 2000045 (2020). https://doi.org/10.1002/sstr.202000045
C.W. Jennings, Surface roughness and bond strength of adhesives. J. Adhes. 4, 25–38 (1972). https://doi.org/10.1080/00218467208072208
S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30, 1909540 (2020). https://doi.org/10.1002/adfm.201909540
T. Kurokawa, H. Furukawa, W. Wang, Y. Tanaka, J.P. Gong, Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010). https://doi.org/10.1016/j.actbio.2009.10.046
Y. Lin, L. Wang, T. Ma, L. Ding, S. Cao et al., Highly conductive and compliant silver nanowire nanocomposites by direct spray deposition. ACS Appl. Mater. Interfaces 14, 57290–57298 (2022). https://doi.org/10.1021/acsami.2c18761
T.B. Tierney, Å.C. Rasmuson, S.P. Hudson, Size and shape control of micron-sized salicylic acid crystals during antisolvent crystallization. Org. Process Res. Dev. 21, 1732–1740 (2017). https://doi.org/10.1021/acs.oprd.7b00181
Y. Li, S. Wang, J. Zhang, X. Ma, S. Cao et al., A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 14, 13713–13721 (2022). https://doi.org/10.1021/acsami.1c25206
C.-W. Tsao, D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6, 1–16 (2009). https://doi.org/10.1007/s10404-008-0361-x
Y. Zhou, S. Cao, J. Wang, H. Zhu, J. Wang et al., Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl. Mater. Interfaces 10, 44760–44767 (2018). https://doi.org/10.1021/acsami.8b17423
L. Mou, J. Qi, L. Tang, R. Dong, Y. Xia et al., Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 16, e2005336 (2020). https://doi.org/10.1002/smll.202005336
S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353–376 (1992). https://doi.org/10.1016/0022-0728(92)80162-w
D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanops grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897–4900 (2014). https://doi.org/10.1021/ja501497n
H. Jung, M.K. Kim, J.Y. Lee, S.W. Choi, J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 30, 2004407 (2020). https://doi.org/10.1002/adfm.202004407
L. Wang, N. Lu, Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. 83, 041007 (2016). https://doi.org/10.1115/1.4032466
N. Isakadze, S.S. Martin, How useful is the smartwatch ECG? Trends Cardiovasc. Med. 30, 442–448 (2020). https://doi.org/10.1016/j.tcm.2019.10.010
J.M. Kwon, Y. Cho, K.H. Jeon, S. Cho, K.H. Kim et al., A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study. Lancet Digit. Health 2, e358–e367 (2020). https://doi.org/10.1016/S2589-7500(20)30108-4