Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal–Organic Frameworks
Corresponding Author: Yifan Gu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 118
Abstract
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal–organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted.
Highlights:
1 The progress of metal–organic frameworks (MOFs) in capturing and separating F-gases is highlighted.
2 The molecular mechanisms of adsorption and separation are classified and analyzed.
3 Toolboxes of MOFs structural design for fluorinated gases separation are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.K.J.A. Wanigarathna, J. Gao, B. Liu, Metal organic frameworks for adsorption-based separation of fluorocompounds: a review. Mater. Adv. 1, 310–320 (2020). https://doi.org/10.1039/d0ma00083c
- W.C. Fu, P.M. MacQueen, T.F. Jamison, Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations. Chem. Soc. Rev. 50, 7378–7394 (2021). https://doi.org/10.1039/D0CS00670J
- B.K. Sovacool, S. Griffiths, J. Kim, M. Bazilian, Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sustain. Energy Rev. 141, 110759 (2021). https://doi.org/10.1016/j.rser.2021.110759
- Y. Heredia-Aricapa, J.M. Belman-Flores, A. Mota-Babiloni, J. Serrano-Arellano, J.J. García-Pabón, Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. Int. J. Refrig. 111, 113–123 (2020). https://doi.org/10.1016/j.ijrefrig.2019.11.012
- D.J. Sheldon, M.R. Crimmin, Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem. Soc. Rev. 51, 4977–4995 (2022). https://doi.org/10.1039/d1cs01072g
- L. Guo, Y. Yang, P.J. Fraser, G.J.M. Velders, Z. Liu et al., Projected increases in emissions of high global warming potential fluorinated gases in China. Commun. Earth Environ. 4, 205 (2023). https://doi.org/10.1038/s43247-023-00859-6
- W.-T. Tsai, C.-H. Tsai, A survey on fluorinated greenhouse gases in Taiwan: emission trends, regulatory strategies, and abatement technologies. Environments 10, 113 (2023). https://doi.org/10.3390/environments10070113
- J.E. Sosa, R.P.P.L. Ribeiro, I. Matos, M. Bernardo, I.M. Fonseca et al., Exploring the potential of biomass-derived carbons for the separation of fluorinated gases with high global warming potential. Biomass Bioenergy 188, 107323 (2024). https://doi.org/10.1016/j.biombioe.2024.107323
- M. Ghandehari, F-gases at the fenceline: exposing the fluorochemical production sector’s undisclosed emissions. EIA (2023). https://eia-international.org/wp-content/uploads/2023-EIA-F-Gases-at-the-Fencline_SINGLES.pdf
- Z. Rošková, J. Schneider, M. Štengel, Predicted hydrofluorocarbon (HFC) and perfluorocarbon (PFC) emissions for the years 2010–2050 in the Czech republic. Atmosphere 14, 111 (2023). https://doi.org/10.3390/atmos14010111
- S.M.W. Wilson, F. Handan, Tezel Adsorption separation of CF4, O2, CO2, and COF2 from an excimer gas mixture. Sep. Purif. Technol. 258, 117659 (2021). https://doi.org/10.1016/j.seppur.2020.117659
- J.L. Boot, Overview of alternatives to CFCs for domestic refrigerators and freezers. Int. J. Refrig. 13, 100–105 (1990). https://doi.org/10.1016/0140-7007(90)90008-K
- A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- P.W. Siu, J.P. Siegfried, M.H. Weston, P.E. Fuller, W. Morris et al., Boron trifluoride gas adsorption in metal-organic frameworks. Inorg. Chem. 55, 12110–12113 (2016). https://doi.org/10.1021/acs.inorgchem.6b02273
- M.J. Molina, F.S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974). https://doi.org/10.1038/249810a0
- T. Chokbunpiam, S. Fritzsche, T. Ploymeerusmee, R. Chanajaree, S. Thompho et al., Separation of the chlorofluorocarbon (CFC) CCl2F2 from N2 in NaY zeolite, in MIL-127(Fe) and in the two carbon nanotubes CNT (9, 9) and CNT (11, 11). J. Mol. Graph. Model. 125, 108597 (2023). https://doi.org/10.1016/j.jmgm.2023.108597
- C.Y. Chuah, Y. Lee, T.-H. Bae, Potential of adsorbents and membranes for SF6 capture and recovery: a review. Chem. Eng. J. 404, 126577 (2021). https://doi.org/10.1016/j.cej.2020.126577
- K. Kim, K.S. Kim, J.E. Lee, S. Park, C.-K. Ahn et al., Status of SF6 separation/refining technology development for electric industry in Korea. Sep. Purif. Technol. 200, 29–35 (2018). https://doi.org/10.1016/j.seppur.2018.02.016
- K. Lee, W.C. Isley, A.L. Dzubak, P. Verma, S.J. Stoneburner et al., Design of a metal-organic framework with enhanced back bonding for separation of N2 and CH4. J. Am. Chem. Soc. 136, 698–704 (2014). https://doi.org/10.1021/ja4102979
- F. Pardo, S.V. Gutiérrez-Hernández, C. Hermida-Merino, J.M.M. Araújo, M.M. Piñeiro et al., Integration of stable ionic liquid-based nanofluids into polymer membranes. Part II: gas separation properties toward fluorinated greenhouse gases. Nanomater. (Basel) 11, 582 (2021). https://doi.org/10.3390/nano11030582
- F. Pardo, S.V. Gutiérrez-Hernández, G. Zarca, A. Urtiaga, Toward the recycling of low-GWP hydrofluorocarbon/hydrofluoroolefin refrigerant mixtures using composite ionic liquid–polymer membranes. ACS Sustain. Chem. Eng. 9, 7012–7021 (2021). https://doi.org/10.1021/acssuschemeng.1c00668
- M. Zhang, L. Liu, Q. Li, H. Gong, Y. Chen, Theoretical design of MOFs and PSA process for efficient separation of CF4/NF3. Ind. Eng. Chem. Res. 62, 7103–7113 (2023). https://doi.org/10.1021/acs.iecr.2c04592
- S.-M. Wang, H.-L. Lan, G.-W. Guan, Q.-Y. Yang, Amino-functionalized microporous MOFs for capturing greenhouse gases CF4 and NF3 with record selectivity. ACS Appl. Mater. Interfaces 14, 40072–40081 (2022). https://doi.org/10.1021/acsami.2c12164
- R. Hassanalizadeh, W.M. Nelson, B.K. Naidoo, M. Ebrahiminejadhasanabadi, P. Naidoo et al., Purification of nitrogen trifluoride by physical separation. Fluid Phase Equilib. 560, 113405 (2022). https://doi.org/10.1016/j.fluid.2022.113405
- D.J. Branken, H.M. Krieg, J.P. le Roux, G. Lachmann, Separation of NF3 and CF4 using amorphous glassy perfluoropolymer Teflon AF and Hyflon AD60 membranes. J. Membr. Sci. 462, 75–87 (2014). https://doi.org/10.1016/j.memsci.2014.03.033
- R. Srinivasan, S.R. Auvil, P.M. Burban, Elucidating the mechanism(s) of gas transport in poly[1-(trimethylsilyl)-1-propyne](PTMSP) membranes. J. Membr. Sci. 86, 67–86 (1994). https://doi.org/10.1016/0376-7388(93)E0128-7
- K. Ishii, A. Shibata, T. Takeuchi, J. Yoshiura, T. Urabe et al., Development of silica membranes to improve dehydration reactions. J. Jpn. Petrol. Inst. 62, 211–219 (2019). https://doi.org/10.1627/jpi.62.211
- Y. Sun, J. Yan, Y. Gao, T. Ji, S. Chen et al., Fabrication of highly oriented ultrathin zirconium metal-organic framework membrane from nanosheets towards unprecedented gas separation. Angew. Chem. Int. Ed. 62, e202216697 (2023). https://doi.org/10.1002/anie.202216697
- D.-Y. Kang, J.S. Lee, Challenges in developing MOF-based membranes for gas separation. Langmuir 39, 2871–2880 (2023). https://doi.org/10.1021/acs.langmuir.2c03458
- S. Li, W. Han, Q.-F. An, K.-T. Yong, M.-J. Yin, Defect engineering of MOF-based membrane for gas separation. Adv. Funct. Mater. 33, 2303447 (2023). https://doi.org/10.1002/adfm.202303447
- K. Shiojiri, Y. Yanagisawa, A. Yamasaki, F. Kiyono, Separation of F-gases (HFC-134a and SF6) from gaseous mixtures with nitrogen by surface diffusion through a porous Vycor glass membrane. J. Membr. Sci. 282, 442–449 (2006). https://doi.org/10.1016/j.memsci.2006.06.003
- J.-W. Choi, S. Lee, B. An, S.-B. Kim, S.-H. Lee, Separation of sulfur hexafluoride from a nitrogen/sulfur hexafluoride mixture using a polymer hollow fiber membrane. Water Air Soil Pollut. 225, 1807 (2014). https://doi.org/10.1007/s11270-013-1807-7
- L. Wang, N. Xu, Y. Hu, W. Sun, R. Krishna et al., Efficient capture of C2H2 from CO2 and CnH4 by a novel fluorinated anion pillared MOF with flexible molecular sieving effect. Nano Res. 16, 3536–3541 (2023). https://doi.org/10.1007/s12274-022-4996-9
- O.T. Qazvini, R. Babarao, S.G. Telfer, Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nat. Commun. 12, 197 (2021). https://doi.org/10.1038/s41467-020-20489-2
- Z. Di, C. Liu, J. Pang, C. Chen, F. Hu et al., Cage-like porous materials with simultaneous high C2H2 storage and excellent C2H2/CO2 separation performance. Angew. Chem. Int. Ed. 60, 10828–10832 (2021). https://doi.org/10.1002/anie.202101907
- M. Kang, D.W. Kang, J.H. Choe, H. Kim, D.W. Kim et al., A robust hydrogen-bonded metal–organic framework with enhanced ethane uptake and selectivity. Chem. Mater. 33, 6193–6199 (2021). https://doi.org/10.1021/acs.chemmater.1c01892
- Y. Zhang, L. Yang, L. Wang, S. Duttwyler, H. Xing, A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem. Int. Ed. 58, 8145–8150 (2019). https://doi.org/10.1002/anie.201903600
- L. Wang, W. Sun, Y. Zhang, N. Xu, R. Krishna et al., Interpenetration symmetry control within ultramicroporous robust boron cluster hybrid MOFs for benchmark purification of acetylene from carbon dioxide. Angew. Chem. Int. Ed. 60, 22865–22870 (2021). https://doi.org/10.1002/anie.202107963
- P. Pullumbi, F. Brandani, S. Brandani, Gas separation by adsorption: technological drivers and opportunities for improvement. Curr. Opin. Chem. Eng. 24, 131–142 (2019). https://doi.org/10.1016/j.coche.2019.04.008
- A.D. Yancey, S.J. Terian, B.J. Shaw, T.M. Bish, D.R. Corbin et al., A review of fluorocarbon sorption on porous materials. Microporous Mesoporous Mater. 331, 111654 (2022). https://doi.org/10.1016/j.micromeso.2021.111654
- W. Zhang, Y. Li, Y. Wu, Y. Fu, S. Chen et al., Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching. Sep. Purif. Technol. 287, 120561 (2022). https://doi.org/10.1016/j.seppur.2022.120561
- X. Yuan, M.K. Cho, J.G. Lee, S.W. Choi, K.B. Lee, Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption. Environ. Pollut. 265, 114868 (2020). https://doi.org/10.1016/j.envpol.2020.114868
- S.W. Choi, H.J. Yoon, H.J. Lee, E.-S. Lee, D.-S. Lim et al., CF4 adsorption on porous carbon derived from silicon carbide. Microporous Mesoporous Mater. 306, 110373 (2020). https://doi.org/10.1016/j.micromeso.2020.110373
- W. Zhang, Y. Wu, Y. Li, S. Chen, Y. Fu et al., Fluorine-functionalized porous organic polymers for durable F-gas capture from semiconductor etching exhaust. Macromolecules 55, 1435–1444 (2022). https://doi.org/10.1021/acs.macromol.1c02413
- P. Cannon, C.P. Rutkowski, The sorptive properties of a zeolite containing a preadsorbed phase. J. Phys. Chem. 63, 1292–1296 (1959). https://doi.org/10.1021/j150578a018
- H. Kodama, S. Okazaki, Alkylations of benzene, alkylbenzenes, and halobenzenes catalyzed by protonated mordenite pretreated with chlorofluorocarbons. J. Catal. 132, 512–523 (1991). https://doi.org/10.1016/0021-9517(91)90167-3
- M. Sugimoto, H. Katsuno, T. Murakawa, Improvement of platinum-supported zeolite catalysts for n-hexane aromatization by halocarbon treatment and alkaline soaking. Appl. Catal. A Gen. 96, 201–216 (1993). https://doi.org/10.1016/0926-860X(90)80010-C
- O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
- S. Kitagawa, R. Kitaura, S.-I. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004). https://doi.org/10.1002/anie.200300610
- Y. Shen, T. Pan, L. Wang, Z. Ren, W. Zhang et al., Programmable logic in metal–organic frameworks for catalysis. Adv. Mater. 33, 2007442 (2021). https://doi.org/10.1002/adma.202007442
- J. Dong, V. Wee, D. Zhao, Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater. 21, 1334–1340 (2022). https://doi.org/10.1038/s41563-022-01317-y
- M. Kalaj, K.C. Bentz, S. Ayala Jr., J.M. Palomba, K.S. Barcus et al., MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem. Rev. 120, 8267–8302 (2020). https://doi.org/10.1021/acs.chemrev.9b00575
- A.J. Howarth, A.W. Peters, N.A. Vermeulen, T.C. Wang, J.T. Hupp et al., Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 29, 26–39 (2017). https://doi.org/10.1021/acs.chemmater.6b02626
- Z.-J. Lin, J. Lü, M. Hong, R. Cao, Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 43, 5867–5895 (2014). https://doi.org/10.1039/C3CS60483G
- L. Wang, H. Huang, X. Zhang, H. Zhao, F. Li et al., Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord. Chem. Rev. 484, 215111 (2023). https://doi.org/10.1016/j.ccr.2023.215111
- B. Zheng, G. Maurin, Mechanical control of the kinetic propylene/propane separation by zeolitic imidazolate framework-8. Angew. Chem. Int. Ed. 58, 13734–13738 (2019). https://doi.org/10.1002/anie.201906245
- J. Wan, H.-L. Zhou, K. Hyeon-Deuk, I.-Y. Chang, Y. Huang et al., Molecular sieving of propyne/propylene by a scalable nanoporous crystal with confined rotational shutters. Angew. Chem. Int. Ed. 62, e202316792 (2023). https://doi.org/10.1002/anie.202316792
- M. Najafi, H. Kulak, H.O. Rubiera Landa, I.F.J. Vankelecom, J.F.M. Denayer, Appraising separation performance of MOF-808-based adsorbents for light olefins and paraffins. Microporous Mesoporous Mater. 367, 112961 (2024). https://doi.org/10.1016/j.micromeso.2023.112961
- F. Xie, L. Chen, E.M. Cedeño Morales, S. Ullah, Y. Fu et al., Complete separation of benzene-cyclohexene-cyclohexane mixtures via temperature-dependent molecular sieving by a flexible chain-like coordination polymer. Nat. Commun. 15, 2240 (2024). https://doi.org/10.1038/s41467-024-46556-6
- Y. Han, Y. Chen, Y. Ma, J. Bailey, Z. Wang et al., Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 9, 739–754 (2023). https://doi.org/10.1016/j.chempr.2023.02.002
- S. Mukherjee, D. Sensharma, O.T. Qazvini, S. Dutta, L.K. Macreadie et al., Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coord. Chem. Rev. 437, 213852 (2021). https://doi.org/10.1016/j.ccr.2021.213852
- M. Wang, Z. Han, K. Wang, B. Zhao, T. Sun et al., Confinement of p-xylene in the pores of a bilanthanide metal-organic framework for highly selective recognition. Angew. Chem. Int. Ed. 63, e202318722 (2024). https://doi.org/10.1002/anie.202318722
- T. Hyun, J. Park, J. So, J. Kim, D.-Y. Koh, Unexpected molecular sieving of xylene isomer using tethered ligand in polymer-metal-organic frameworks (polyMOFs). Adv. Sci. 11, e2402980 (2024). https://doi.org/10.1002/advs.202402980
- Y. Gu, J.-J. Zheng, K.-I. Otake, S. Sakaki, H. Ashitani et al., Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture. Nat. Commun. 14, 4245 (2023). https://doi.org/10.1038/s41467-023-39470-w
- X. Zhang, H. Zhao, Q. Yang, M. Yao, Y.-N. Wu et al., Direct air capture of CO2 in designed metal-organic frameworks at lab and pilot scale. Carbon Capture Sci. Technol. 9, 100145 (2023). https://doi.org/10.1016/j.ccst.2023.100145
- Z. Sun, Y. Liao, S. Zhao, X. Zhang, Q. Liu et al., Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: characteristics, preparation, modification and applications. J. Mater. Chem. A 10, 5174–5211 (2022). https://doi.org/10.1039/D1TA07856A
- X.Y.D. Soo, J.J.C. Lee, W.-Y. Wu, L. Tao, C. Wang et al., Advancements in CO2 capture by absorption and adsorption: a comprehensive review. J. CO2 Util. 81, 102727 (2024). https://doi.org/10.1016/j.jcou.2024.102727
- P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9, 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2
- A. Dong, D. Chen, Q. Li, J. Qian, Metal-organic frameworks for greenhouse gas applications. Small 19, 2201550 (2023). https://doi.org/10.1002/smll.202201550
- H.-R. Liu, S.-C. Liu, L.-P. Zhang, Y.-T. Li, X.-M. Peng et al., Pore chemically modified nickel-based metal-organic frameworks for efficient purification of natural gas. Sep. Purif. Technol. 352, 128267 (2025). https://doi.org/10.1016/j.seppur.2024.128267
- Y. Gu, J.-J. Zheng, K.-I. Otake, M. Shivanna, S. Sakaki et al., Host-guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation. Angew. Chem. Int. Ed. 60, 11688–11694 (2021). https://doi.org/10.1002/anie.202016673
- L. Zhang, K. Jiang, L. Yang, L. Li, E. Hu et al., Benchmark C2H2/CO2 separation in an ultra-microporous metal-organic framework via copper(I)-alkynyl chemistry. Angew. Chem. Int. Ed. 60, 15995–16002 (2021). https://doi.org/10.1002/anie.202102810
- X. Li, K. Chen, R. Guo, Z. Wei, Ionic liquids functionalized MOFs for adsorption. Chem. Rev. 123, 10432–10467 (2023). https://doi.org/10.1021/acs.chemrev.3c00248
- K.-G. Liu, F. Bigdeli, A. Panjehpour, S. Hwa Jhung, H.A.J. Al Lawati et al., Potential applications of MOF composites as selective membranes for separation of gases. Coord. Chem. Rev. 496, 215413 (2023). https://doi.org/10.1016/j.ccr.2023.215413
- T.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen et al., Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 5, 5131 (2014). https://doi.org/10.1038/ncomms6131
- E.J. García, D. Bahamon, L.F. Vega, Systematic search of suitable metal–organic frameworks for thermal energy-storage applications with low global warming potential refrigerants. ACS Sustain. Chem. Eng. 9, 3157–3171 (2021). https://doi.org/10.1021/acssuschemeng.0c07797
- D. Barpaga, V.T. Nguyen, B.K. Medasani, S. Chatterjee, B.P. McGrail et al., Insight into fluorocarbon adsorption in metal-organic frameworks via experiments and molecular simulations. Sci. Rep. 9, 10289 (2019). https://doi.org/10.1038/s41598-019-46269-7
- J. Choi, J. Im, K. Noh, J. Kim, T. Vogt et al., Universal gas-uptake behavior of a zeolitic imidazolate framework ZIF-8 at high pressure. J. Phys. Chem. C 123, 25769–25774 (2019). https://doi.org/10.1021/acs.jpcc.9b08539
- H. Chen, Z. Chen, O.K. Farha, R.Q. Snurr, High propane and isobutane adsorption cooling capacities in zirconium-based metal–organic frameworks predicted by molecular simulations. ACS Sustain. Chem. Eng. 7, 18242–18246 (2019). https://doi.org/10.1021/acssuschemeng.9b05368
- F. Yan, Q. Wang, S. Ou, R. Zhang, G. Wang, Molecular simulation study for adsorption and thermal energy storage analysis of refrigerants (R170, R161, R152a, and R143a) mixed with UIO-67 nanops. Mod. Phys. Lett. B 34, 2050334 (2020). https://doi.org/10.1142/s0217984920503340
- D. Barpaga, J. Zheng, B.P. McGrail, R.K. Motkuri, Manipulating pore topology and functionality to promote fluorocarbon-based adsorption cooling. Acc. Chem. Res. 55, 649–659 (2022). https://doi.org/10.1021/acs.accounts.1c00615
- P. Purohit, L. Höglund-Isaksson, Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs. Atmos. Chem. Phys. 17, 2795–2816 (2017). https://doi.org/10.5194/acp-17-2795-2017
- Y. Wu, T. Yan, W. Zhang, S. Chen, Y. Fu et al., Adsorption interface-induced H...F charge transfer in ultramicroporous metal–organic frameworks for perfluorinated gas separation. Ind. Eng. Chem. Res. 61, 13603–13611 (2022). https://doi.org/10.1021/acs.iecr.2c01604
- S. Builes, T. Roussel, L.F. Vega, Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations. AlChE. J. 57, 962–974 (2011). https://doi.org/10.1002/aic.12312
- K. Inami, Y. Maeda, Y. Habuchi, M. Yoshimura, S. Hamano et al., Problems of the application of N2/SF6 mixtures to gas-insulated bus. Electr. Eng. Jpn. 137, 25–31 (2001). https://doi.org/10.1002/eej.1100
- Z. Wan, T. Yan, M. Chang, M. Yang, D. Liu, Nickel-based metal–organic framework for efficient capture of CF4 with a high CF4/N2 selectivity. Sep. Purif. Technol. 306, 122617 (2023). https://doi.org/10.1016/j.seppur.2022.122617
- Y. Wu, X. Li, Y. Li, C. Tao, Y. Tang et al., Porous aromatic frameworks as HF resistant adsorbents for SF6 separation at elevated pressure. Sep. Purif. Technol. 315, 123657 (2023). https://doi.org/10.1016/j.seppur.2023.123657
- W. Zhang, Y. Li, S. Wang, Y. Wu, S. Chen et al., Fluorine-induced electric field gradient in 3D porous aromatic frameworks for highly efficient capture of Xe and F-gases. ACS Appl. Mater. Interfaces 14, 35126–35137 (2022). https://doi.org/10.1021/acsami.2c10050
- Y. He, X. Cao, Z. Zhang, Z. Jiang, H. Huang et al., Discovery of high-performing metal–organic frameworks for efficient SF6/N2 separation: a combined computational screening, machine learning, and experimental study. Ind. Eng. Chem. Res. 62, 7642–7649 (2023). https://doi.org/10.1021/acs.iecr.3c00727
- I. Skarmoutsos, M. Eddaoudi, G. Maurin, Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks. Microporous Mesoporous Mater. 281, 44–49 (2019). https://doi.org/10.1016/j.micromeso.2019.02.035
- C.Y. Chuah, K. Goh, T.-H. Bae, Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery. J. Phys. Chem. C 121, 6748–6755 (2017). https://doi.org/10.1021/acs.jpcc.7b00291
- S.-M. Wang, X.-T. Mu, H.-R. Liu, S.-T. Zheng, Q.-Y. Yang, Pore-structure control in metal-organic frameworks (MOFs) for capture of the greenhouse gas SF6 with record separation. Angew. Chem. Int. Ed. 61, e202207066 (2022). https://doi.org/10.1002/anie.202207066
- I. Senkovska, E. Barea, J.A.R. Navarro, S. Kaskel, Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal–organic frameworks. Microporous Mesoporous Mater. 156, 115–120 (2012). https://doi.org/10.1016/j.micromeso.2012.02.021
- W. Zhang, Y. Li, Y. Wu, W. Huang, S. Wang et al., Polypyrene porous organic framework for efficiently capturing electron specialty gases. ACS Appl. Mater. Interfaces 15, 29468–29477 (2023). https://doi.org/10.1021/acsami.3c05398
- J. Wada, G. Ueta, S. Okabe, M. Hikita, Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature. IEEE Trans. Dielectr. Electr. Insul. 23, 838–847 (2016). https://doi.org/10.1109/TDEI.2015.005373
- D. Sun, Y. Zhou, T. Nian, L. Li, Research on the insulation performance of new environmentally friendly insulation gas hexafluoropropylene and carbon dioxide mixed gas. IOP Conf. Ser. Earth Environ. Sci. 781, 052019 (2021). https://doi.org/10.1088/1755-1315/781/5/052019
- W. Wang, Y. Wu, M. Rong, L. Éhn, I. Černušák, Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6, and C3F8 plasmas. J. Phys. D Appl. Phys. 45, 285201 (2012). https://doi.org/10.1088/0022-3727/45/28/285201
- W.-T. Tsai, H.-P. Chen, W.-Y. Hsien, A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. J. Loss Prev. Process Ind. 15, 65–75 (2002). https://doi.org/10.1016/S0950-4230(01)00067-5
- Y. Deng, B. Li, D. Xiao, Analysis of the insulation characteristics of C3F8 gas mixtures with N2 and CO2 using Boltzmann equation method. IEEE Trans. Dielectr. Electr. Insul. 22, 3253–3259 (2015). https://doi.org/10.1109/TDEI.2015.005191
- X. Li, C. Yang, S. Du, Y. Wu, B. Huang et al., Dynamic adsorption separation of c-C4F8/C3F8 for effective purification of perfluoropropane electronic gas. Chem. Eng. Sci. 273, 118656 (2023). https://doi.org/10.1016/j.ces.2023.118656
- Y. Hu, L. Wang, R. Nan, N. Xu, Y. Jiang et al., Pore engineering in cost-effective and stable Al-MOFs for efficient capture of the greenhouse gas SF6. Chem. Eng. J. 471, 144851 (2023). https://doi.org/10.1016/j.cej.2023.144851
- M.-B. Kim, T.-U. Yoon, D.-Y. Hong, S.-Y. Kim, S.-J. Lee et al., High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal–organic framework. Chem. Eng. J. 276, 315–321 (2015). https://doi.org/10.1016/j.cej.2015.04.087
- J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034
- H. Murase, T. Imai, T. Inohara, M. Toyoda, Use of zeolite filter in portable equipment for recovering SF6 in SF6/ N2 mixtures. IEEE Trans. Dielectr. Electr. Insul. 11, 166–173 (2004). https://doi.org/10.1109/TDEI.2004.1266332
- M.-B. Kim, T.-H. Kim, T.-U. Yoon, J.H. Kang, J.-H. Kim et al., Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal–organic framework. J. Ind. Eng. Chem. 84, 179–184 (2020). https://doi.org/10.1016/j.jiec.2019.12.032
- T. Wang, M. Chang, T. Yan, Y. Ying, Q. Yang et al., Calcium-based metal–organic framework for efficient capture of sulfur hexafluoride at low concentrations. Ind. Eng. Chem. Res. 60, 5976–5983 (2021). https://doi.org/10.1021/acs.iecr.1c00662
- Y. Wu, S. Wang, W. Zhang, S. Chen, Z. Zhang et al., Enhancing perfluorinated electron specialty gases separation selectivity in ultra-microporous metal organic framework. Sep. Purif. Technol. 289, 120739 (2022). https://doi.org/10.1016/j.seppur.2022.120739
- N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953). https://doi.org/10.1063/1.1699114
- P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma, Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 117, 406–413 (2009). https://doi.org/10.1016/j.micromeso.2008.07.029
- M. Åhlén, E. Kapaca, D. Hedbom, T. Willhammar, M. Strømme et al., Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200. Microporous Mesoporous Mater. 329, 111548 (2022). https://doi.org/10.1016/j.micromeso.2021.111548
- T.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen et al., Mesoporous fluorinated metal-organic frameworks with exceptional adsorption of fluorocarbons and CFCs. Angew. Chem. Int. Ed. 54, 13902–13906 (2015). https://doi.org/10.1002/anie.201505149
- M. Chang, T. Yan, Y. Wei, J.-X. Wang, D. Liu et al., Metal–organic framework-based single-molecule SF6 trap for record SF6 capture. Chem. Mater. 34, 9134–9143 (2022). https://doi.org/10.1021/acs.chemmater.2c02004
- B.S. Whitehead, W.W. Brennessel, S.S. Michtavy, H.A. Silva, J. Kim et al., Selective adsorption of fluorinated super greenhouse gases within a metal-organic framework with dynamic corrugated ultramicropores. Chem. Sci. 15, 5964–5972 (2024). https://doi.org/10.1039/d3sc07007g
- A. Yadav, S. Kumari, P. Yadav, A. Hazra, A. Chakraborty et al., Open metal site (OMS)-inspired investigation of adsorption and catalytic functions in a porous metal-organic framework (MOF). Dalton Trans. 51, 15496–15506 (2022). https://doi.org/10.1039/d2dt02098j
- Ü. Kökçam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali et al., Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications. Chem. Soc. Rev. 49, 2751–2798 (2020). https://doi.org/10.1039/c9cs00609e
- J.-W. Yan, S.-Q. Gang, Z.-Y. Liu, H.-Y. Xu, R. Wang et al., An In(III)-MOF based on pore engineering for efficient capture SF6 from SF6/N2 mixture. Sep. Purif. Technol. 327, 124929 (2023). https://doi.org/10.1016/j.seppur.2023.124929
- Y.-S. Bae, O.K. Farha, A.M. Spokoyny, C.A. Mirkin, J.T. Hupp et al., Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 35, 4135–4137 (2008). https://doi.org/10.1039/B805785K
- M.-B. Kim, S.-J. Lee, C.Y. Lee, Y.-S., Bae High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites. Microporous Mesoporous Mater. 190, 356–361 (2014). https://doi.org/10.1016/j.micromeso.2014.02.028
- Z. Ye, J. Yao, W. Zheng, W. Yuan, J. Guan et al., The preparation and adsorption performance of Co-doped MIL-101(Cr) for low-concentration C3F8. Chem. Eng. Sci. 282, 119302 (2023). https://doi.org/10.1016/j.ces.2023.119302
- N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo et al., Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 281, 669–677 (2015). https://doi.org/10.1016/j.cej.2015.07.020
- P. Liu, T. Zhao, K. Cai, P. Chen, F. Liu et al., Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6. Chem. Eng. J. 437, 135364 (2022). https://doi.org/10.1016/j.cej.2022.135364
- H. Li, Z. Lin, X. Zhou, X. Wang, Y. Li et al., Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chem. Eng. J. 307, 537–543 (2017). https://doi.org/10.1016/j.cej.2016.08.128
- J. Ren, M. Chang, W. Zeng, Y. Xia, D. Liu et al., Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture. Chem. Mater. 33, 5108–5114 (2021). https://doi.org/10.1021/acs.chemmater.1c01139
- X. Zhang, Y.-L. Zhao, X.-Y. Li, X. Bai, Q. Chen et al., Recovery of high-purity SF6 from humid SF6/N2 mixture within a Co(II)-pyrazolate framework. J. Am. Chem. Soc. 146, 19303–19309 (2024). https://doi.org/10.1021/jacs.4c05075
- S.-M. Li, Q. Zhang, H.-C. Jiang, Q.-L. Ni, L.-C. Gui et al., Constructing local nanomolecular trap in a scalable, low-cost, and ultramicroporous metal–organic framework for efficient capture of greenhouse gases SF6 and CO2. Chem. Eng. J. 496, 154026 (2024). https://doi.org/10.1016/j.cej.2024.154026
- S.-T. Zheng, R.-Y. Jiang, Y. Jiang, S. Ni, G.-W. Guan et al., Methyl-functionalized microporous metal-organic framework for efficient SF6/N2 separation. Sep. Purif. Technol. 318, 123957 (2023). https://doi.org/10.1016/j.seppur.2023.123957
- M.-B. Kim, K.-M. Kim, T.-H. Kim, T.-U. Yoon, E.-J. Kim et al., Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metal-organic framework. Chem. Eng. J. 339, 223–229 (2018). https://doi.org/10.1016/j.cej.2018.01.129
- H. Wang, L. Yu, Y. Lin, J. Peng, S.J. Teat et al., Adsorption of fluorocarbons and chlorocarbons by highly porous and robust fluorinated zirconium metal-organic frameworks. Inorg. Chem. 59, 4167–4171 (2020). https://doi.org/10.1021/acs.inorgchem.0c00018
- A. Cholach, D. Yakovin, Removal of CF4 from NF3 at the phase interface. J. Taiwan Inst. Chem. Eng. 131, 104178 (2022). https://doi.org/10.1016/j.jtice.2021.104178
- N.J. Ianno, K.E. Greenberg, J.T. Verdeyen, Comparison of the etching and plasma characteristics of discharges in CF4 and NF3. J. Electrochem. Soc. 128, 2174–2179 (1981). https://doi.org/10.1149/1.2127212
- X.-Y. Yang, L.-H. Chen, Y. Li, J.C. Rooke, C. Sanchez et al., Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/C6CS00829A
- Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee et al., Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: core MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019). https://doi.org/10.1021/acs.jced.9b00835
- Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury et al., Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014). https://doi.org/10.1021/cm502594j
- A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A.I.I.I. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992). https://doi.org/10.1021/ja00051a040
- S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990). https://doi.org/10.1021/j100389a010
- A.I. Skoulidas, D.S. Sholl, Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J. Phys. Chem. A 107, 10132–10141 (2003). https://doi.org/10.1021/jp0354301
- J.J. Hurly, Viscosity and speed of sound of gaseous nitrous oxide and nitrogen trifluoride measured with a Greenspan viscometer. Int. J. Thermophys. 25, 625–641 (2004). https://doi.org/10.1023/B:IJOT.0000034229.03525.aa
- H. Demir, S. Keskin, Zr-MOFs for CF4/CH4, CH4/H2, and CH4/N2 separation: towards the goal of discovering stable and effective adsorbents. Mol. Syst. Des. Eng. 6, 627–642 (2021). https://doi.org/10.1039/d1me00060h
- Z. Zheng, Z. Rong, N. Rampal, C. Borgs, J.T. Chayes et al., A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e202311983 (2023). https://doi.org/10.1002/anie.202311983
- K. Lan, D. Zhao, Functional ordered mesoporous materials: present and future. Nano Lett. 22, 3177–3179 (2022). https://doi.org/10.1021/acs.nanolett.2c00902
- Y. Zhu, Y. Zhou, Z. Ji, W. Zhang, M. Wu, A microporous framework with aromatic pores for one-step purification of C2F6 from CF3CH2F/CF3CHF2/C2F6 mixture. Sep. Purif. Technol. 353, 128373 (2025). https://doi.org/10.1016/j.seppur.2024.128373
- W. Xia, Y. Yang, L. Sheng, Z. Zhou, L. Chen et al., Temperature-dependent molecular sieving of fluorinated propane/propylene mixtures by a flexible-robust metal-organic framework. Sci. Adv. 10, eadj6473 (2024). https://doi.org/10.1126/sciadv.adj6473
- A.J. Sicard, R.T. Baker, Fluorocarbon refrigerants and their syntheses: past to present. Chem. Rev. 120, 9164–9303 (2020). https://doi.org/10.1021/acs.chemrev.9b00719
- D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008). https://doi.org/10.1039/b711844a
- H. Li, L. Li, R.-B. Lin, G. Ramirez, W. Zhou et al., Microporous metal-organic framework with dual functionalities for efficient separation of acetylene from light hydrocarbon mixtures. ACS Sustain. Chem. Eng. 7, 4897–4902 (2019). https://doi.org/10.1021/acssuschemeng.8b05480
- B. Li, X. Cui, D. O’Nolan, H.-M. Wen, M. Jiang et al., An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29, 1704210 (2017). https://doi.org/10.1002/adma.201704210
- Z. Bao, J. Wang, Z. Zhang, H. Xing, Q. Yang et al., Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks. Angew. Chem. Int. Ed. 57, 16020–16025 (2018). https://doi.org/10.1002/anie.201808716
- D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota et al., Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008). https://doi.org/10.1002/anie.200705822
- W. Wang, X.-H. Xiong, N.-X. Zhu, Z. Zeng, Z.-W. Wei et al., A rare flexible metal-organic framework based on a tailorable Mn8-cluster showing smart responsiveness to aromatic guests and capacity for gas separation. Angew. Chem. Int. Ed. 61, e202201766 (2022). https://doi.org/10.1002/anie.202201766
- X.-W. Zhang, D.-D. Zhou, J.-P. Zhang, Tuning the gating energy barrier of metal-organic framework for molecular sieving. Chem 7, 1006–1019 (2021). https://doi.org/10.1016/j.chempr.2020.12.025
- L. Bondorf, J.L. Fiorio, V. Bon, L. Zhang, M. Maliuta et al., Isotope-selective pore opening in a flexible metal-organic framework. Sci. Adv. 8, eabn7035 (2022). https://doi.org/10.1126/sciadv.abn7035
- D.-D. Zhou, J.-P. Zhang, On the role of flexibility for adsorptive separation. Acc. Chem. Res. 55, 2966–2977 (2022). https://doi.org/10.1021/acs.accounts.2c00418
- A. Ebadi Amooghin, H. Sanaeepur, M. Ghomi, R. Luque, H. Garcia et al., Flexible–robust MOFs/HOFs for challenging gas separations. Coord. Chem. Rev. 505, 215660 (2024). https://doi.org/10.1016/j.ccr.2024.215660
- C. Jiang, J.-X. Wang, D. Liu, E. Wu, X.-W. Gu et al., Supramolecular entanglement in a hydrogen-bonded organic framework enables flexible-robust porosity for highly efficient purification of natural gas. Angew. Chem. Int. Ed. 63, e202404734 (2024). https://doi.org/10.1002/anie.202404734
- S.-M. Wang, Q.-Y. Yang, A copper-based metal-organic framework for upgrading natural gas through the recovery of C2H6 and C3H8. Green Chem. Eng. 4, 81–87 (2023). https://doi.org/10.1016/j.gce.2022.04.006
- G. Mehlana, S.A. Bourne, G. Ramon, A new class of thermo- and solvatochromic metal–organic frameworks based on 4-(pyridin-4-yl)benzoic acid. Dalton Trans. 41, 4224–4231 (2012). https://doi.org/10.1039/C2DT12016J
- S. Nandi, S. Collins, D. Chakraborty, D. Banerjee, P.K. Thallapally et al., Ultralow parasitic energy for postcombustion CO2 capture realized in a nickel isonicotinate metal-organic framework with excellent moisture stability. J. Am. Chem. Soc. 139, 1734–1737 (2017). https://doi.org/10.1021/jacs.6b10455
- F.M. Amombo Noa, O. Cheung, M. Åhlén, E. Ahlberg, P. Nehla et al., A hexagon based Mn(II) rod metal–organic framework–structure, SF6 gas sorption, magnetism and electrochemistry. Chem. Commun. 59, 2106–2109 (2023). https://doi.org/10.1039/D2CC06916D
- X. Zheng, Y. Shen, S. Wang, K. Huang, D. Cao, Selective adsorption of SF6 in covalent- and metal–organic frameworks. Chin. J. Chem. Eng. 39, 88–95 (2021). https://doi.org/10.1016/j.cjche.2021.03.010
- P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 27, 2820–2822 (2007). https://doi.org/10.1039/B704325B
- P.-J. Kim, Y.-W. You, H. Park, J.-S. Chang, Y.-S. Bae et al., Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule. Chem. Eng. J. 262, 683–690 (2015). https://doi.org/10.1016/j.cej.2014.09.123
- P. Chowdhury, C. Bikkina, S. Gumma, Gas adsorption properties of the chromium-based metal organic framework MIL-101. J. Phys. Chem. C 113, 6616–6621 (2009). https://doi.org/10.1021/jp811418r
- H. Wang, J. Getzschmann, I. Senkovska, S. Kaskel, Structural transformation and high pressure methane adsorption of Co2(1, 4-bdc)2dabco. Microporous Mesoporous Mater. 116, 653–657 (2008). https://doi.org/10.1016/j.micromeso.2008.05.037
- M. Åhlén, F.M. Amombo Noa, L. Öhrström, D. Hedbom, M. Strømme et al., Pore size effect of 1, 3, 6, 8-tetrakis(4-carboxyphenyl)Pyrene-based metal-organic frameworks for enhanced SF6 adsorption with high selectivity. Microporous Mesoporous Mater. 343, 112161 (2022). https://doi.org/10.1016/j.micromeso.2022.112161
- J.M. Calm, The next generation of refrigerants–Historical review, considerations, and outlook. Int. J. Refrig. 31, 1123–1133 (2008). https://doi.org/10.1016/j.ijrefrig.2008.01.013
- B.J. Gareau, A critical review of the successful CFC phase-out versus the delayed methyl bromide phase-out in the Montreal protocol. Int. Environ. Agreem. Polit. Law Econ. 10, 209–231 (2010). https://doi.org/10.1007/s10784-010-9120-z
- R.J. Cicerone, R.S. Stolarski, S. Walters, Stratospheric ozone destruction by man-made chlorofluoromethanes. Science 185, 1165–1167 (1974). https://doi.org/10.1126/science.185.4157.1165
- R.K. Motkuri, H.V.R. Annapureddy, M. Vijaykumar, H.T. Schaef, P.F. Martin et al., Fluorocarbon adsorption in hierarchical porous frameworks. Nat. Commun. 5, 4368 (2014). https://doi.org/10.1038/ncomms5368
- X.-H. Xiong, L. Song, W. Wang, H.-T. Zheng, L. Zhang et al., Capture fluorocarbon and chlorofluorocarbon from air using DUT-67 for safety and semi-quantitative analysis. Adv. Sci. 11, e2308123 (2024). https://doi.org/10.1002/advs.202308123
- Y.-Y. Xiong, R. Krishna, T. Pham, K.A. Forrest, C.-X. Chen et al., Pore-nanospace engineering of mixed-ligand metal–organic frameworks for high adsorption of hydrofluorocarbons and hydrochlorofluorocarbons. Chem. Mater. 34, 5116–5124 (2022). https://doi.org/10.1021/acs.chemmater.2c00601
- C.-X. Chen, S.-P. Zheng, Z.-W. Wei, C.-C. Cao, H.-P. Wang et al., A robust metal-organic framework combining open metal sites and polar groups for methane purification and CO2/fluorocarbon capture. Chemistry 23, 4060–4064 (2017). https://doi.org/10.1002/chem.201606038
- D.K.J.A. Wanigarathna, J. Gao, B. Liu, Fluorocarbon separation in a thermally robust zirconium carboxylate metal-organic framework. Chem. Asian J. 13, 977–981 (2018). https://doi.org/10.1002/asia.201800337
- C.-X. Chen, Q.-F. Qiu, C.-C. Cao, M. Pan, H.-P. Wang et al., Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chem. Commun. 53, 11403–11406 (2017). https://doi.org/10.1039/C7CC06352K
- J.E. Sosa, C. Malheiro, P.J. Castro, R.P.P.L. Ribeiro, M.M. Piñeiro et al., Exploring the potential of metal-organic frameworks for the separation of blends of fluorinated gases with high global warming potential. Glob. Chall. 7, 2200107 (2022). https://doi.org/10.1002/gch2.202200107
- S. Cai, S. Tian, Y. Lu, G. Wang, Y. Pu et al., Molecular simulations of adsorption and energy storage of R1234yf, R1234ze(z), R134a, R32, and their mixtures in M-MOF-74 (M = Mg, Ni) nanops. Sci. Rep. 10, 7265 (2020). https://doi.org/10.1038/s41598-020-64187-x
- J.M. Vicent-Luna, A Luna-Triguero adsorption characteristics of refrigerants for thermochemical energy storage in metal–organic frameworks. ACS Appl. Eng. Mater. 2, 542–552 (2024). https://doi.org/10.1021/acsaenm.3c00474
- Q. Wang, S. Tang, Energy storage analysis of R125 in UIO-66 and MOF-5 nanops: a molecular simulation study. Open Chem. 17, 229–234 (2019). https://doi.org/10.1515/chem-2019-0026
- J. Zheng, D. Barpaga, B.A. Trump, M. Shetty, Y. Fan et al., Molecular insight into fluorocarbon adsorption in pore expanded metal-organic framework analogs. J. Am. Chem. Soc. 142, 3002–3012 (2020). https://doi.org/10.1021/jacs.9b11963
- J. Zheng, D. Barpaga, O.Y. Gutiérrez, N.D. Browning, B.L. Mehdi et al., Exceptional fluorocarbon uptake with mesoporous metal–organic frameworks for adsorption-based cooling systems. ACS Appl. Energy Mater. 1, 5853–5858 (2018). https://doi.org/10.1021/acsaem.8b01282
- Z.-W. Mo, H.-L. Zhou, D.-D. Zhou, R.-B. Lin, P.-Q. Liao et al., Mesoporous metal-organic frameworks with exceptionally high working capacities for adsorption heat transformation. Adv. Mater. 30, 1704350 (2018). https://doi.org/10.1002/adma.201704350
- R.-B. Lin, T.-Y. Li, H.-L. Zhou, C.-T. He, J.-P. Zhang et al., Tuning fluorocarbon adsorption in new isoreticular porous coordination frameworks for heat transformation applications. Chem. Sci. 6, 2516–2521 (2015). https://doi.org/10.1039/c4sc03985h
- J. Zheng, R.S. Vemuri, L. Estevez, P.K. Koech, T. Varga et al., Pore-engineered metal-organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications. J. Am. Chem. Soc. 139, 10601–10604 (2017). https://doi.org/10.1021/jacs.7b04872
- W. Xiang, Y. Zhang, Y. Chen, C.-J. Liu, X. Tu, Synthesis, characterization and application of defective metal–organic frameworks: current status and perspectives. J. Mater. Chem. A 8, 21526–21546 (2020). https://doi.org/10.1039/d0ta08009h
- Y. Fu, Y. Yao, A.C. Forse, J. Li, K. Mochizuki et al., Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 14, 2386 (2023). https://doi.org/10.1038/s41467-023-38155-8
- J.J. Jenks, R.K. Motkuri, W. TeGrotenhuis, B.K. Paul, B.P. McGrail, Simulation and experimental study of metal organic frameworks used in adsorption cooling. Heat Transf. Eng. 38, 1305–1315 (2017). https://doi.org/10.1080/01457632.2016.1242965
- J. Xie, F. Sun, C. Wang, Q. Pan, Stability and hydrocarbon/fluorocarbon sorption of a metal-organic framework with fluorinated channels. Mater. (Basel) 9, 327 (2016). https://doi.org/10.3390/ma9050327
- K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007). https://doi.org/10.1021/ja071174k
- J. Hu, C. Liu, L. Liu, Q. Li, Thermal energy storage of R1234yf, R1234ze, R134a and R32/MOF-74 nanofluids: a molecular simulation study. Mater. (Basel) 11, 1164 (2018). https://doi.org/10.3390/ma11071164
- M. Fischer, F. Hoffmann, M. Fröba, New microporous materials for acetylene storage and C2H2/CO2 separation: insights from molecular simulations. ChemPhysChem 11, 2220–2229 (2010). https://doi.org/10.1002/cphc.201000126
- Y. Chen, Z. Qiao, D. Lv, C. Duan, X. Sun et al., Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chem. Eng. J. 328, 360–367 (2017). https://doi.org/10.1016/j.cej.2017.07.044
- W. Fan, S.B. Peh, Z. Zhang, H. Yuan, Z. Yang et al., Tetrazole-functionalized zirconium metal-organic cages for efficient C2H2/C2H4 and C2H2/CO2 separations. Angew. Chem. Int. Ed. 60, 17338–17343 (2021). https://doi.org/10.1002/anie.202102585
- C.-X. Chen, Z. Wei, J.-J. Jiang, Y.-Z. Fan, S.-P. Zheng et al., Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew. Chem. Int. Ed. 55, 9932–9936 (2016). https://doi.org/10.1002/anie.201604023
- E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown et al., Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012). https://doi.org/10.1126/science.1217544
- Q.-F. Qiu, C.-X. Chen, Z. Zeng, Z.-W. Wei, N.-X. Zhu et al., A flexible-robust copper(II) metal-organic framework constructed from a fluorinated ligand for CO2/R22 capture. Inorg. Chem. 59, 14856–14860 (2020). https://doi.org/10.1021/acs.inorgchem.0c02123
- D. Morelli Venturi, F. Costantino, Recent advances in the chemistry and applications of fluorinated metal-organic frameworks (F-MOFs). RSC Adv. 13, 29215–29230 (2023). https://doi.org/10.1039/d3ra04940j
- P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvåg, Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 9, 1164 (2006). https://doi.org/10.1039/B515434K
- L. Ge, W. Zhou, V. Rudolph, Z. Zhu, Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. J. Mater. Chem. A 1, 6350–6358 (2013). https://doi.org/10.1039/C3TA11131H
- A. Alowasheeir, N.L. Torad, T. Asahi, S.M. Alshehri, T. Ahamad et al., Synthesis of millimeter-scale ZIF-8 single crystals and their reversible crystal structure changes. Sci. Technol. Adv. Mater. 25, 2292485 (2024). https://doi.org/10.1080/14686996.2023.2292485
- R.P. Ojha, P.-A. Lemieux, P.K. Dixon, A.J. Liu, D.J. Durian, Statistical mechanics of a gas-fluidized p. Nature 427, 521–523 (2004). https://doi.org/10.1038/nature02294
- C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier et al., Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002). https://doi.org/10.1021/ja0276974
- X.-H. Xiong, Z.-W. Wei, W. Wang, L.-L. Meng, C.-Y. Su, Scalable and depurative zirconium metal-organic framework for deep flue-gas desulfurization and SO2 recovery. J. Am. Chem. Soc. 145, 14354–14364 (2023). https://doi.org/10.1021/jacs.3c03309
- S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu et al., Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 137, 3177–3180 (2015). https://doi.org/10.1021/ja512762r
- J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco et al., Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013). https://doi.org/10.1021/ja4050828
- H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang et al., Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440–13443 (2015). https://doi.org/10.1021/jacs.5b08773
- G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005). https://doi.org/10.1126/science.1116275
- T.N. Ang, S. Baroutian, B.R. Young, M.M. Hyland, M. Taylor et al., Adsorptive separation of volatile anaesthetics: a review of current developments. Sep. Purif. Technol. 211, 491–503 (2019). https://doi.org/10.1016/j.seppur.2018.10.012
- A. Jerath, N.D. Ferguson, B. Cuthbertson, Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensive Care Med. 46, 1563–1566 (2020). https://doi.org/10.1007/s00134-020-06154-8
- D. Bucher, C. Pasel, M. Luckas, J. Bentgens, D. Bathen, Adsorption of inhalation anesthetics (fluranes and ethers) on activated carbons and zeolites at trace level concentrations. J. Chem. Eng. Data 62, 1832–1841 (2017). https://doi.org/10.1021/acs.jced.7b00079
- R. Ortmann, C. Pasel, M. Luckas, R. Heimböckel, S. Kraas et al., Adsorption and desorption of isoflurane on carbonaceous adsorbents and zeolites at low concentrations in gas phase. J. Chem. Eng. Data 61, 686–692 (2016). https://doi.org/10.1021/acs.jced.5b00844
- M. Mehrata, C. Moralejo, W.A. Anderson, Adsorbent comparisons for anesthetic gas capture in hospital air emissions. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 51, 805–809 (2016). https://doi.org/10.1080/10934529.2016.1181438
- Francis Duval Smith MSN, Management of exposure to waste anesthetic gases. AORN J. 91, 482–494 (2010). https://doi.org/10.1016/j.aorn.2009.10.022
- M.P. Sulbaek Andersen, S.P. Sander, O.J. Nielsen, D.S. Wagner, T.J. Sanford Jr. et al., Inhalation anaesthetics and climate change. Br. J. Anaesth. 105, 760–766 (2010). https://doi.org/10.1093/bja/aeq259
- M.K. Vollmer, T.S. Rhee, M. Rigby, D. Hofstetter, M. Hill et al., Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015). https://doi.org/10.1002/2014GL062785
- T. Langbein, H. Sonntag, D. Trapp, A. Hoffmann, W. Malms et al., Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br. J. Anaesth. 82, 66–73 (1999). https://doi.org/10.1093/bja/82.1.66
- M. Charlesworth, F. Swinton, Anaesthetic gases, climate change, and sustainable practice. Lancet Planet. Health 1, e216–e217 (2017). https://doi.org/10.1016/S2542-5196(17)30040-2
- A.A. Lindley, A. McCulloch, Regulating to reduce emissions of fluorinated greenhouse gases. J. Fluor. Chem. 126, 1457–1462 (2005). https://doi.org/10.1016/j.jfluchem.2005.09.011
- B.F. Abrahams, A.D. Dharma, P.S. Donnelly, T.A. Hudson, C.J. Kepert et al., Tunable porous coordination polymers for the capture, recovery and storage of inhalation anesthetics. Chemistry 23, 7871–7875 (2017). https://doi.org/10.1002/chem.201700389
- T.-H. Chen, W. Kaveevivitchai, A.J. Jacobson, O.Š Miljanić, Adsorption of fluorinated anesthetics within the pores of a molecular crystal. Chem. Commun. 51, 14096–14098 (2015). https://doi.org/10.1039/c5cc04885k
- C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010). https://doi.org/10.1039/C0NJ00275E
- Y. Hua, N. Gargiulo, A. Peluso, P. Aprea, M. Eić et al., Adsorption behavior of halogenated anesthetic and water vapor on Cr-based MOF (MIL-101) adsorbent. Part I. equilibrium and breakthrough characterizations. Chem. Ing. Tech. 88, 1730–1738 (2016). https://doi.org/10.1002/cite.201600051
- N. Gargiulo, A. Peluso, P. Aprea, Y. Hua, D. Filipović et al., A chromium-based metal organic framework as a potential high performance adsorbent for anaesthetic vapours. RSC Adv. 4, 49478–49484 (2014). https://doi.org/10.1039/C4RA05905K
- R. Szpera, D.F.J. Moseley, L.B. Smith, A.J. Sterling, V. Gouverneur, The fluorination of C−H bonds: developments and perspectives. Angew. Chem. Int. Ed. 58, 14824–14848 (2019). https://doi.org/10.1002/anie.201814457
- T. Liang, C.N. Neumann, T. Ritter, Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013). https://doi.org/10.1002/anie.201206566
- M. Bobek, I. Kavai, E. De Clercq, Synthesis and biological activity of 5-(2, 2-difluorovinyl)-2’-deoxyuridine. J. Med. Chem. 30, 1494–1497 (1987). https://doi.org/10.1021/jm00391a036
- G.J.M. Velders, D.W. Fahey, J.S. Daniel, M. McFarland, S.O. Andersen, The large contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci. U.S.A. 106, 10949–10954 (2009). https://doi.org/10.1073/pnas.0902817106
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, e1230444 (2013). https://doi.org/10.1126/science.1230444
- P. Kittikhunnatham, G.A. Leith, A. ur, J.K. Naglic, C.R. Martin et al., A metal-organic framework (MOF)-based multifunctional cargo vehicle for reactive-gas delivery and catalysis. Angew. Chem. Int. Ed. 61, e202113909 (2022). https://doi.org/10.1002/anie.202113909
- M.E. Zick, J.-H. Lee, M.I. Gonzalez, E.O. Velasquez, A.A. Uliana et al., Fluoroarene separations in metal-organic frameworks with two proximal Mg2+ coordination sites. J. Am. Chem. Soc. 143, 1948–1958 (2021). https://doi.org/10.1021/jacs.0c11530
- K.T. Keasler, M.E. Zick, E.E. Stacy, J. Kim, J.-H. Lee et al., Handling fluorinated gases as solid reagents using metal-organic frameworks. Science 381, 1455–1461 (2023). https://doi.org/10.1126/science.adg8835
- S. Choi, T. Kim, H. Ji, H.J. Lee, M. Oh, Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 138, 14434–14440 (2016). https://doi.org/10.1021/jacs.6b08821
- P. Falcaro, K. Okada, T. Hara, K. Ikigaki, Y. Tokudome et al., Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342–348 (2017). https://doi.org/10.1038/nmat4815
- Y. Gu, Y.-N. Wu, L. Li, W. Chen, F. Li et al., Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 56, 15658–15662 (2017). https://doi.org/10.1002/anie.201709738
- M.-S. Yao, K.-I. Otake, T. Koganezawa, M. Ogasawara, H. Asakawa et al., Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms. Proc. Natl. Acad. Sci. U.S.A. 120, e2305125120 (2023). https://doi.org/10.1073/pnas.2305125120
- A.M. Wright, M.T. Kapelewski, S. Marx, O.K. Farha, W. Morris, Transitioning metal-organic frameworks from the laboratory to market through applied research. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01947-4
- D. Liu, J. Pei, X. Zhang, X.-W. Gu, H.-M. Wen et al., Scalable green synthesis of robust ultra-microporous Hofmann clathrate material with record C3H6 storage density for efficient C3H6/C3H8 separation. Angew. Chem. Int. Ed. 62, e202218590 (2023). https://doi.org/10.1002/anie.202218590
- H.-M. Wen, C. Yu, M. Liu, C. Lin, B. Zhao et al., Construction of negative electrostatic pore environments in a scalable, stable and low-cost metal-organic framework for one-step ethylene purification from ternary mixtures. Angew. Chem. Int. Ed. 62, e202309108 (2023). https://doi.org/10.1002/anie.202309108
- E. Wu, X.-W. Gu, D. Liu, X. Zhang, H. Wu et al., Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat. Commun. 14, 6146 (2023). https://doi.org/10.1038/s41467-023-41692-x
- A. Bétard, R.A. Fischer, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012). https://doi.org/10.1021/cr200167v
- S. Yang, L. Peng, O.A. Syzgantseva, O. Trukhina, I. Kochetygov et al., Preparation of highly porous metal-organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 142, 13415–13425 (2020). https://doi.org/10.1021/jacs.0c02371
- S. Qiu, M. Xue, G. Zhu, Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014). https://doi.org/10.1039/C4CS00159A
- Q. Ma, T. Zhang, B. Wang, Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 5, 1070–1091 (2022). https://doi.org/10.1016/j.matt.2022.02.014
- Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000). https://doi.org/10.1016/S0142-727X(99)00067-3
References
D.K.J.A. Wanigarathna, J. Gao, B. Liu, Metal organic frameworks for adsorption-based separation of fluorocompounds: a review. Mater. Adv. 1, 310–320 (2020). https://doi.org/10.1039/d0ma00083c
W.C. Fu, P.M. MacQueen, T.F. Jamison, Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations. Chem. Soc. Rev. 50, 7378–7394 (2021). https://doi.org/10.1039/D0CS00670J
B.K. Sovacool, S. Griffiths, J. Kim, M. Bazilian, Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sustain. Energy Rev. 141, 110759 (2021). https://doi.org/10.1016/j.rser.2021.110759
Y. Heredia-Aricapa, J.M. Belman-Flores, A. Mota-Babiloni, J. Serrano-Arellano, J.J. García-Pabón, Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. Int. J. Refrig. 111, 113–123 (2020). https://doi.org/10.1016/j.ijrefrig.2019.11.012
D.J. Sheldon, M.R. Crimmin, Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem. Soc. Rev. 51, 4977–4995 (2022). https://doi.org/10.1039/d1cs01072g
L. Guo, Y. Yang, P.J. Fraser, G.J.M. Velders, Z. Liu et al., Projected increases in emissions of high global warming potential fluorinated gases in China. Commun. Earth Environ. 4, 205 (2023). https://doi.org/10.1038/s43247-023-00859-6
W.-T. Tsai, C.-H. Tsai, A survey on fluorinated greenhouse gases in Taiwan: emission trends, regulatory strategies, and abatement technologies. Environments 10, 113 (2023). https://doi.org/10.3390/environments10070113
J.E. Sosa, R.P.P.L. Ribeiro, I. Matos, M. Bernardo, I.M. Fonseca et al., Exploring the potential of biomass-derived carbons for the separation of fluorinated gases with high global warming potential. Biomass Bioenergy 188, 107323 (2024). https://doi.org/10.1016/j.biombioe.2024.107323
M. Ghandehari, F-gases at the fenceline: exposing the fluorochemical production sector’s undisclosed emissions. EIA (2023). https://eia-international.org/wp-content/uploads/2023-EIA-F-Gases-at-the-Fencline_SINGLES.pdf
Z. Rošková, J. Schneider, M. Štengel, Predicted hydrofluorocarbon (HFC) and perfluorocarbon (PFC) emissions for the years 2010–2050 in the Czech republic. Atmosphere 14, 111 (2023). https://doi.org/10.3390/atmos14010111
S.M.W. Wilson, F. Handan, Tezel Adsorption separation of CF4, O2, CO2, and COF2 from an excimer gas mixture. Sep. Purif. Technol. 258, 117659 (2021). https://doi.org/10.1016/j.seppur.2020.117659
J.L. Boot, Overview of alternatives to CFCs for domestic refrigerators and freezers. Int. J. Refrig. 13, 100–105 (1990). https://doi.org/10.1016/0140-7007(90)90008-K
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
P.W. Siu, J.P. Siegfried, M.H. Weston, P.E. Fuller, W. Morris et al., Boron trifluoride gas adsorption in metal-organic frameworks. Inorg. Chem. 55, 12110–12113 (2016). https://doi.org/10.1021/acs.inorgchem.6b02273
M.J. Molina, F.S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974). https://doi.org/10.1038/249810a0
T. Chokbunpiam, S. Fritzsche, T. Ploymeerusmee, R. Chanajaree, S. Thompho et al., Separation of the chlorofluorocarbon (CFC) CCl2F2 from N2 in NaY zeolite, in MIL-127(Fe) and in the two carbon nanotubes CNT (9, 9) and CNT (11, 11). J. Mol. Graph. Model. 125, 108597 (2023). https://doi.org/10.1016/j.jmgm.2023.108597
C.Y. Chuah, Y. Lee, T.-H. Bae, Potential of adsorbents and membranes for SF6 capture and recovery: a review. Chem. Eng. J. 404, 126577 (2021). https://doi.org/10.1016/j.cej.2020.126577
K. Kim, K.S. Kim, J.E. Lee, S. Park, C.-K. Ahn et al., Status of SF6 separation/refining technology development for electric industry in Korea. Sep. Purif. Technol. 200, 29–35 (2018). https://doi.org/10.1016/j.seppur.2018.02.016
K. Lee, W.C. Isley, A.L. Dzubak, P. Verma, S.J. Stoneburner et al., Design of a metal-organic framework with enhanced back bonding for separation of N2 and CH4. J. Am. Chem. Soc. 136, 698–704 (2014). https://doi.org/10.1021/ja4102979
F. Pardo, S.V. Gutiérrez-Hernández, C. Hermida-Merino, J.M.M. Araújo, M.M. Piñeiro et al., Integration of stable ionic liquid-based nanofluids into polymer membranes. Part II: gas separation properties toward fluorinated greenhouse gases. Nanomater. (Basel) 11, 582 (2021). https://doi.org/10.3390/nano11030582
F. Pardo, S.V. Gutiérrez-Hernández, G. Zarca, A. Urtiaga, Toward the recycling of low-GWP hydrofluorocarbon/hydrofluoroolefin refrigerant mixtures using composite ionic liquid–polymer membranes. ACS Sustain. Chem. Eng. 9, 7012–7021 (2021). https://doi.org/10.1021/acssuschemeng.1c00668
M. Zhang, L. Liu, Q. Li, H. Gong, Y. Chen, Theoretical design of MOFs and PSA process for efficient separation of CF4/NF3. Ind. Eng. Chem. Res. 62, 7103–7113 (2023). https://doi.org/10.1021/acs.iecr.2c04592
S.-M. Wang, H.-L. Lan, G.-W. Guan, Q.-Y. Yang, Amino-functionalized microporous MOFs for capturing greenhouse gases CF4 and NF3 with record selectivity. ACS Appl. Mater. Interfaces 14, 40072–40081 (2022). https://doi.org/10.1021/acsami.2c12164
R. Hassanalizadeh, W.M. Nelson, B.K. Naidoo, M. Ebrahiminejadhasanabadi, P. Naidoo et al., Purification of nitrogen trifluoride by physical separation. Fluid Phase Equilib. 560, 113405 (2022). https://doi.org/10.1016/j.fluid.2022.113405
D.J. Branken, H.M. Krieg, J.P. le Roux, G. Lachmann, Separation of NF3 and CF4 using amorphous glassy perfluoropolymer Teflon AF and Hyflon AD60 membranes. J. Membr. Sci. 462, 75–87 (2014). https://doi.org/10.1016/j.memsci.2014.03.033
R. Srinivasan, S.R. Auvil, P.M. Burban, Elucidating the mechanism(s) of gas transport in poly[1-(trimethylsilyl)-1-propyne](PTMSP) membranes. J. Membr. Sci. 86, 67–86 (1994). https://doi.org/10.1016/0376-7388(93)E0128-7
K. Ishii, A. Shibata, T. Takeuchi, J. Yoshiura, T. Urabe et al., Development of silica membranes to improve dehydration reactions. J. Jpn. Petrol. Inst. 62, 211–219 (2019). https://doi.org/10.1627/jpi.62.211
Y. Sun, J. Yan, Y. Gao, T. Ji, S. Chen et al., Fabrication of highly oriented ultrathin zirconium metal-organic framework membrane from nanosheets towards unprecedented gas separation. Angew. Chem. Int. Ed. 62, e202216697 (2023). https://doi.org/10.1002/anie.202216697
D.-Y. Kang, J.S. Lee, Challenges in developing MOF-based membranes for gas separation. Langmuir 39, 2871–2880 (2023). https://doi.org/10.1021/acs.langmuir.2c03458
S. Li, W. Han, Q.-F. An, K.-T. Yong, M.-J. Yin, Defect engineering of MOF-based membrane for gas separation. Adv. Funct. Mater. 33, 2303447 (2023). https://doi.org/10.1002/adfm.202303447
K. Shiojiri, Y. Yanagisawa, A. Yamasaki, F. Kiyono, Separation of F-gases (HFC-134a and SF6) from gaseous mixtures with nitrogen by surface diffusion through a porous Vycor glass membrane. J. Membr. Sci. 282, 442–449 (2006). https://doi.org/10.1016/j.memsci.2006.06.003
J.-W. Choi, S. Lee, B. An, S.-B. Kim, S.-H. Lee, Separation of sulfur hexafluoride from a nitrogen/sulfur hexafluoride mixture using a polymer hollow fiber membrane. Water Air Soil Pollut. 225, 1807 (2014). https://doi.org/10.1007/s11270-013-1807-7
L. Wang, N. Xu, Y. Hu, W. Sun, R. Krishna et al., Efficient capture of C2H2 from CO2 and CnH4 by a novel fluorinated anion pillared MOF with flexible molecular sieving effect. Nano Res. 16, 3536–3541 (2023). https://doi.org/10.1007/s12274-022-4996-9
O.T. Qazvini, R. Babarao, S.G. Telfer, Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nat. Commun. 12, 197 (2021). https://doi.org/10.1038/s41467-020-20489-2
Z. Di, C. Liu, J. Pang, C. Chen, F. Hu et al., Cage-like porous materials with simultaneous high C2H2 storage and excellent C2H2/CO2 separation performance. Angew. Chem. Int. Ed. 60, 10828–10832 (2021). https://doi.org/10.1002/anie.202101907
M. Kang, D.W. Kang, J.H. Choe, H. Kim, D.W. Kim et al., A robust hydrogen-bonded metal–organic framework with enhanced ethane uptake and selectivity. Chem. Mater. 33, 6193–6199 (2021). https://doi.org/10.1021/acs.chemmater.1c01892
Y. Zhang, L. Yang, L. Wang, S. Duttwyler, H. Xing, A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem. Int. Ed. 58, 8145–8150 (2019). https://doi.org/10.1002/anie.201903600
L. Wang, W. Sun, Y. Zhang, N. Xu, R. Krishna et al., Interpenetration symmetry control within ultramicroporous robust boron cluster hybrid MOFs for benchmark purification of acetylene from carbon dioxide. Angew. Chem. Int. Ed. 60, 22865–22870 (2021). https://doi.org/10.1002/anie.202107963
P. Pullumbi, F. Brandani, S. Brandani, Gas separation by adsorption: technological drivers and opportunities for improvement. Curr. Opin. Chem. Eng. 24, 131–142 (2019). https://doi.org/10.1016/j.coche.2019.04.008
A.D. Yancey, S.J. Terian, B.J. Shaw, T.M. Bish, D.R. Corbin et al., A review of fluorocarbon sorption on porous materials. Microporous Mesoporous Mater. 331, 111654 (2022). https://doi.org/10.1016/j.micromeso.2021.111654
W. Zhang, Y. Li, Y. Wu, Y. Fu, S. Chen et al., Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching. Sep. Purif. Technol. 287, 120561 (2022). https://doi.org/10.1016/j.seppur.2022.120561
X. Yuan, M.K. Cho, J.G. Lee, S.W. Choi, K.B. Lee, Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption. Environ. Pollut. 265, 114868 (2020). https://doi.org/10.1016/j.envpol.2020.114868
S.W. Choi, H.J. Yoon, H.J. Lee, E.-S. Lee, D.-S. Lim et al., CF4 adsorption on porous carbon derived from silicon carbide. Microporous Mesoporous Mater. 306, 110373 (2020). https://doi.org/10.1016/j.micromeso.2020.110373
W. Zhang, Y. Wu, Y. Li, S. Chen, Y. Fu et al., Fluorine-functionalized porous organic polymers for durable F-gas capture from semiconductor etching exhaust. Macromolecules 55, 1435–1444 (2022). https://doi.org/10.1021/acs.macromol.1c02413
P. Cannon, C.P. Rutkowski, The sorptive properties of a zeolite containing a preadsorbed phase. J. Phys. Chem. 63, 1292–1296 (1959). https://doi.org/10.1021/j150578a018
H. Kodama, S. Okazaki, Alkylations of benzene, alkylbenzenes, and halobenzenes catalyzed by protonated mordenite pretreated with chlorofluorocarbons. J. Catal. 132, 512–523 (1991). https://doi.org/10.1016/0021-9517(91)90167-3
M. Sugimoto, H. Katsuno, T. Murakawa, Improvement of platinum-supported zeolite catalysts for n-hexane aromatization by halocarbon treatment and alkaline soaking. Appl. Catal. A Gen. 96, 201–216 (1993). https://doi.org/10.1016/0926-860X(90)80010-C
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
S. Kitagawa, R. Kitaura, S.-I. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004). https://doi.org/10.1002/anie.200300610
Y. Shen, T. Pan, L. Wang, Z. Ren, W. Zhang et al., Programmable logic in metal–organic frameworks for catalysis. Adv. Mater. 33, 2007442 (2021). https://doi.org/10.1002/adma.202007442
J. Dong, V. Wee, D. Zhao, Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater. 21, 1334–1340 (2022). https://doi.org/10.1038/s41563-022-01317-y
M. Kalaj, K.C. Bentz, S. Ayala Jr., J.M. Palomba, K.S. Barcus et al., MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem. Rev. 120, 8267–8302 (2020). https://doi.org/10.1021/acs.chemrev.9b00575
A.J. Howarth, A.W. Peters, N.A. Vermeulen, T.C. Wang, J.T. Hupp et al., Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 29, 26–39 (2017). https://doi.org/10.1021/acs.chemmater.6b02626
Z.-J. Lin, J. Lü, M. Hong, R. Cao, Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 43, 5867–5895 (2014). https://doi.org/10.1039/C3CS60483G
L. Wang, H. Huang, X. Zhang, H. Zhao, F. Li et al., Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord. Chem. Rev. 484, 215111 (2023). https://doi.org/10.1016/j.ccr.2023.215111
B. Zheng, G. Maurin, Mechanical control of the kinetic propylene/propane separation by zeolitic imidazolate framework-8. Angew. Chem. Int. Ed. 58, 13734–13738 (2019). https://doi.org/10.1002/anie.201906245
J. Wan, H.-L. Zhou, K. Hyeon-Deuk, I.-Y. Chang, Y. Huang et al., Molecular sieving of propyne/propylene by a scalable nanoporous crystal with confined rotational shutters. Angew. Chem. Int. Ed. 62, e202316792 (2023). https://doi.org/10.1002/anie.202316792
M. Najafi, H. Kulak, H.O. Rubiera Landa, I.F.J. Vankelecom, J.F.M. Denayer, Appraising separation performance of MOF-808-based adsorbents for light olefins and paraffins. Microporous Mesoporous Mater. 367, 112961 (2024). https://doi.org/10.1016/j.micromeso.2023.112961
F. Xie, L. Chen, E.M. Cedeño Morales, S. Ullah, Y. Fu et al., Complete separation of benzene-cyclohexene-cyclohexane mixtures via temperature-dependent molecular sieving by a flexible chain-like coordination polymer. Nat. Commun. 15, 2240 (2024). https://doi.org/10.1038/s41467-024-46556-6
Y. Han, Y. Chen, Y. Ma, J. Bailey, Z. Wang et al., Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 9, 739–754 (2023). https://doi.org/10.1016/j.chempr.2023.02.002
S. Mukherjee, D. Sensharma, O.T. Qazvini, S. Dutta, L.K. Macreadie et al., Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coord. Chem. Rev. 437, 213852 (2021). https://doi.org/10.1016/j.ccr.2021.213852
M. Wang, Z. Han, K. Wang, B. Zhao, T. Sun et al., Confinement of p-xylene in the pores of a bilanthanide metal-organic framework for highly selective recognition. Angew. Chem. Int. Ed. 63, e202318722 (2024). https://doi.org/10.1002/anie.202318722
T. Hyun, J. Park, J. So, J. Kim, D.-Y. Koh, Unexpected molecular sieving of xylene isomer using tethered ligand in polymer-metal-organic frameworks (polyMOFs). Adv. Sci. 11, e2402980 (2024). https://doi.org/10.1002/advs.202402980
Y. Gu, J.-J. Zheng, K.-I. Otake, S. Sakaki, H. Ashitani et al., Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture. Nat. Commun. 14, 4245 (2023). https://doi.org/10.1038/s41467-023-39470-w
X. Zhang, H. Zhao, Q. Yang, M. Yao, Y.-N. Wu et al., Direct air capture of CO2 in designed metal-organic frameworks at lab and pilot scale. Carbon Capture Sci. Technol. 9, 100145 (2023). https://doi.org/10.1016/j.ccst.2023.100145
Z. Sun, Y. Liao, S. Zhao, X. Zhang, Q. Liu et al., Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: characteristics, preparation, modification and applications. J. Mater. Chem. A 10, 5174–5211 (2022). https://doi.org/10.1039/D1TA07856A
X.Y.D. Soo, J.J.C. Lee, W.-Y. Wu, L. Tao, C. Wang et al., Advancements in CO2 capture by absorption and adsorption: a comprehensive review. J. CO2 Util. 81, 102727 (2024). https://doi.org/10.1016/j.jcou.2024.102727
P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9, 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2
A. Dong, D. Chen, Q. Li, J. Qian, Metal-organic frameworks for greenhouse gas applications. Small 19, 2201550 (2023). https://doi.org/10.1002/smll.202201550
H.-R. Liu, S.-C. Liu, L.-P. Zhang, Y.-T. Li, X.-M. Peng et al., Pore chemically modified nickel-based metal-organic frameworks for efficient purification of natural gas. Sep. Purif. Technol. 352, 128267 (2025). https://doi.org/10.1016/j.seppur.2024.128267
Y. Gu, J.-J. Zheng, K.-I. Otake, M. Shivanna, S. Sakaki et al., Host-guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation. Angew. Chem. Int. Ed. 60, 11688–11694 (2021). https://doi.org/10.1002/anie.202016673
L. Zhang, K. Jiang, L. Yang, L. Li, E. Hu et al., Benchmark C2H2/CO2 separation in an ultra-microporous metal-organic framework via copper(I)-alkynyl chemistry. Angew. Chem. Int. Ed. 60, 15995–16002 (2021). https://doi.org/10.1002/anie.202102810
X. Li, K. Chen, R. Guo, Z. Wei, Ionic liquids functionalized MOFs for adsorption. Chem. Rev. 123, 10432–10467 (2023). https://doi.org/10.1021/acs.chemrev.3c00248
K.-G. Liu, F. Bigdeli, A. Panjehpour, S. Hwa Jhung, H.A.J. Al Lawati et al., Potential applications of MOF composites as selective membranes for separation of gases. Coord. Chem. Rev. 496, 215413 (2023). https://doi.org/10.1016/j.ccr.2023.215413
T.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen et al., Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 5, 5131 (2014). https://doi.org/10.1038/ncomms6131
E.J. García, D. Bahamon, L.F. Vega, Systematic search of suitable metal–organic frameworks for thermal energy-storage applications with low global warming potential refrigerants. ACS Sustain. Chem. Eng. 9, 3157–3171 (2021). https://doi.org/10.1021/acssuschemeng.0c07797
D. Barpaga, V.T. Nguyen, B.K. Medasani, S. Chatterjee, B.P. McGrail et al., Insight into fluorocarbon adsorption in metal-organic frameworks via experiments and molecular simulations. Sci. Rep. 9, 10289 (2019). https://doi.org/10.1038/s41598-019-46269-7
J. Choi, J. Im, K. Noh, J. Kim, T. Vogt et al., Universal gas-uptake behavior of a zeolitic imidazolate framework ZIF-8 at high pressure. J. Phys. Chem. C 123, 25769–25774 (2019). https://doi.org/10.1021/acs.jpcc.9b08539
H. Chen, Z. Chen, O.K. Farha, R.Q. Snurr, High propane and isobutane adsorption cooling capacities in zirconium-based metal–organic frameworks predicted by molecular simulations. ACS Sustain. Chem. Eng. 7, 18242–18246 (2019). https://doi.org/10.1021/acssuschemeng.9b05368
F. Yan, Q. Wang, S. Ou, R. Zhang, G. Wang, Molecular simulation study for adsorption and thermal energy storage analysis of refrigerants (R170, R161, R152a, and R143a) mixed with UIO-67 nanops. Mod. Phys. Lett. B 34, 2050334 (2020). https://doi.org/10.1142/s0217984920503340
D. Barpaga, J. Zheng, B.P. McGrail, R.K. Motkuri, Manipulating pore topology and functionality to promote fluorocarbon-based adsorption cooling. Acc. Chem. Res. 55, 649–659 (2022). https://doi.org/10.1021/acs.accounts.1c00615
P. Purohit, L. Höglund-Isaksson, Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs. Atmos. Chem. Phys. 17, 2795–2816 (2017). https://doi.org/10.5194/acp-17-2795-2017
Y. Wu, T. Yan, W. Zhang, S. Chen, Y. Fu et al., Adsorption interface-induced H...F charge transfer in ultramicroporous metal–organic frameworks for perfluorinated gas separation. Ind. Eng. Chem. Res. 61, 13603–13611 (2022). https://doi.org/10.1021/acs.iecr.2c01604
S. Builes, T. Roussel, L.F. Vega, Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations. AlChE. J. 57, 962–974 (2011). https://doi.org/10.1002/aic.12312
K. Inami, Y. Maeda, Y. Habuchi, M. Yoshimura, S. Hamano et al., Problems of the application of N2/SF6 mixtures to gas-insulated bus. Electr. Eng. Jpn. 137, 25–31 (2001). https://doi.org/10.1002/eej.1100
Z. Wan, T. Yan, M. Chang, M. Yang, D. Liu, Nickel-based metal–organic framework for efficient capture of CF4 with a high CF4/N2 selectivity. Sep. Purif. Technol. 306, 122617 (2023). https://doi.org/10.1016/j.seppur.2022.122617
Y. Wu, X. Li, Y. Li, C. Tao, Y. Tang et al., Porous aromatic frameworks as HF resistant adsorbents for SF6 separation at elevated pressure. Sep. Purif. Technol. 315, 123657 (2023). https://doi.org/10.1016/j.seppur.2023.123657
W. Zhang, Y. Li, S. Wang, Y. Wu, S. Chen et al., Fluorine-induced electric field gradient in 3D porous aromatic frameworks for highly efficient capture of Xe and F-gases. ACS Appl. Mater. Interfaces 14, 35126–35137 (2022). https://doi.org/10.1021/acsami.2c10050
Y. He, X. Cao, Z. Zhang, Z. Jiang, H. Huang et al., Discovery of high-performing metal–organic frameworks for efficient SF6/N2 separation: a combined computational screening, machine learning, and experimental study. Ind. Eng. Chem. Res. 62, 7642–7649 (2023). https://doi.org/10.1021/acs.iecr.3c00727
I. Skarmoutsos, M. Eddaoudi, G. Maurin, Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks. Microporous Mesoporous Mater. 281, 44–49 (2019). https://doi.org/10.1016/j.micromeso.2019.02.035
C.Y. Chuah, K. Goh, T.-H. Bae, Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery. J. Phys. Chem. C 121, 6748–6755 (2017). https://doi.org/10.1021/acs.jpcc.7b00291
S.-M. Wang, X.-T. Mu, H.-R. Liu, S.-T. Zheng, Q.-Y. Yang, Pore-structure control in metal-organic frameworks (MOFs) for capture of the greenhouse gas SF6 with record separation. Angew. Chem. Int. Ed. 61, e202207066 (2022). https://doi.org/10.1002/anie.202207066
I. Senkovska, E. Barea, J.A.R. Navarro, S. Kaskel, Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal–organic frameworks. Microporous Mesoporous Mater. 156, 115–120 (2012). https://doi.org/10.1016/j.micromeso.2012.02.021
W. Zhang, Y. Li, Y. Wu, W. Huang, S. Wang et al., Polypyrene porous organic framework for efficiently capturing electron specialty gases. ACS Appl. Mater. Interfaces 15, 29468–29477 (2023). https://doi.org/10.1021/acsami.3c05398
J. Wada, G. Ueta, S. Okabe, M. Hikita, Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature. IEEE Trans. Dielectr. Electr. Insul. 23, 838–847 (2016). https://doi.org/10.1109/TDEI.2015.005373
D. Sun, Y. Zhou, T. Nian, L. Li, Research on the insulation performance of new environmentally friendly insulation gas hexafluoropropylene and carbon dioxide mixed gas. IOP Conf. Ser. Earth Environ. Sci. 781, 052019 (2021). https://doi.org/10.1088/1755-1315/781/5/052019
W. Wang, Y. Wu, M. Rong, L. Éhn, I. Černušák, Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6, and C3F8 plasmas. J. Phys. D Appl. Phys. 45, 285201 (2012). https://doi.org/10.1088/0022-3727/45/28/285201
W.-T. Tsai, H.-P. Chen, W.-Y. Hsien, A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. J. Loss Prev. Process Ind. 15, 65–75 (2002). https://doi.org/10.1016/S0950-4230(01)00067-5
Y. Deng, B. Li, D. Xiao, Analysis of the insulation characteristics of C3F8 gas mixtures with N2 and CO2 using Boltzmann equation method. IEEE Trans. Dielectr. Electr. Insul. 22, 3253–3259 (2015). https://doi.org/10.1109/TDEI.2015.005191
X. Li, C. Yang, S. Du, Y. Wu, B. Huang et al., Dynamic adsorption separation of c-C4F8/C3F8 for effective purification of perfluoropropane electronic gas. Chem. Eng. Sci. 273, 118656 (2023). https://doi.org/10.1016/j.ces.2023.118656
Y. Hu, L. Wang, R. Nan, N. Xu, Y. Jiang et al., Pore engineering in cost-effective and stable Al-MOFs for efficient capture of the greenhouse gas SF6. Chem. Eng. J. 471, 144851 (2023). https://doi.org/10.1016/j.cej.2023.144851
M.-B. Kim, T.-U. Yoon, D.-Y. Hong, S.-Y. Kim, S.-J. Lee et al., High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal–organic framework. Chem. Eng. J. 276, 315–321 (2015). https://doi.org/10.1016/j.cej.2015.04.087
J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034
H. Murase, T. Imai, T. Inohara, M. Toyoda, Use of zeolite filter in portable equipment for recovering SF6 in SF6/ N2 mixtures. IEEE Trans. Dielectr. Electr. Insul. 11, 166–173 (2004). https://doi.org/10.1109/TDEI.2004.1266332
M.-B. Kim, T.-H. Kim, T.-U. Yoon, J.H. Kang, J.-H. Kim et al., Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal–organic framework. J. Ind. Eng. Chem. 84, 179–184 (2020). https://doi.org/10.1016/j.jiec.2019.12.032
T. Wang, M. Chang, T. Yan, Y. Ying, Q. Yang et al., Calcium-based metal–organic framework for efficient capture of sulfur hexafluoride at low concentrations. Ind. Eng. Chem. Res. 60, 5976–5983 (2021). https://doi.org/10.1021/acs.iecr.1c00662
Y. Wu, S. Wang, W. Zhang, S. Chen, Z. Zhang et al., Enhancing perfluorinated electron specialty gases separation selectivity in ultra-microporous metal organic framework. Sep. Purif. Technol. 289, 120739 (2022). https://doi.org/10.1016/j.seppur.2022.120739
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953). https://doi.org/10.1063/1.1699114
P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma, Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 117, 406–413 (2009). https://doi.org/10.1016/j.micromeso.2008.07.029
M. Åhlén, E. Kapaca, D. Hedbom, T. Willhammar, M. Strømme et al., Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200. Microporous Mesoporous Mater. 329, 111548 (2022). https://doi.org/10.1016/j.micromeso.2021.111548
T.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen et al., Mesoporous fluorinated metal-organic frameworks with exceptional adsorption of fluorocarbons and CFCs. Angew. Chem. Int. Ed. 54, 13902–13906 (2015). https://doi.org/10.1002/anie.201505149
M. Chang, T. Yan, Y. Wei, J.-X. Wang, D. Liu et al., Metal–organic framework-based single-molecule SF6 trap for record SF6 capture. Chem. Mater. 34, 9134–9143 (2022). https://doi.org/10.1021/acs.chemmater.2c02004
B.S. Whitehead, W.W. Brennessel, S.S. Michtavy, H.A. Silva, J. Kim et al., Selective adsorption of fluorinated super greenhouse gases within a metal-organic framework with dynamic corrugated ultramicropores. Chem. Sci. 15, 5964–5972 (2024). https://doi.org/10.1039/d3sc07007g
A. Yadav, S. Kumari, P. Yadav, A. Hazra, A. Chakraborty et al., Open metal site (OMS)-inspired investigation of adsorption and catalytic functions in a porous metal-organic framework (MOF). Dalton Trans. 51, 15496–15506 (2022). https://doi.org/10.1039/d2dt02098j
Ü. Kökçam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali et al., Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications. Chem. Soc. Rev. 49, 2751–2798 (2020). https://doi.org/10.1039/c9cs00609e
J.-W. Yan, S.-Q. Gang, Z.-Y. Liu, H.-Y. Xu, R. Wang et al., An In(III)-MOF based on pore engineering for efficient capture SF6 from SF6/N2 mixture. Sep. Purif. Technol. 327, 124929 (2023). https://doi.org/10.1016/j.seppur.2023.124929
Y.-S. Bae, O.K. Farha, A.M. Spokoyny, C.A. Mirkin, J.T. Hupp et al., Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 35, 4135–4137 (2008). https://doi.org/10.1039/B805785K
M.-B. Kim, S.-J. Lee, C.Y. Lee, Y.-S., Bae High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites. Microporous Mesoporous Mater. 190, 356–361 (2014). https://doi.org/10.1016/j.micromeso.2014.02.028
Z. Ye, J. Yao, W. Zheng, W. Yuan, J. Guan et al., The preparation and adsorption performance of Co-doped MIL-101(Cr) for low-concentration C3F8. Chem. Eng. Sci. 282, 119302 (2023). https://doi.org/10.1016/j.ces.2023.119302
N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo et al., Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 281, 669–677 (2015). https://doi.org/10.1016/j.cej.2015.07.020
P. Liu, T. Zhao, K. Cai, P. Chen, F. Liu et al., Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6. Chem. Eng. J. 437, 135364 (2022). https://doi.org/10.1016/j.cej.2022.135364
H. Li, Z. Lin, X. Zhou, X. Wang, Y. Li et al., Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chem. Eng. J. 307, 537–543 (2017). https://doi.org/10.1016/j.cej.2016.08.128
J. Ren, M. Chang, W. Zeng, Y. Xia, D. Liu et al., Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture. Chem. Mater. 33, 5108–5114 (2021). https://doi.org/10.1021/acs.chemmater.1c01139
X. Zhang, Y.-L. Zhao, X.-Y. Li, X. Bai, Q. Chen et al., Recovery of high-purity SF6 from humid SF6/N2 mixture within a Co(II)-pyrazolate framework. J. Am. Chem. Soc. 146, 19303–19309 (2024). https://doi.org/10.1021/jacs.4c05075
S.-M. Li, Q. Zhang, H.-C. Jiang, Q.-L. Ni, L.-C. Gui et al., Constructing local nanomolecular trap in a scalable, low-cost, and ultramicroporous metal–organic framework for efficient capture of greenhouse gases SF6 and CO2. Chem. Eng. J. 496, 154026 (2024). https://doi.org/10.1016/j.cej.2024.154026
S.-T. Zheng, R.-Y. Jiang, Y. Jiang, S. Ni, G.-W. Guan et al., Methyl-functionalized microporous metal-organic framework for efficient SF6/N2 separation. Sep. Purif. Technol. 318, 123957 (2023). https://doi.org/10.1016/j.seppur.2023.123957
M.-B. Kim, K.-M. Kim, T.-H. Kim, T.-U. Yoon, E.-J. Kim et al., Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metal-organic framework. Chem. Eng. J. 339, 223–229 (2018). https://doi.org/10.1016/j.cej.2018.01.129
H. Wang, L. Yu, Y. Lin, J. Peng, S.J. Teat et al., Adsorption of fluorocarbons and chlorocarbons by highly porous and robust fluorinated zirconium metal-organic frameworks. Inorg. Chem. 59, 4167–4171 (2020). https://doi.org/10.1021/acs.inorgchem.0c00018
A. Cholach, D. Yakovin, Removal of CF4 from NF3 at the phase interface. J. Taiwan Inst. Chem. Eng. 131, 104178 (2022). https://doi.org/10.1016/j.jtice.2021.104178
N.J. Ianno, K.E. Greenberg, J.T. Verdeyen, Comparison of the etching and plasma characteristics of discharges in CF4 and NF3. J. Electrochem. Soc. 128, 2174–2179 (1981). https://doi.org/10.1149/1.2127212
X.-Y. Yang, L.-H. Chen, Y. Li, J.C. Rooke, C. Sanchez et al., Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/C6CS00829A
Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee et al., Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: core MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019). https://doi.org/10.1021/acs.jced.9b00835
Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury et al., Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014). https://doi.org/10.1021/cm502594j
A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A.I.I.I. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992). https://doi.org/10.1021/ja00051a040
S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990). https://doi.org/10.1021/j100389a010
A.I. Skoulidas, D.S. Sholl, Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J. Phys. Chem. A 107, 10132–10141 (2003). https://doi.org/10.1021/jp0354301
J.J. Hurly, Viscosity and speed of sound of gaseous nitrous oxide and nitrogen trifluoride measured with a Greenspan viscometer. Int. J. Thermophys. 25, 625–641 (2004). https://doi.org/10.1023/B:IJOT.0000034229.03525.aa
H. Demir, S. Keskin, Zr-MOFs for CF4/CH4, CH4/H2, and CH4/N2 separation: towards the goal of discovering stable and effective adsorbents. Mol. Syst. Des. Eng. 6, 627–642 (2021). https://doi.org/10.1039/d1me00060h
Z. Zheng, Z. Rong, N. Rampal, C. Borgs, J.T. Chayes et al., A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e202311983 (2023). https://doi.org/10.1002/anie.202311983
K. Lan, D. Zhao, Functional ordered mesoporous materials: present and future. Nano Lett. 22, 3177–3179 (2022). https://doi.org/10.1021/acs.nanolett.2c00902
Y. Zhu, Y. Zhou, Z. Ji, W. Zhang, M. Wu, A microporous framework with aromatic pores for one-step purification of C2F6 from CF3CH2F/CF3CHF2/C2F6 mixture. Sep. Purif. Technol. 353, 128373 (2025). https://doi.org/10.1016/j.seppur.2024.128373
W. Xia, Y. Yang, L. Sheng, Z. Zhou, L. Chen et al., Temperature-dependent molecular sieving of fluorinated propane/propylene mixtures by a flexible-robust metal-organic framework. Sci. Adv. 10, eadj6473 (2024). https://doi.org/10.1126/sciadv.adj6473
A.J. Sicard, R.T. Baker, Fluorocarbon refrigerants and their syntheses: past to present. Chem. Rev. 120, 9164–9303 (2020). https://doi.org/10.1021/acs.chemrev.9b00719
D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008). https://doi.org/10.1039/b711844a
H. Li, L. Li, R.-B. Lin, G. Ramirez, W. Zhou et al., Microporous metal-organic framework with dual functionalities for efficient separation of acetylene from light hydrocarbon mixtures. ACS Sustain. Chem. Eng. 7, 4897–4902 (2019). https://doi.org/10.1021/acssuschemeng.8b05480
B. Li, X. Cui, D. O’Nolan, H.-M. Wen, M. Jiang et al., An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29, 1704210 (2017). https://doi.org/10.1002/adma.201704210
Z. Bao, J. Wang, Z. Zhang, H. Xing, Q. Yang et al., Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks. Angew. Chem. Int. Ed. 57, 16020–16025 (2018). https://doi.org/10.1002/anie.201808716
D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota et al., Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008). https://doi.org/10.1002/anie.200705822
W. Wang, X.-H. Xiong, N.-X. Zhu, Z. Zeng, Z.-W. Wei et al., A rare flexible metal-organic framework based on a tailorable Mn8-cluster showing smart responsiveness to aromatic guests and capacity for gas separation. Angew. Chem. Int. Ed. 61, e202201766 (2022). https://doi.org/10.1002/anie.202201766
X.-W. Zhang, D.-D. Zhou, J.-P. Zhang, Tuning the gating energy barrier of metal-organic framework for molecular sieving. Chem 7, 1006–1019 (2021). https://doi.org/10.1016/j.chempr.2020.12.025
L. Bondorf, J.L. Fiorio, V. Bon, L. Zhang, M. Maliuta et al., Isotope-selective pore opening in a flexible metal-organic framework. Sci. Adv. 8, eabn7035 (2022). https://doi.org/10.1126/sciadv.abn7035
D.-D. Zhou, J.-P. Zhang, On the role of flexibility for adsorptive separation. Acc. Chem. Res. 55, 2966–2977 (2022). https://doi.org/10.1021/acs.accounts.2c00418
A. Ebadi Amooghin, H. Sanaeepur, M. Ghomi, R. Luque, H. Garcia et al., Flexible–robust MOFs/HOFs for challenging gas separations. Coord. Chem. Rev. 505, 215660 (2024). https://doi.org/10.1016/j.ccr.2024.215660
C. Jiang, J.-X. Wang, D. Liu, E. Wu, X.-W. Gu et al., Supramolecular entanglement in a hydrogen-bonded organic framework enables flexible-robust porosity for highly efficient purification of natural gas. Angew. Chem. Int. Ed. 63, e202404734 (2024). https://doi.org/10.1002/anie.202404734
S.-M. Wang, Q.-Y. Yang, A copper-based metal-organic framework for upgrading natural gas through the recovery of C2H6 and C3H8. Green Chem. Eng. 4, 81–87 (2023). https://doi.org/10.1016/j.gce.2022.04.006
G. Mehlana, S.A. Bourne, G. Ramon, A new class of thermo- and solvatochromic metal–organic frameworks based on 4-(pyridin-4-yl)benzoic acid. Dalton Trans. 41, 4224–4231 (2012). https://doi.org/10.1039/C2DT12016J
S. Nandi, S. Collins, D. Chakraborty, D. Banerjee, P.K. Thallapally et al., Ultralow parasitic energy for postcombustion CO2 capture realized in a nickel isonicotinate metal-organic framework with excellent moisture stability. J. Am. Chem. Soc. 139, 1734–1737 (2017). https://doi.org/10.1021/jacs.6b10455
F.M. Amombo Noa, O. Cheung, M. Åhlén, E. Ahlberg, P. Nehla et al., A hexagon based Mn(II) rod metal–organic framework–structure, SF6 gas sorption, magnetism and electrochemistry. Chem. Commun. 59, 2106–2109 (2023). https://doi.org/10.1039/D2CC06916D
X. Zheng, Y. Shen, S. Wang, K. Huang, D. Cao, Selective adsorption of SF6 in covalent- and metal–organic frameworks. Chin. J. Chem. Eng. 39, 88–95 (2021). https://doi.org/10.1016/j.cjche.2021.03.010
P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 27, 2820–2822 (2007). https://doi.org/10.1039/B704325B
P.-J. Kim, Y.-W. You, H. Park, J.-S. Chang, Y.-S. Bae et al., Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule. Chem. Eng. J. 262, 683–690 (2015). https://doi.org/10.1016/j.cej.2014.09.123
P. Chowdhury, C. Bikkina, S. Gumma, Gas adsorption properties of the chromium-based metal organic framework MIL-101. J. Phys. Chem. C 113, 6616–6621 (2009). https://doi.org/10.1021/jp811418r
H. Wang, J. Getzschmann, I. Senkovska, S. Kaskel, Structural transformation and high pressure methane adsorption of Co2(1, 4-bdc)2dabco. Microporous Mesoporous Mater. 116, 653–657 (2008). https://doi.org/10.1016/j.micromeso.2008.05.037
M. Åhlén, F.M. Amombo Noa, L. Öhrström, D. Hedbom, M. Strømme et al., Pore size effect of 1, 3, 6, 8-tetrakis(4-carboxyphenyl)Pyrene-based metal-organic frameworks for enhanced SF6 adsorption with high selectivity. Microporous Mesoporous Mater. 343, 112161 (2022). https://doi.org/10.1016/j.micromeso.2022.112161
J.M. Calm, The next generation of refrigerants–Historical review, considerations, and outlook. Int. J. Refrig. 31, 1123–1133 (2008). https://doi.org/10.1016/j.ijrefrig.2008.01.013
B.J. Gareau, A critical review of the successful CFC phase-out versus the delayed methyl bromide phase-out in the Montreal protocol. Int. Environ. Agreem. Polit. Law Econ. 10, 209–231 (2010). https://doi.org/10.1007/s10784-010-9120-z
R.J. Cicerone, R.S. Stolarski, S. Walters, Stratospheric ozone destruction by man-made chlorofluoromethanes. Science 185, 1165–1167 (1974). https://doi.org/10.1126/science.185.4157.1165
R.K. Motkuri, H.V.R. Annapureddy, M. Vijaykumar, H.T. Schaef, P.F. Martin et al., Fluorocarbon adsorption in hierarchical porous frameworks. Nat. Commun. 5, 4368 (2014). https://doi.org/10.1038/ncomms5368
X.-H. Xiong, L. Song, W. Wang, H.-T. Zheng, L. Zhang et al., Capture fluorocarbon and chlorofluorocarbon from air using DUT-67 for safety and semi-quantitative analysis. Adv. Sci. 11, e2308123 (2024). https://doi.org/10.1002/advs.202308123
Y.-Y. Xiong, R. Krishna, T. Pham, K.A. Forrest, C.-X. Chen et al., Pore-nanospace engineering of mixed-ligand metal–organic frameworks for high adsorption of hydrofluorocarbons and hydrochlorofluorocarbons. Chem. Mater. 34, 5116–5124 (2022). https://doi.org/10.1021/acs.chemmater.2c00601
C.-X. Chen, S.-P. Zheng, Z.-W. Wei, C.-C. Cao, H.-P. Wang et al., A robust metal-organic framework combining open metal sites and polar groups for methane purification and CO2/fluorocarbon capture. Chemistry 23, 4060–4064 (2017). https://doi.org/10.1002/chem.201606038
D.K.J.A. Wanigarathna, J. Gao, B. Liu, Fluorocarbon separation in a thermally robust zirconium carboxylate metal-organic framework. Chem. Asian J. 13, 977–981 (2018). https://doi.org/10.1002/asia.201800337
C.-X. Chen, Q.-F. Qiu, C.-C. Cao, M. Pan, H.-P. Wang et al., Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chem. Commun. 53, 11403–11406 (2017). https://doi.org/10.1039/C7CC06352K
J.E. Sosa, C. Malheiro, P.J. Castro, R.P.P.L. Ribeiro, M.M. Piñeiro et al., Exploring the potential of metal-organic frameworks for the separation of blends of fluorinated gases with high global warming potential. Glob. Chall. 7, 2200107 (2022). https://doi.org/10.1002/gch2.202200107
S. Cai, S. Tian, Y. Lu, G. Wang, Y. Pu et al., Molecular simulations of adsorption and energy storage of R1234yf, R1234ze(z), R134a, R32, and their mixtures in M-MOF-74 (M = Mg, Ni) nanops. Sci. Rep. 10, 7265 (2020). https://doi.org/10.1038/s41598-020-64187-x
J.M. Vicent-Luna, A Luna-Triguero adsorption characteristics of refrigerants for thermochemical energy storage in metal–organic frameworks. ACS Appl. Eng. Mater. 2, 542–552 (2024). https://doi.org/10.1021/acsaenm.3c00474
Q. Wang, S. Tang, Energy storage analysis of R125 in UIO-66 and MOF-5 nanops: a molecular simulation study. Open Chem. 17, 229–234 (2019). https://doi.org/10.1515/chem-2019-0026
J. Zheng, D. Barpaga, B.A. Trump, M. Shetty, Y. Fan et al., Molecular insight into fluorocarbon adsorption in pore expanded metal-organic framework analogs. J. Am. Chem. Soc. 142, 3002–3012 (2020). https://doi.org/10.1021/jacs.9b11963
J. Zheng, D. Barpaga, O.Y. Gutiérrez, N.D. Browning, B.L. Mehdi et al., Exceptional fluorocarbon uptake with mesoporous metal–organic frameworks for adsorption-based cooling systems. ACS Appl. Energy Mater. 1, 5853–5858 (2018). https://doi.org/10.1021/acsaem.8b01282
Z.-W. Mo, H.-L. Zhou, D.-D. Zhou, R.-B. Lin, P.-Q. Liao et al., Mesoporous metal-organic frameworks with exceptionally high working capacities for adsorption heat transformation. Adv. Mater. 30, 1704350 (2018). https://doi.org/10.1002/adma.201704350
R.-B. Lin, T.-Y. Li, H.-L. Zhou, C.-T. He, J.-P. Zhang et al., Tuning fluorocarbon adsorption in new isoreticular porous coordination frameworks for heat transformation applications. Chem. Sci. 6, 2516–2521 (2015). https://doi.org/10.1039/c4sc03985h
J. Zheng, R.S. Vemuri, L. Estevez, P.K. Koech, T. Varga et al., Pore-engineered metal-organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications. J. Am. Chem. Soc. 139, 10601–10604 (2017). https://doi.org/10.1021/jacs.7b04872
W. Xiang, Y. Zhang, Y. Chen, C.-J. Liu, X. Tu, Synthesis, characterization and application of defective metal–organic frameworks: current status and perspectives. J. Mater. Chem. A 8, 21526–21546 (2020). https://doi.org/10.1039/d0ta08009h
Y. Fu, Y. Yao, A.C. Forse, J. Li, K. Mochizuki et al., Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 14, 2386 (2023). https://doi.org/10.1038/s41467-023-38155-8
J.J. Jenks, R.K. Motkuri, W. TeGrotenhuis, B.K. Paul, B.P. McGrail, Simulation and experimental study of metal organic frameworks used in adsorption cooling. Heat Transf. Eng. 38, 1305–1315 (2017). https://doi.org/10.1080/01457632.2016.1242965
J. Xie, F. Sun, C. Wang, Q. Pan, Stability and hydrocarbon/fluorocarbon sorption of a metal-organic framework with fluorinated channels. Mater. (Basel) 9, 327 (2016). https://doi.org/10.3390/ma9050327
K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007). https://doi.org/10.1021/ja071174k
J. Hu, C. Liu, L. Liu, Q. Li, Thermal energy storage of R1234yf, R1234ze, R134a and R32/MOF-74 nanofluids: a molecular simulation study. Mater. (Basel) 11, 1164 (2018). https://doi.org/10.3390/ma11071164
M. Fischer, F. Hoffmann, M. Fröba, New microporous materials for acetylene storage and C2H2/CO2 separation: insights from molecular simulations. ChemPhysChem 11, 2220–2229 (2010). https://doi.org/10.1002/cphc.201000126
Y. Chen, Z. Qiao, D. Lv, C. Duan, X. Sun et al., Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chem. Eng. J. 328, 360–367 (2017). https://doi.org/10.1016/j.cej.2017.07.044
W. Fan, S.B. Peh, Z. Zhang, H. Yuan, Z. Yang et al., Tetrazole-functionalized zirconium metal-organic cages for efficient C2H2/C2H4 and C2H2/CO2 separations. Angew. Chem. Int. Ed. 60, 17338–17343 (2021). https://doi.org/10.1002/anie.202102585
C.-X. Chen, Z. Wei, J.-J. Jiang, Y.-Z. Fan, S.-P. Zheng et al., Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew. Chem. Int. Ed. 55, 9932–9936 (2016). https://doi.org/10.1002/anie.201604023
E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown et al., Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012). https://doi.org/10.1126/science.1217544
Q.-F. Qiu, C.-X. Chen, Z. Zeng, Z.-W. Wei, N.-X. Zhu et al., A flexible-robust copper(II) metal-organic framework constructed from a fluorinated ligand for CO2/R22 capture. Inorg. Chem. 59, 14856–14860 (2020). https://doi.org/10.1021/acs.inorgchem.0c02123
D. Morelli Venturi, F. Costantino, Recent advances in the chemistry and applications of fluorinated metal-organic frameworks (F-MOFs). RSC Adv. 13, 29215–29230 (2023). https://doi.org/10.1039/d3ra04940j
P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvåg, Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 9, 1164 (2006). https://doi.org/10.1039/B515434K
L. Ge, W. Zhou, V. Rudolph, Z. Zhu, Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. J. Mater. Chem. A 1, 6350–6358 (2013). https://doi.org/10.1039/C3TA11131H
A. Alowasheeir, N.L. Torad, T. Asahi, S.M. Alshehri, T. Ahamad et al., Synthesis of millimeter-scale ZIF-8 single crystals and their reversible crystal structure changes. Sci. Technol. Adv. Mater. 25, 2292485 (2024). https://doi.org/10.1080/14686996.2023.2292485
R.P. Ojha, P.-A. Lemieux, P.K. Dixon, A.J. Liu, D.J. Durian, Statistical mechanics of a gas-fluidized p. Nature 427, 521–523 (2004). https://doi.org/10.1038/nature02294
C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier et al., Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002). https://doi.org/10.1021/ja0276974
X.-H. Xiong, Z.-W. Wei, W. Wang, L.-L. Meng, C.-Y. Su, Scalable and depurative zirconium metal-organic framework for deep flue-gas desulfurization and SO2 recovery. J. Am. Chem. Soc. 145, 14354–14364 (2023). https://doi.org/10.1021/jacs.3c03309
S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu et al., Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 137, 3177–3180 (2015). https://doi.org/10.1021/ja512762r
J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco et al., Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013). https://doi.org/10.1021/ja4050828
H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang et al., Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440–13443 (2015). https://doi.org/10.1021/jacs.5b08773
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005). https://doi.org/10.1126/science.1116275
T.N. Ang, S. Baroutian, B.R. Young, M.M. Hyland, M. Taylor et al., Adsorptive separation of volatile anaesthetics: a review of current developments. Sep. Purif. Technol. 211, 491–503 (2019). https://doi.org/10.1016/j.seppur.2018.10.012
A. Jerath, N.D. Ferguson, B. Cuthbertson, Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensive Care Med. 46, 1563–1566 (2020). https://doi.org/10.1007/s00134-020-06154-8
D. Bucher, C. Pasel, M. Luckas, J. Bentgens, D. Bathen, Adsorption of inhalation anesthetics (fluranes and ethers) on activated carbons and zeolites at trace level concentrations. J. Chem. Eng. Data 62, 1832–1841 (2017). https://doi.org/10.1021/acs.jced.7b00079
R. Ortmann, C. Pasel, M. Luckas, R. Heimböckel, S. Kraas et al., Adsorption and desorption of isoflurane on carbonaceous adsorbents and zeolites at low concentrations in gas phase. J. Chem. Eng. Data 61, 686–692 (2016). https://doi.org/10.1021/acs.jced.5b00844
M. Mehrata, C. Moralejo, W.A. Anderson, Adsorbent comparisons for anesthetic gas capture in hospital air emissions. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 51, 805–809 (2016). https://doi.org/10.1080/10934529.2016.1181438
Francis Duval Smith MSN, Management of exposure to waste anesthetic gases. AORN J. 91, 482–494 (2010). https://doi.org/10.1016/j.aorn.2009.10.022
M.P. Sulbaek Andersen, S.P. Sander, O.J. Nielsen, D.S. Wagner, T.J. Sanford Jr. et al., Inhalation anaesthetics and climate change. Br. J. Anaesth. 105, 760–766 (2010). https://doi.org/10.1093/bja/aeq259
M.K. Vollmer, T.S. Rhee, M. Rigby, D. Hofstetter, M. Hill et al., Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015). https://doi.org/10.1002/2014GL062785
T. Langbein, H. Sonntag, D. Trapp, A. Hoffmann, W. Malms et al., Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br. J. Anaesth. 82, 66–73 (1999). https://doi.org/10.1093/bja/82.1.66
M. Charlesworth, F. Swinton, Anaesthetic gases, climate change, and sustainable practice. Lancet Planet. Health 1, e216–e217 (2017). https://doi.org/10.1016/S2542-5196(17)30040-2
A.A. Lindley, A. McCulloch, Regulating to reduce emissions of fluorinated greenhouse gases. J. Fluor. Chem. 126, 1457–1462 (2005). https://doi.org/10.1016/j.jfluchem.2005.09.011
B.F. Abrahams, A.D. Dharma, P.S. Donnelly, T.A. Hudson, C.J. Kepert et al., Tunable porous coordination polymers for the capture, recovery and storage of inhalation anesthetics. Chemistry 23, 7871–7875 (2017). https://doi.org/10.1002/chem.201700389
T.-H. Chen, W. Kaveevivitchai, A.J. Jacobson, O.Š Miljanić, Adsorption of fluorinated anesthetics within the pores of a molecular crystal. Chem. Commun. 51, 14096–14098 (2015). https://doi.org/10.1039/c5cc04885k
C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010). https://doi.org/10.1039/C0NJ00275E
Y. Hua, N. Gargiulo, A. Peluso, P. Aprea, M. Eić et al., Adsorption behavior of halogenated anesthetic and water vapor on Cr-based MOF (MIL-101) adsorbent. Part I. equilibrium and breakthrough characterizations. Chem. Ing. Tech. 88, 1730–1738 (2016). https://doi.org/10.1002/cite.201600051
N. Gargiulo, A. Peluso, P. Aprea, Y. Hua, D. Filipović et al., A chromium-based metal organic framework as a potential high performance adsorbent for anaesthetic vapours. RSC Adv. 4, 49478–49484 (2014). https://doi.org/10.1039/C4RA05905K
R. Szpera, D.F.J. Moseley, L.B. Smith, A.J. Sterling, V. Gouverneur, The fluorination of C−H bonds: developments and perspectives. Angew. Chem. Int. Ed. 58, 14824–14848 (2019). https://doi.org/10.1002/anie.201814457
T. Liang, C.N. Neumann, T. Ritter, Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013). https://doi.org/10.1002/anie.201206566
M. Bobek, I. Kavai, E. De Clercq, Synthesis and biological activity of 5-(2, 2-difluorovinyl)-2’-deoxyuridine. J. Med. Chem. 30, 1494–1497 (1987). https://doi.org/10.1021/jm00391a036
G.J.M. Velders, D.W. Fahey, J.S. Daniel, M. McFarland, S.O. Andersen, The large contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci. U.S.A. 106, 10949–10954 (2009). https://doi.org/10.1073/pnas.0902817106
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, e1230444 (2013). https://doi.org/10.1126/science.1230444
P. Kittikhunnatham, G.A. Leith, A. ur, J.K. Naglic, C.R. Martin et al., A metal-organic framework (MOF)-based multifunctional cargo vehicle for reactive-gas delivery and catalysis. Angew. Chem. Int. Ed. 61, e202113909 (2022). https://doi.org/10.1002/anie.202113909
M.E. Zick, J.-H. Lee, M.I. Gonzalez, E.O. Velasquez, A.A. Uliana et al., Fluoroarene separations in metal-organic frameworks with two proximal Mg2+ coordination sites. J. Am. Chem. Soc. 143, 1948–1958 (2021). https://doi.org/10.1021/jacs.0c11530
K.T. Keasler, M.E. Zick, E.E. Stacy, J. Kim, J.-H. Lee et al., Handling fluorinated gases as solid reagents using metal-organic frameworks. Science 381, 1455–1461 (2023). https://doi.org/10.1126/science.adg8835
S. Choi, T. Kim, H. Ji, H.J. Lee, M. Oh, Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 138, 14434–14440 (2016). https://doi.org/10.1021/jacs.6b08821
P. Falcaro, K. Okada, T. Hara, K. Ikigaki, Y. Tokudome et al., Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342–348 (2017). https://doi.org/10.1038/nmat4815
Y. Gu, Y.-N. Wu, L. Li, W. Chen, F. Li et al., Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 56, 15658–15662 (2017). https://doi.org/10.1002/anie.201709738
M.-S. Yao, K.-I. Otake, T. Koganezawa, M. Ogasawara, H. Asakawa et al., Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms. Proc. Natl. Acad. Sci. U.S.A. 120, e2305125120 (2023). https://doi.org/10.1073/pnas.2305125120
A.M. Wright, M.T. Kapelewski, S. Marx, O.K. Farha, W. Morris, Transitioning metal-organic frameworks from the laboratory to market through applied research. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01947-4
D. Liu, J. Pei, X. Zhang, X.-W. Gu, H.-M. Wen et al., Scalable green synthesis of robust ultra-microporous Hofmann clathrate material with record C3H6 storage density for efficient C3H6/C3H8 separation. Angew. Chem. Int. Ed. 62, e202218590 (2023). https://doi.org/10.1002/anie.202218590
H.-M. Wen, C. Yu, M. Liu, C. Lin, B. Zhao et al., Construction of negative electrostatic pore environments in a scalable, stable and low-cost metal-organic framework for one-step ethylene purification from ternary mixtures. Angew. Chem. Int. Ed. 62, e202309108 (2023). https://doi.org/10.1002/anie.202309108
E. Wu, X.-W. Gu, D. Liu, X. Zhang, H. Wu et al., Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat. Commun. 14, 6146 (2023). https://doi.org/10.1038/s41467-023-41692-x
A. Bétard, R.A. Fischer, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012). https://doi.org/10.1021/cr200167v
S. Yang, L. Peng, O.A. Syzgantseva, O. Trukhina, I. Kochetygov et al., Preparation of highly porous metal-organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 142, 13415–13425 (2020). https://doi.org/10.1021/jacs.0c02371
S. Qiu, M. Xue, G. Zhu, Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014). https://doi.org/10.1039/C4CS00159A
Q. Ma, T. Zhang, B. Wang, Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 5, 1070–1091 (2022). https://doi.org/10.1016/j.matt.2022.02.014
Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000). https://doi.org/10.1016/S0142-727X(99)00067-3