A Natural Polymer Captor for Immobilizing Polysulfide/Polyselenide in Working Li–SeS2 Batteries
Corresponding Author: Hao Wu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 104
Abstract
SeS2 has become a promising cathode material owing to its enhanced electrical conductivity over sulfur and higher theoretical specific capacity than selenium; however, the working Li–SeS2 batteries have to face the practical challenges from the severe shuttling of soluble dual intermediates of polysulfide and polyselenide, especially in high-SeS2-loading cathodes. Herein, a natural organic polymer, Nicandra physaloides pectin (NPP), is proposed to serve as an effective polysulfide/polyselenide captor to address the shuttling issues. Informed by theoretical calculations, NPP is competent to provide a Lewis base-based strong binding interaction with polysulfides/polyselenides via forming lithium bonds, and it can be homogeneously deposited onto a three-dimensional double-carbon conductive scaffold to finally constitute a polysulfide/polyselenide-immobilizing interlayer. Operando spectroscopy analysis validates the enhanced polysulfide/polyselenide trapping and high conversion efficiency on the constructed interlayer, hence bestowing the Li–SeS2 cells with ultrahigh rate capability (448 mAh g−1 at 10 A g−1), durable cycling lifespan (≈ 0.037% capacity attenuation rate per cycle), and high areal capacity (> 6.5 mAh cm−2) at high SeS2 loading of 15.4 mg cm−2. Importantly, pouch cells assembled with this interlayer exhibit excellent flexibility, decent rate capability with relatively low electrolyte-to-capacity ratio, and stable cycling life even under a low electrolyte condition, promising a low-cost, viable design protocol toward practical Li–SeS2 batteries.
Highlights:
1 Theoretical calculations reveal that Nicandra physaloides pectin can serve as Lewis base to realize strong interaction toward both lithium polysulfide and polyselenides.
2 Nicandra physaloides pectin is introduced into a conductive double-carbon self-supporting film to build an anchoring and regulating interlayer for Li–SeS2 batteries.
3 The Li–SeS2 pouch cells assembled with the interlayers deliver good flexibility and stability to demonstrate a viable strategy for developing working Li–SeS2 batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Fang, S. Zhao, Z. Sun, D.W. Wang, H.M. Cheng et al., More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29(48), 1606823 (2017). https://doi.org/10.1002/adma.201606823
- W. Ren, W. Ma, S. Zhang, B. Tang, Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022
- A. Eftekhari, The rise of lithium–selenium batteries. Sustain. Energy Fuels 1(1), 14–29 (2017). https://doi.org/10.1039/c6se00094k
- G.-L. Xu, J. Liu, R. Amine, Z. Chen, K. Amine, Selenium and selenium–sulfur chemistry for rechargeable lithium batteries: interplay of cathode structures, electrolytes, and interfaces. ACS Energy Lett. 2(3), 605–614 (2017). https://doi.org/10.1021/acsenergylett.6b00642
- X. Gu, C. Lai, One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Mater. 23, 190–224 (2019). https://doi.org/10.1016/j.ensm.2019.05.013
- A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng et al., A new class of lithium and sodium rechargeable batteries based on selenium and selenium−sulfur as a positive electrode. J. Am. Chem. Soc. 134(10), 4505–4508 (2012). https://doi.org/10.1021/ja211766q
- J. He, W. Lv, Y. Chen, J. Xiong, K. Wen et al., Direct impregnation of SeS2 into a MOF-derived 3D nanoporous Co–N–C architecture towards superior rechargeable lithium batteries. J. Mater. Chem. A 6(22), 10466–10473 (2018). https://doi.org/10.1039/c8ta02434k
- M. Wang, Y. Guo, B. Wang, H. Luo, X. Zhang et al., An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li–SeS2 batteries. J. Mater. Chem. A 8(6), 2969–2983 (2020). https://doi.org/10.1039/c9ta11124g
- Y. Cui, A. Abouimrane, J. Lu, T. Bolin, Y. Ren et al., (De)Lithiation mechanism of Li/SeSx (x = 0−7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 135(21), 8047–8056 (2013). https://doi.org/10.1021/ja402597g
- Z. Zhang, S. Jiang, Y. Lai, J. Li, J. Song et al., Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance. J. Power Sources 284, 95–102 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.019
- J. Hu, H. Zhong, X. Yan, L. Zhang, Confining selenium disulfide in 3D sulfur-doped mesoporous carbon for rechargeable lithium batteries. Appl. Surf. Sci. 457, 705–711 (2018). https://doi.org/10.1016/j.apsusc.2018.06.296
- H. Zhang, L. Zhou, X. Huang, H. Song, C. Yu, Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Res. 9(12), 3725–3734 (2016). https://doi.org/10.1007/s12274-016-1243-2
- J. Hu, Y. Ren, L. Zhang, Dual-confined SeS2 cathode based on polyaniline-assisted double-layered micro/mesoporous carbon spheres for advanced Li–SeS2 battery. J. Power Sources 455, 227955 (2020). https://doi.org/10.1016/j.jpowsour.2020.227955
- Z. Li, J. Zhang, H.B. Wu, X.W.D. Lou, An improved Li-SeS2 battery with high energy density and long cycle life. Adv. Energy Mater. 7(15), 1700281 (2017). https://doi.org/10.1002/aenm.201700281
- Z. Li, J. Zhang, B.Y. Guan, X.W.D. Lou, Mesoporous carbon@titanium nitride hollow spheres as an efficient SeS2 host for advanced Li-SeS2 batteries. Angew. Chem. Int. Ed. 56(50), 16003–16007 (2017). https://doi.org/10.1002/anie.201709176
- T. Chen, W. Kong, M. Fan, Z. Zhang, L. Wang et al., Chelation-assisted formation of multi-yolk–shell Co4N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS2 batteries. J. Mater. Chem. A 7(35), 20302–20309 (2019). https://doi.org/10.1039/c9ta07127j
- Y. Zhang, Y. Guo, B. Wang, Y. Wei, P. Jing et al., An integrated hybrid interlayer for polysulfides/selenides regulation toward advanced Li–SeS2 batteries. Carbon 161, 413–422 (2020). https://doi.org/10.1016/j.carbon.2020.01.102
- J. Zhang, Z. Li, X.W.D. Lou, A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew. Chem. Int. Ed. 56(45), 14107–14112 (2017). https://doi.org/10.1002/anie.201708105
- B. Guo, T. Yang, W. Du, Q. Ma, L.-Z. Zhang et al., Double-walled N-doped carbon@NiCo2S4 hollow capsules as SeS2 hosts for advanced Li–SeS2 batteries. J. Mater. Chem. A 7(19), 12276–12282 (2019). https://doi.org/10.1039/c9ta02695a
- X. Fu, W.H. Zhong, Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv. Energy Mater. 9(40), 1901774 (2019). https://doi.org/10.1002/aenm.201901774
- Q. Dong, R. Shen, C. Li, R. Gan, X. Ma et al., Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries. Small 14(52), 1804277 (2018). https://doi.org/10.1002/smll.201804277
- L. Ni, G. Yang, Q. Wang, S. Duan, C. Shen et al., Supramolecular complexation of polysulfides by β-cyclodextrin polymer functionalized graphene hybrid cathode for high-performance lithium-sulfur batteries. Energy Storage Mater. 21, 378–389 (2019). https://doi.org/10.1016/j.ensm.2018.12.002
- T. Liu, S. Sun, W. Song, X. Sun, Q. Niu et al., A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium–sulfur batteries. J. Mater. Chem. A 6(46), 23486–23494 (2018). https://doi.org/10.1039/c8ta08521h
- S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong et al., A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv. Mater. 30(45), 1804581 (2018). https://doi.org/10.1002/adma.201804581
- X. Fu, L. Scudiero, W.-H. Zhong, A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries. J. Mater. Chem. A 7(4), 1835–1848 (2019). https://doi.org/10.1039/c8ta11384j
- M. Chen, C. Li, X. Fu, W. Wei, X. Fan et al., Let it catch: a short-branched protein for efficiently capturing polysulfides in lithium-sulfur batteries. Adv. Energy Mater. 10(9), 1903642 (2020). https://doi.org/10.1002/aenm.201903642
- Y. Liu, H.B. Jiang, Z.P. Xu, Y.G. Cheng, S.W. Lv et al., New glycosides from the fruits of nicandra physaloides. Molecules 22(5), 828 (2017). https://doi.org/10.3390/molecules22050828
- L.-Q. Wang, Y. Wang, S.-Y. Gao, L.-H. Zhu, F. Wang et al., Phenolic amides with anti-Parkinson’s disease (PD) effects from Nicandra physaloides. J. Funct. Foods 31, 229–236 (2017). https://doi.org/10.1016/j.jff.2017.01.045
- Q. Niu, B. Wang, T. Li, X. Jin, Y. Chen, Structure and gel characterization of petic polysaccharide from nicandra physaloides (L.) gaertn seeds. Mod. Food Sci. Technol. 31(9), 68–73 (2015). https://doi.org/10.13982/j.mfst.1673-9078.2015.9.012
- M. Govindarajan, H.F. Khater, C. Panneerselvam, G. Benelli, One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res. Vet. Sci. 107, 95–101 (2016). https://doi.org/10.1016/j.rvsc.2016.05.017
- Z. Wang, Y. Dong, H. Li, Z. Zhao, H.B. Wu et al., Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014). https://doi.org/10.1038/ncomms6002
- H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- J. Liu, A. Wei, G. Pan, Q. Xiong, F. Chen et al., Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode. Nano-Micro Lett. 11(1), 64 (2019). https://doi.org/10.1007/s40820-019-0295-8
- X. Lin, K. Liu, S. Yin, Y. Qin, P. Shen et al., A novel pectic polysaccharide of jujube pomace: structural analysis and intracellular antioxidant activities. Antioxidants 9(2), 127 (2020). https://doi.org/10.3390/antiox9020127
- M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace et al., The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C 115(40), 19761–19781 (2011). https://doi.org/10.1021/jp2052618
- G. Li, M. Ling, Y. Ye, Z. Li, J. Guo et al., Acacia senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries. Adv. Energy Mater. 5(21), 1500878 (2015). https://doi.org/10.1002/aenm.201500878
- F. Huang, H. Liu, R. Zhang, L. Dong, L. Liu et al., Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydr. Polym. 206, 344–351 (2019). https://doi.org/10.1016/j.carbpol.2018.11.012
- L. Zhang, Y. Hu, X. Duan, T. Tang, Y. Shen et al., Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int. J. Biol. Macromol. 113, 1–7 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.084
- T.Z. Hou, W.T. Xu, X. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56(28), 8178–8182 (2017). https://doi.org/10.1002/anie.201704324
- T. Maihom, S. Kaewruang, N. Phattharasupakun, P. Chiochan, J. Limtrakul et al., Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium–sulfur batteries. J. Phys. Chem. C 122(13), 7033–7040 (2018). https://doi.org/10.1021/acs.jpcc.7b09392
- H. Cheng, B. Gu, M.P. Pennefather, T.X. Nguyen, N. Phan-Thien et al., Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 130, 452–458 (2017). https://doi.org/10.1016/j.matdes.2017.05.082
- X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu et al., Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
- J.P. Song, L. Wu, W.D. Dong, C.F. Li, L.H. Chen et al., MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium batteries. Nanoscale 11(14), 6970–6981 (2019). https://doi.org/10.1039/c9nr00924h
- M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng et al., A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27(37), 1702573 (2017). https://doi.org/10.1002/adfm.201702573
- M. Shi, S. Zhang, Y. Jiang, Z. Jiang, L. Zhang et al., Sandwiching sulfur into the dents between N, O Co-doped graphene layered blocks with strong physicochemical confinements for stable and high-rate Li–S batteries. Nano-Micro Lett. 12(1), 146 (2020). https://doi.org/10.1007/s40820-020-00477-3
- Z. Li, H.-Y. Zhou, F.-L. Zhao, T.-X. Wang, X. Ding et al., Three-dimensional covalent organic frameworks as host materials for lithium-sulfur batteries. Chin. J. Polym. Sci. 38(5), 550–557 (2020). https://doi.org/10.1007/s10118-020-2384-z
- R. Guan, L. Zhong, S. Wang, D. Han, M. Xiao et al., Synergetic covalent and spatial confinement of sulfur species by phthalazinone-containing covalent triazine frameworks for ultrahigh performance of Li-S batteries. ACS Appl. Mater. Interfaces 12(7), 8296–8305 (2020). https://doi.org/10.1021/acsami.9b21481
- G. Li, W. Lei, D. Luo, Y.-P. Deng, D. Wang et al., 3D Porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Adv. Energy Mater. 8(8), 1702381 (2018). https://doi.org/10.1002/aenm.201702381
- X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6(6), 1501636 (2016). https://doi.org/10.1002/aenm.201501636
- Y. Guo, Y. Zhang, Y. Sun, Y. Zhang, H. Wu, Graphene-nanoscroll-based Integrated and self-standing electrode with a sandwich structure for lithium sulfur batteries. Inorg. Chem. Front. 7(3), 592–596 (2020). https://doi.org/10.1039/c9qi01344j
- Y. Wei, B. Wang, Y. Zhang, M. Zhang, Q. Wang et al., Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li–S full batteries. Adv. Funct. Mater. 31, 2006033 (2021). https://doi.org/10.1002/adfm.202006033
- H. Wu, Y. Li, J. Ren, D. Rao, Q. Zheng et al., CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 55, 82–92 (2019). https://doi.org/10.1016/j.nanoen.2018.10.061
- G. Li, X. Wang, M.H. Seo, M. Li, L. Ma et al., Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 9(1), 705 (2018). https://doi.org/10.1038/s41467-018-03116-z
- L. Jin, G. Li, B. Liu, Z. Li, J. Zheng et al., A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer. J. Power Sources 355, 147–153 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.059
- Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
- K. Han, Z. Liu, J. Shen, Y. Lin, F. Dai et al., A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 25(3), 455–463 (2015). https://doi.org/10.1002/adfm.201402815
- S.-K. Park, J.-S. Park, Y.C. Kang, Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance. J. Mater. Chem. A 6(3), 1028–1036 (2018). https://doi.org/10.1039/c7ta09676c
- X. Wang, Y. Tan, Z. Liu, Y. Fan, M. Li et al., New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with enhanced conductivity. Small (2020). https://doi.org/10.1002/smll.202000266
- Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 32(6), 1905658 (2020). https://doi.org/10.1002/adma.201905658
- Y. Boyjoo, H. Shi, E. Olsson, Q. Cai, Z.S. Wu et al., Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium–sulfur batteries. Adv. Energy Mater. 10(20), 2000651 (2020). https://doi.org/10.1002/aenm.202000651
- G. Zhou, A. Yang, G. Gao, X. Yu, J. Xu et al., Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. Sci. Adv. 6(21), eaay5098 (2020). https://doi.org/10.1126/sciadv.aay5098
- D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu et al., MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 9(46), 1901940 (2019). https://doi.org/10.1002/aenm.201901940
- H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- Y. Zhao, W. Cai, Y. Fang, H. Ao, Y. Zhu et al., Sulfur-deficient TiS2-x for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem 6(8), 2231–2237 (2019). https://doi.org/10.1002/celc.201900269
- P. Jing, Q. Wang, B. Wang, X. Gao, Y. Zhang et al., Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159, 366–377 (2020). https://doi.org/10.1016/j.carbon.2019.12.060
- Y. Wang, P. Liang, H. Yang, W. Li, Z. Wang et al., Hollow CoP nanoparticles embedded in two–dimensional N-doped carbon arrays enabling advanced Li–SeS2 batteries with rapid kinetics. Mater. Today Energy 17, 100423 (2020). https://doi.org/10.1016/j.mtener.2020.100423
- Z. Shi, Z. Sun, J. Cai, Z. Fan, J. Jin et al., Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries. Adv. Funct. Mater. 31(4), 2006798 (2020). https://doi.org/10.1002/adfm.202006798
- H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 (2021). https://doi.org/10.1016/j.cej.2020.126802
- X. Chen, T. Hou, K.A. Persson, Q. Zhang, Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater. Today 22, 142–158 (2019). https://doi.org/10.1016/j.mattod.2018.04.007
- T. Yang, Y. Qi, W. Zhong, M. Tao, B. Guo et al., A strategy for polysulfides/polyselenides protection based on Co9S8@SiO2/C host in Na-SeS2 batteries. Adv. Funct. Mater. 31(2), 2001952 (2020). https://doi.org/10.1002/adfm.202001952
- A. Goldbach, L. Iton, M. Grimsditch, M.-L. Saboungi, The formation of Se2-: A new resonance raman feature in the photochemistry of zeolite-encapsulated selenium. J. Am. Chem. Soc. 118, 2004–2007 (1996). https://doi.org/10.1021/ja9531788
- C.-P. Yang, S. Xin, Y.-X. Yin, H. Ye, J. Zhang et al., An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem. Int. Ed. 52, 8363–8367 (2013). https://doi.org/10.1002/anie.201303147
- Y. Hao, D. Xiong, W. Liu, L. Fan, D. Li et al., Controllably designed “vice-electrode” interlayers harvesting high performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 9(46), 40273–40280 (2017). https://doi.org/10.1021/acsami.7b12710
- C. Yan, X.-B. Cheng, C.-Z. Zhao, J.-Q. Huang, S.-T. Yang et al., Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 327, 212–220 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.056
- L. Zhang, M. Ling, J. Feng, L. Mai, G. Liu et al., The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries. Energy Storage Mater. 11, 24–29 (2018). https://doi.org/10.1016/j.ensm.2017.09.001
- J.Y. Wei, X.Q. Zhang, L.P. Hou, P. Shi, B.Q. Li et al., Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries. Adv. Mater. 32(37), 2003012 (2020). https://doi.org/10.1002/adma.202003012
- Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao et al., Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555
- J. Liu, Z. Li, B. Jia, J. Zhu, W. Zhu et al., A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li–S batteries. J. Mater. Chem. A 8(13), 6303–6310 (2020). https://doi.org/10.1039/c9ta14240a
References
R. Fang, S. Zhao, Z. Sun, D.W. Wang, H.M. Cheng et al., More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29(48), 1606823 (2017). https://doi.org/10.1002/adma.201606823
W. Ren, W. Ma, S. Zhang, B. Tang, Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022
A. Eftekhari, The rise of lithium–selenium batteries. Sustain. Energy Fuels 1(1), 14–29 (2017). https://doi.org/10.1039/c6se00094k
G.-L. Xu, J. Liu, R. Amine, Z. Chen, K. Amine, Selenium and selenium–sulfur chemistry for rechargeable lithium batteries: interplay of cathode structures, electrolytes, and interfaces. ACS Energy Lett. 2(3), 605–614 (2017). https://doi.org/10.1021/acsenergylett.6b00642
X. Gu, C. Lai, One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Mater. 23, 190–224 (2019). https://doi.org/10.1016/j.ensm.2019.05.013
A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng et al., A new class of lithium and sodium rechargeable batteries based on selenium and selenium−sulfur as a positive electrode. J. Am. Chem. Soc. 134(10), 4505–4508 (2012). https://doi.org/10.1021/ja211766q
J. He, W. Lv, Y. Chen, J. Xiong, K. Wen et al., Direct impregnation of SeS2 into a MOF-derived 3D nanoporous Co–N–C architecture towards superior rechargeable lithium batteries. J. Mater. Chem. A 6(22), 10466–10473 (2018). https://doi.org/10.1039/c8ta02434k
M. Wang, Y. Guo, B. Wang, H. Luo, X. Zhang et al., An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li–SeS2 batteries. J. Mater. Chem. A 8(6), 2969–2983 (2020). https://doi.org/10.1039/c9ta11124g
Y. Cui, A. Abouimrane, J. Lu, T. Bolin, Y. Ren et al., (De)Lithiation mechanism of Li/SeSx (x = 0−7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 135(21), 8047–8056 (2013). https://doi.org/10.1021/ja402597g
Z. Zhang, S. Jiang, Y. Lai, J. Li, J. Song et al., Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance. J. Power Sources 284, 95–102 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.019
J. Hu, H. Zhong, X. Yan, L. Zhang, Confining selenium disulfide in 3D sulfur-doped mesoporous carbon for rechargeable lithium batteries. Appl. Surf. Sci. 457, 705–711 (2018). https://doi.org/10.1016/j.apsusc.2018.06.296
H. Zhang, L. Zhou, X. Huang, H. Song, C. Yu, Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Res. 9(12), 3725–3734 (2016). https://doi.org/10.1007/s12274-016-1243-2
J. Hu, Y. Ren, L. Zhang, Dual-confined SeS2 cathode based on polyaniline-assisted double-layered micro/mesoporous carbon spheres for advanced Li–SeS2 battery. J. Power Sources 455, 227955 (2020). https://doi.org/10.1016/j.jpowsour.2020.227955
Z. Li, J. Zhang, H.B. Wu, X.W.D. Lou, An improved Li-SeS2 battery with high energy density and long cycle life. Adv. Energy Mater. 7(15), 1700281 (2017). https://doi.org/10.1002/aenm.201700281
Z. Li, J. Zhang, B.Y. Guan, X.W.D. Lou, Mesoporous carbon@titanium nitride hollow spheres as an efficient SeS2 host for advanced Li-SeS2 batteries. Angew. Chem. Int. Ed. 56(50), 16003–16007 (2017). https://doi.org/10.1002/anie.201709176
T. Chen, W. Kong, M. Fan, Z. Zhang, L. Wang et al., Chelation-assisted formation of multi-yolk–shell Co4N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS2 batteries. J. Mater. Chem. A 7(35), 20302–20309 (2019). https://doi.org/10.1039/c9ta07127j
Y. Zhang, Y. Guo, B. Wang, Y. Wei, P. Jing et al., An integrated hybrid interlayer for polysulfides/selenides regulation toward advanced Li–SeS2 batteries. Carbon 161, 413–422 (2020). https://doi.org/10.1016/j.carbon.2020.01.102
J. Zhang, Z. Li, X.W.D. Lou, A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew. Chem. Int. Ed. 56(45), 14107–14112 (2017). https://doi.org/10.1002/anie.201708105
B. Guo, T. Yang, W. Du, Q. Ma, L.-Z. Zhang et al., Double-walled N-doped carbon@NiCo2S4 hollow capsules as SeS2 hosts for advanced Li–SeS2 batteries. J. Mater. Chem. A 7(19), 12276–12282 (2019). https://doi.org/10.1039/c9ta02695a
X. Fu, W.H. Zhong, Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv. Energy Mater. 9(40), 1901774 (2019). https://doi.org/10.1002/aenm.201901774
Q. Dong, R. Shen, C. Li, R. Gan, X. Ma et al., Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries. Small 14(52), 1804277 (2018). https://doi.org/10.1002/smll.201804277
L. Ni, G. Yang, Q. Wang, S. Duan, C. Shen et al., Supramolecular complexation of polysulfides by β-cyclodextrin polymer functionalized graphene hybrid cathode for high-performance lithium-sulfur batteries. Energy Storage Mater. 21, 378–389 (2019). https://doi.org/10.1016/j.ensm.2018.12.002
T. Liu, S. Sun, W. Song, X. Sun, Q. Niu et al., A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium–sulfur batteries. J. Mater. Chem. A 6(46), 23486–23494 (2018). https://doi.org/10.1039/c8ta08521h
S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong et al., A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv. Mater. 30(45), 1804581 (2018). https://doi.org/10.1002/adma.201804581
X. Fu, L. Scudiero, W.-H. Zhong, A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries. J. Mater. Chem. A 7(4), 1835–1848 (2019). https://doi.org/10.1039/c8ta11384j
M. Chen, C. Li, X. Fu, W. Wei, X. Fan et al., Let it catch: a short-branched protein for efficiently capturing polysulfides in lithium-sulfur batteries. Adv. Energy Mater. 10(9), 1903642 (2020). https://doi.org/10.1002/aenm.201903642
Y. Liu, H.B. Jiang, Z.P. Xu, Y.G. Cheng, S.W. Lv et al., New glycosides from the fruits of nicandra physaloides. Molecules 22(5), 828 (2017). https://doi.org/10.3390/molecules22050828
L.-Q. Wang, Y. Wang, S.-Y. Gao, L.-H. Zhu, F. Wang et al., Phenolic amides with anti-Parkinson’s disease (PD) effects from Nicandra physaloides. J. Funct. Foods 31, 229–236 (2017). https://doi.org/10.1016/j.jff.2017.01.045
Q. Niu, B. Wang, T. Li, X. Jin, Y. Chen, Structure and gel characterization of petic polysaccharide from nicandra physaloides (L.) gaertn seeds. Mod. Food Sci. Technol. 31(9), 68–73 (2015). https://doi.org/10.13982/j.mfst.1673-9078.2015.9.012
M. Govindarajan, H.F. Khater, C. Panneerselvam, G. Benelli, One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res. Vet. Sci. 107, 95–101 (2016). https://doi.org/10.1016/j.rvsc.2016.05.017
Z. Wang, Y. Dong, H. Li, Z. Zhao, H.B. Wu et al., Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014). https://doi.org/10.1038/ncomms6002
H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
J. Liu, A. Wei, G. Pan, Q. Xiong, F. Chen et al., Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode. Nano-Micro Lett. 11(1), 64 (2019). https://doi.org/10.1007/s40820-019-0295-8
X. Lin, K. Liu, S. Yin, Y. Qin, P. Shen et al., A novel pectic polysaccharide of jujube pomace: structural analysis and intracellular antioxidant activities. Antioxidants 9(2), 127 (2020). https://doi.org/10.3390/antiox9020127
M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace et al., The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C 115(40), 19761–19781 (2011). https://doi.org/10.1021/jp2052618
G. Li, M. Ling, Y. Ye, Z. Li, J. Guo et al., Acacia senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries. Adv. Energy Mater. 5(21), 1500878 (2015). https://doi.org/10.1002/aenm.201500878
F. Huang, H. Liu, R. Zhang, L. Dong, L. Liu et al., Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydr. Polym. 206, 344–351 (2019). https://doi.org/10.1016/j.carbpol.2018.11.012
L. Zhang, Y. Hu, X. Duan, T. Tang, Y. Shen et al., Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int. J. Biol. Macromol. 113, 1–7 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.084
T.Z. Hou, W.T. Xu, X. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56(28), 8178–8182 (2017). https://doi.org/10.1002/anie.201704324
T. Maihom, S. Kaewruang, N. Phattharasupakun, P. Chiochan, J. Limtrakul et al., Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium–sulfur batteries. J. Phys. Chem. C 122(13), 7033–7040 (2018). https://doi.org/10.1021/acs.jpcc.7b09392
H. Cheng, B. Gu, M.P. Pennefather, T.X. Nguyen, N. Phan-Thien et al., Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 130, 452–458 (2017). https://doi.org/10.1016/j.matdes.2017.05.082
X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu et al., Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
J.P. Song, L. Wu, W.D. Dong, C.F. Li, L.H. Chen et al., MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium batteries. Nanoscale 11(14), 6970–6981 (2019). https://doi.org/10.1039/c9nr00924h
M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng et al., A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27(37), 1702573 (2017). https://doi.org/10.1002/adfm.201702573
M. Shi, S. Zhang, Y. Jiang, Z. Jiang, L. Zhang et al., Sandwiching sulfur into the dents between N, O Co-doped graphene layered blocks with strong physicochemical confinements for stable and high-rate Li–S batteries. Nano-Micro Lett. 12(1), 146 (2020). https://doi.org/10.1007/s40820-020-00477-3
Z. Li, H.-Y. Zhou, F.-L. Zhao, T.-X. Wang, X. Ding et al., Three-dimensional covalent organic frameworks as host materials for lithium-sulfur batteries. Chin. J. Polym. Sci. 38(5), 550–557 (2020). https://doi.org/10.1007/s10118-020-2384-z
R. Guan, L. Zhong, S. Wang, D. Han, M. Xiao et al., Synergetic covalent and spatial confinement of sulfur species by phthalazinone-containing covalent triazine frameworks for ultrahigh performance of Li-S batteries. ACS Appl. Mater. Interfaces 12(7), 8296–8305 (2020). https://doi.org/10.1021/acsami.9b21481
G. Li, W. Lei, D. Luo, Y.-P. Deng, D. Wang et al., 3D Porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Adv. Energy Mater. 8(8), 1702381 (2018). https://doi.org/10.1002/aenm.201702381
X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6(6), 1501636 (2016). https://doi.org/10.1002/aenm.201501636
Y. Guo, Y. Zhang, Y. Sun, Y. Zhang, H. Wu, Graphene-nanoscroll-based Integrated and self-standing electrode with a sandwich structure for lithium sulfur batteries. Inorg. Chem. Front. 7(3), 592–596 (2020). https://doi.org/10.1039/c9qi01344j
Y. Wei, B. Wang, Y. Zhang, M. Zhang, Q. Wang et al., Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li–S full batteries. Adv. Funct. Mater. 31, 2006033 (2021). https://doi.org/10.1002/adfm.202006033
H. Wu, Y. Li, J. Ren, D. Rao, Q. Zheng et al., CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 55, 82–92 (2019). https://doi.org/10.1016/j.nanoen.2018.10.061
G. Li, X. Wang, M.H. Seo, M. Li, L. Ma et al., Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 9(1), 705 (2018). https://doi.org/10.1038/s41467-018-03116-z
L. Jin, G. Li, B. Liu, Z. Li, J. Zheng et al., A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer. J. Power Sources 355, 147–153 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.059
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
K. Han, Z. Liu, J. Shen, Y. Lin, F. Dai et al., A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 25(3), 455–463 (2015). https://doi.org/10.1002/adfm.201402815
S.-K. Park, J.-S. Park, Y.C. Kang, Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance. J. Mater. Chem. A 6(3), 1028–1036 (2018). https://doi.org/10.1039/c7ta09676c
X. Wang, Y. Tan, Z. Liu, Y. Fan, M. Li et al., New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with enhanced conductivity. Small (2020). https://doi.org/10.1002/smll.202000266
Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 32(6), 1905658 (2020). https://doi.org/10.1002/adma.201905658
Y. Boyjoo, H. Shi, E. Olsson, Q. Cai, Z.S. Wu et al., Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium–sulfur batteries. Adv. Energy Mater. 10(20), 2000651 (2020). https://doi.org/10.1002/aenm.202000651
G. Zhou, A. Yang, G. Gao, X. Yu, J. Xu et al., Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. Sci. Adv. 6(21), eaay5098 (2020). https://doi.org/10.1126/sciadv.aay5098
D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu et al., MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 9(46), 1901940 (2019). https://doi.org/10.1002/aenm.201901940
H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
Y. Zhao, W. Cai, Y. Fang, H. Ao, Y. Zhu et al., Sulfur-deficient TiS2-x for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem 6(8), 2231–2237 (2019). https://doi.org/10.1002/celc.201900269
P. Jing, Q. Wang, B. Wang, X. Gao, Y. Zhang et al., Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159, 366–377 (2020). https://doi.org/10.1016/j.carbon.2019.12.060
Y. Wang, P. Liang, H. Yang, W. Li, Z. Wang et al., Hollow CoP nanoparticles embedded in two–dimensional N-doped carbon arrays enabling advanced Li–SeS2 batteries with rapid kinetics. Mater. Today Energy 17, 100423 (2020). https://doi.org/10.1016/j.mtener.2020.100423
Z. Shi, Z. Sun, J. Cai, Z. Fan, J. Jin et al., Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries. Adv. Funct. Mater. 31(4), 2006798 (2020). https://doi.org/10.1002/adfm.202006798
H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 (2021). https://doi.org/10.1016/j.cej.2020.126802
X. Chen, T. Hou, K.A. Persson, Q. Zhang, Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater. Today 22, 142–158 (2019). https://doi.org/10.1016/j.mattod.2018.04.007
T. Yang, Y. Qi, W. Zhong, M. Tao, B. Guo et al., A strategy for polysulfides/polyselenides protection based on Co9S8@SiO2/C host in Na-SeS2 batteries. Adv. Funct. Mater. 31(2), 2001952 (2020). https://doi.org/10.1002/adfm.202001952
A. Goldbach, L. Iton, M. Grimsditch, M.-L. Saboungi, The formation of Se2-: A new resonance raman feature in the photochemistry of zeolite-encapsulated selenium. J. Am. Chem. Soc. 118, 2004–2007 (1996). https://doi.org/10.1021/ja9531788
C.-P. Yang, S. Xin, Y.-X. Yin, H. Ye, J. Zhang et al., An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem. Int. Ed. 52, 8363–8367 (2013). https://doi.org/10.1002/anie.201303147
Y. Hao, D. Xiong, W. Liu, L. Fan, D. Li et al., Controllably designed “vice-electrode” interlayers harvesting high performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 9(46), 40273–40280 (2017). https://doi.org/10.1021/acsami.7b12710
C. Yan, X.-B. Cheng, C.-Z. Zhao, J.-Q. Huang, S.-T. Yang et al., Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 327, 212–220 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.056
L. Zhang, M. Ling, J. Feng, L. Mai, G. Liu et al., The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries. Energy Storage Mater. 11, 24–29 (2018). https://doi.org/10.1016/j.ensm.2017.09.001
J.Y. Wei, X.Q. Zhang, L.P. Hou, P. Shi, B.Q. Li et al., Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries. Adv. Mater. 32(37), 2003012 (2020). https://doi.org/10.1002/adma.202003012
Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao et al., Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555
J. Liu, Z. Li, B. Jia, J. Zhu, W. Zhu et al., A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li–S batteries. J. Mater. Chem. A 8(13), 6303–6310 (2020). https://doi.org/10.1039/c9ta14240a