Confining TiO2 Nanotubes in PECVD-Enabled Graphene Capsules Toward Ultrafast K-Ion Storage: In Situ TEM/XRD Study and DFT Analysis
Corresponding Author: Jingyu Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 123
Abstract
Titanium dioxide (TiO2) has gained burgeoning attention for potassium-ion storage because of its large theoretical capacity, wide availability, and environmental benignity. Nevertheless, the inherently poor conductivity gives rise to its sluggish reaction kinetics and inferior rate capability. Here, we report the direct graphene growth over TiO2 nanotubes by virtue of chemical vapor deposition. Such conformal graphene coatings effectively enhance the conductive environment and well accommodate the volume change of TiO2 upon potassiation/depotassiation. When paired with an activated carbon cathode, the graphene-armored TiO2 nanotubes allow the potassium-ion hybrid capacitor full cells to harvest an energy/power density of 81.2 Wh kg−1/3746.6 W kg−1. We further employ in situ transmission electron microscopy and operando X-ray diffraction to probe the potassium-ion storage behavior. This work offers a viable and versatile solution to the anode design and in situ probing of potassium storage technologies that is readily promising for practical applications.
Highlights:
1 G-TiO2 was fabricated via direct CVD route by growing few-layered graphene capsules over TiO2 nanotubes.
2 K-ion hybrid capacitors based on the G-TiO2 anode and AC cathode synergized high energy and high power density.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.M. Chiang, Building a better battery. Science 330(6010), 1485–1486 (2010). https://doi.org/10.1126/science.1198591
- N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017). https://doi.org/10.1038/s41467-017-00973-y
- C.Y. Zhao, Y. Cai, K.L. Yin, H.Z. Li, D. Shen et al., Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chem. Eng. J. 350(15), 201–208 (2018). https://doi.org/10.1016/j.cej.2018.05.194
- J.T. Xu, Y.H. Dou, Z.X. Wei, J.M. Ma, Y.H. Deng, Y.T. Li, H.K. Liu, S.X. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
- X. Zhao, F.Y. Gong, Y.D. Zhao, B. Huang, D. Qian, H.E. Wang, W.H. Zhang, Z.J. Yang, Encapsulating NiS nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem. Eng. J. 392(15), 123675 (2020). https://doi.org/10.1016/j.cej.2019.123675
- Z.L. Jian, W. Luo, X.L. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11567 (2015). https://doi.org/10.1021/jacs.5b06809
- B.J. Yang, J.T. Chen, L.Y. Liu, P.J. Ma, B. Liu, J.W. Lang, Y. Tang, X.B. Yan, 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
- J.L. Yang, X. Xiao, W.B. Gong, L. Zhao, G.H. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries. Angew. Chem. Int. Ed. 58(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478
- J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 30(6), 1704337 (2018). https://doi.org/10.1002/adma.201704337
- Z.Y. Le, F. Liu, P. Nie, X.R. Li, X.Y. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
- N.N. Wang, C.X. Chu, X. Xu, Y. Du, J. Yang, Z.C. Bai, S.X. Dou, Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 8(27), 1801888 (2018). https://doi.org/10.1002/aenm.201801888
- B. Chen, Y.H. Meng, F.X. Xie, F. He, C.N. He, K. Davey, N.Q. Zhao, S.Z. Qiao, 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries. Adv. Mater. 30(46), 1804116 (2018). https://doi.org/10.1002/adma.201804116
- Y.P. Li, C.H. Yang, F.H. Zheng, Q.C. Pan, Y.Z. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
- Y.X. Tang, Y.Y. Zhang, J.Y. Deng, J.Q. Wei, H.L. Tam et al., Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 26(35), 6111–6118 (2014). https://doi.org/10.1002/adma.201402000
- X.G. Wang, Q.C. Li, L. Zhang, Z.L. Hu, L.H. Yu et al., Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 30(26), 1800963 (2018). https://doi.org/10.1002/adma.201800963
- H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J.R. Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
- G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18–28), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- L. Ferrighi, M. Datteo, G. Fazio, C.D. Valentin, Catalysis under cover: enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 138(23), 7365–7376 (2016). https://doi.org/10.1021/jacs.6b02990
- Y.X. Tang, Y.Y. Zhang, J.Y. Deng, D.P. Qi, W.R. Leow et al., Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 53(49), 13488–13492 (2014). https://doi.org/10.1002/anie.201406719
- J.L. Li, W. Qin, J.P. Xie, H. Lei, Y.Q. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
- H. Ren, R.B. Yu, J. Qi, L.J. Zhang, Q. Jin, D. Wang, Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance. Adv. Mater. 31(10), 1805754 (2019). https://doi.org/10.1002/adma.201805754
- J.S. Cai, J.Y. Huang, M.Z. Ge, J. Iocozzia, Z.Q. Lin, K.Q. Zhang, Y.K. Lai, Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small 13(19), 1604240 (2017). https://doi.org/10.1002/smll.201604240
- J.Y. Sun, Y.B. Chen, M.K. Priydarshi, T. Gao, X.J. Song, Y.F. Zhang, Z.F. Liu, Graphene glass from direct CVD routes: production and applications. Adv. Mater. 28(46), 10333 (2016). https://doi.org/10.1002/adma.201602247
- J.Y. Sun, T. Gao, X.J. Song, Y.F. Zhao, Y.W. Lin et al., Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 136(18), 6574–6577 (2014). https://doi.org/10.1021/ja5022602
- Y.K. Wang, R.F. Zhang, J. Chen, H. Wu, S.Y. Lu et al., Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 9(24), 1900953 (2019). https://doi.org/10.1002/aenm.201900953
- T.Y. Lei, Y.M. Xie, X.F. Wang, S.Y. Miao, J. Xiong, C.L. Yan, TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 13(37), 1701013 (2017). https://doi.org/10.1002/smll.201701013
- Y. Cai, H.-E. Wang, X. Zhao, F. Huang, C. Wang et al., Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl. Mater. Interfaces 9(12), 10652–10663 (2017). https://doi.org/10.1021/acsami.6b16498
- H.-E. Wang, K.L. Yin, N. Qin, X. Zhao, F.-J. Xia et al., Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J. Mater. Chem. A 7, 10346–10353 (2019). https://doi.org/10.1039/C9TA01598A
- F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379
- J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12, 615–623 (2019). https://doi.org/10.1039/C8EE02836B
- J.Y. Shin, J.H. Joo, D. Samuelis, J. Maier, Oxygen-deficient TiO2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24(3), 543–551 (2012). https://doi.org/10.1021/cm2031009
- P.H. Li, W. Wang, S. Gong, F. Lv, H.X. Huang et al., Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Interfaces 10(44), 37974–37980 (2018). https://doi.org/10.1021/acsami.8b11354
- J. Han, M.W. Xu, Y.B. Niu, G.N. Li, M.Q. Wang, Y. Zhang, M. Jia, C.M. Li, Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 52, 11274–11276 (2016). https://doi.org/10.1039/C6CC05102B
- B.B. Tian, W. Tang, K. Leng, Z.X. Chen, S.J.R. Tan et al., Phase transformations in TiS2 during K intercalation. ACS Energy Lett. 2(8), 1835–1840 (2017). https://doi.org/10.1021/acsenergylett.7b00529
- P.C. Lian, Y.F. Dong, Z.S. Wu, S.H. Zheng, X.H. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- Y.F. Dong, Z.S. Wu, S.H. Zheng, X.H. Wang, J.Q. Qin, S. Wang, X.Y. Shi, X.H. Bao, Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(15), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
- X.Y. Tao, J.G. Wang, C. Liu, H.T. Wang, H.B. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- J. Sun, H.W. Lee, M. Pasta, H.T. Yuan, G.Y. Zheng, Y.M. Sun, Y.Z. Li, Y. Cui, A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
- Q.M. Su, G.H. Du, J. Zhang, Y.J. Zhong, B.S. Xu, Y.H. Yang, S.M. Neupane, K. Kadel, W.Z. Li, Visualizing individual nitrogen dopants in monolayer graphene. Science 333(6045), 999–1003 (2011). https://doi.org/10.1126/science.1208759
- M.T. Xia, T.T. Liu, N. Peng, R.T. Zheng, X. Cheng, H.J. Zhu, H.X. Yu, M. Shui, J. Shu, Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives. Small Methods 3(7), 1900119 (2019). https://doi.org/10.1002/smtd.201900119
- H. Wei, E.F. Rodriguez, A.F. Hollenkamp, A.I. Bhatt, D.H. Chen, R.A. Caruso, High reversible pseudocapacity in mesoporous yolk-shell anatase TiO2/TiO2(B) microspheres used as anodes for Li-ion batteries. Adv. Funct. Mater. 27(46), 1703270 (2017). https://doi.org/10.1002/adfm.201703270
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- Z.Y. Zhang, M.L. Li, Y. Gao, Z.X. Wei, M.N. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28(36), 1802684 (2018). https://doi.org/10.1002/adfm.201802684
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- J.T. Chen, B.J. Yang, H.X. Li, P.J. Ma, J.W. Lang, X.B. Yan, Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Mater. Chem. A 7, 9247–9252 (2019). https://doi.org/10.1039/C9TA01653H
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
- A. Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (KIC): an innovative, cost-effective energy storage technology for transportation applications. J. Power Sour. 363(30), 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
- Z.Q. Xu, M.Q. Wu, Z. Chen, C. Chen, J. Yang, T.T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6(12), 1802272 (2019). https://doi.org/10.1002/advs.201802272
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1800804 (2018). https://doi.org/10.1002/adma.201800804
- J.T. Chen, B.J. Yang, H.J. Hou, H.X. Li, L. Liu, L. Zhang, X.B. Yan, Potassium-ion batteries: disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9(19), 1803894 (2019). https://doi.org/10.1002/aenm.201970069
References
Y.M. Chiang, Building a better battery. Science 330(6010), 1485–1486 (2010). https://doi.org/10.1126/science.1198591
N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017). https://doi.org/10.1038/s41467-017-00973-y
C.Y. Zhao, Y. Cai, K.L. Yin, H.Z. Li, D. Shen et al., Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chem. Eng. J. 350(15), 201–208 (2018). https://doi.org/10.1016/j.cej.2018.05.194
J.T. Xu, Y.H. Dou, Z.X. Wei, J.M. Ma, Y.H. Deng, Y.T. Li, H.K. Liu, S.X. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
X. Zhao, F.Y. Gong, Y.D. Zhao, B. Huang, D. Qian, H.E. Wang, W.H. Zhang, Z.J. Yang, Encapsulating NiS nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem. Eng. J. 392(15), 123675 (2020). https://doi.org/10.1016/j.cej.2019.123675
Z.L. Jian, W. Luo, X.L. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11567 (2015). https://doi.org/10.1021/jacs.5b06809
B.J. Yang, J.T. Chen, L.Y. Liu, P.J. Ma, B. Liu, J.W. Lang, Y. Tang, X.B. Yan, 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
J.L. Yang, X. Xiao, W.B. Gong, L. Zhao, G.H. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries. Angew. Chem. Int. Ed. 58(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478
J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 30(6), 1704337 (2018). https://doi.org/10.1002/adma.201704337
Z.Y. Le, F. Liu, P. Nie, X.R. Li, X.Y. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
N.N. Wang, C.X. Chu, X. Xu, Y. Du, J. Yang, Z.C. Bai, S.X. Dou, Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 8(27), 1801888 (2018). https://doi.org/10.1002/aenm.201801888
B. Chen, Y.H. Meng, F.X. Xie, F. He, C.N. He, K. Davey, N.Q. Zhao, S.Z. Qiao, 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries. Adv. Mater. 30(46), 1804116 (2018). https://doi.org/10.1002/adma.201804116
Y.P. Li, C.H. Yang, F.H. Zheng, Q.C. Pan, Y.Z. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
Y.X. Tang, Y.Y. Zhang, J.Y. Deng, J.Q. Wei, H.L. Tam et al., Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 26(35), 6111–6118 (2014). https://doi.org/10.1002/adma.201402000
X.G. Wang, Q.C. Li, L. Zhang, Z.L. Hu, L.H. Yu et al., Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 30(26), 1800963 (2018). https://doi.org/10.1002/adma.201800963
H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J.R. Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18–28), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
L. Ferrighi, M. Datteo, G. Fazio, C.D. Valentin, Catalysis under cover: enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 138(23), 7365–7376 (2016). https://doi.org/10.1021/jacs.6b02990
Y.X. Tang, Y.Y. Zhang, J.Y. Deng, D.P. Qi, W.R. Leow et al., Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 53(49), 13488–13492 (2014). https://doi.org/10.1002/anie.201406719
J.L. Li, W. Qin, J.P. Xie, H. Lei, Y.Q. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
H. Ren, R.B. Yu, J. Qi, L.J. Zhang, Q. Jin, D. Wang, Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance. Adv. Mater. 31(10), 1805754 (2019). https://doi.org/10.1002/adma.201805754
J.S. Cai, J.Y. Huang, M.Z. Ge, J. Iocozzia, Z.Q. Lin, K.Q. Zhang, Y.K. Lai, Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small 13(19), 1604240 (2017). https://doi.org/10.1002/smll.201604240
J.Y. Sun, Y.B. Chen, M.K. Priydarshi, T. Gao, X.J. Song, Y.F. Zhang, Z.F. Liu, Graphene glass from direct CVD routes: production and applications. Adv. Mater. 28(46), 10333 (2016). https://doi.org/10.1002/adma.201602247
J.Y. Sun, T. Gao, X.J. Song, Y.F. Zhao, Y.W. Lin et al., Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 136(18), 6574–6577 (2014). https://doi.org/10.1021/ja5022602
Y.K. Wang, R.F. Zhang, J. Chen, H. Wu, S.Y. Lu et al., Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 9(24), 1900953 (2019). https://doi.org/10.1002/aenm.201900953
T.Y. Lei, Y.M. Xie, X.F. Wang, S.Y. Miao, J. Xiong, C.L. Yan, TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 13(37), 1701013 (2017). https://doi.org/10.1002/smll.201701013
Y. Cai, H.-E. Wang, X. Zhao, F. Huang, C. Wang et al., Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl. Mater. Interfaces 9(12), 10652–10663 (2017). https://doi.org/10.1021/acsami.6b16498
H.-E. Wang, K.L. Yin, N. Qin, X. Zhao, F.-J. Xia et al., Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J. Mater. Chem. A 7, 10346–10353 (2019). https://doi.org/10.1039/C9TA01598A
F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379
J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12, 615–623 (2019). https://doi.org/10.1039/C8EE02836B
J.Y. Shin, J.H. Joo, D. Samuelis, J. Maier, Oxygen-deficient TiO2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24(3), 543–551 (2012). https://doi.org/10.1021/cm2031009
P.H. Li, W. Wang, S. Gong, F. Lv, H.X. Huang et al., Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Interfaces 10(44), 37974–37980 (2018). https://doi.org/10.1021/acsami.8b11354
J. Han, M.W. Xu, Y.B. Niu, G.N. Li, M.Q. Wang, Y. Zhang, M. Jia, C.M. Li, Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 52, 11274–11276 (2016). https://doi.org/10.1039/C6CC05102B
B.B. Tian, W. Tang, K. Leng, Z.X. Chen, S.J.R. Tan et al., Phase transformations in TiS2 during K intercalation. ACS Energy Lett. 2(8), 1835–1840 (2017). https://doi.org/10.1021/acsenergylett.7b00529
P.C. Lian, Y.F. Dong, Z.S. Wu, S.H. Zheng, X.H. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
Y.F. Dong, Z.S. Wu, S.H. Zheng, X.H. Wang, J.Q. Qin, S. Wang, X.Y. Shi, X.H. Bao, Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(15), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
X.Y. Tao, J.G. Wang, C. Liu, H.T. Wang, H.B. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
J. Sun, H.W. Lee, M. Pasta, H.T. Yuan, G.Y. Zheng, Y.M. Sun, Y.Z. Li, Y. Cui, A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
Q.M. Su, G.H. Du, J. Zhang, Y.J. Zhong, B.S. Xu, Y.H. Yang, S.M. Neupane, K. Kadel, W.Z. Li, Visualizing individual nitrogen dopants in monolayer graphene. Science 333(6045), 999–1003 (2011). https://doi.org/10.1126/science.1208759
M.T. Xia, T.T. Liu, N. Peng, R.T. Zheng, X. Cheng, H.J. Zhu, H.X. Yu, M. Shui, J. Shu, Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives. Small Methods 3(7), 1900119 (2019). https://doi.org/10.1002/smtd.201900119
H. Wei, E.F. Rodriguez, A.F. Hollenkamp, A.I. Bhatt, D.H. Chen, R.A. Caruso, High reversible pseudocapacity in mesoporous yolk-shell anatase TiO2/TiO2(B) microspheres used as anodes for Li-ion batteries. Adv. Funct. Mater. 27(46), 1703270 (2017). https://doi.org/10.1002/adfm.201703270
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
Z.Y. Zhang, M.L. Li, Y. Gao, Z.X. Wei, M.N. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28(36), 1802684 (2018). https://doi.org/10.1002/adfm.201802684
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
J.T. Chen, B.J. Yang, H.X. Li, P.J. Ma, J.W. Lang, X.B. Yan, Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Mater. Chem. A 7, 9247–9252 (2019). https://doi.org/10.1039/C9TA01653H
J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
A. Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (KIC): an innovative, cost-effective energy storage technology for transportation applications. J. Power Sour. 363(30), 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
Z.Q. Xu, M.Q. Wu, Z. Chen, C. Chen, J. Yang, T.T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6(12), 1802272 (2019). https://doi.org/10.1002/advs.201802272
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1800804 (2018). https://doi.org/10.1002/adma.201800804
J.T. Chen, B.J. Yang, H.J. Hou, H.X. Li, L. Liu, L. Zhang, X.B. Yan, Potassium-ion batteries: disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9(19), 1803894 (2019). https://doi.org/10.1002/aenm.201970069