Robust and High-Wettability Cellulose Separators with Molecule-Reassembled Nano-Cracked Structures for High-Performance Supercapacitors
Corresponding Author: Feng Xu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 153
Abstract
Separators in supercapacitors (SCs) frequently suffer from high resistance and the risk of short circuits due to inadequate electrolyte wettability, depressed mechanical properties, and insufficient thermal stability. Here, we develop a high-performance regenerated cellulose separator with nano-cracked structures for SCs via a binary solvent of superbase-derived ionic liquid and dimethylsulfoxide (DMSO). The unique nano-cracks with an average width of 7.45 nm arise from the acceleration of cellulose molecular reassembly by DMSO-regulated hydrogen bonding, which endows the separator with high porosity (70.2%) and excellent electrolyte retention (329%). The outstanding thermal stability (273 °C) and mechanical strength (70 MPa) enable the separator to maintain its structural integrity under high temperatures and external forces. With these benefits, the SC utilizing the cellulose separator enables a high specific capacitance of 93.6 F g−1 at 1.0 A g−1 and a remarkable capacitance retention of 99.5% after 10,000 cycles compared with the commercial NKK-MPF30AC and NKK-TF4030. The robust and high-wettability cellulose separator holds promise as a superior alternative to commercial separators for advanced SCs with enhanced performance and improved safety.
Highlights:
1 A robust and high-wettability cellulose separator with unique nano-cracked structures is constructed through hydrogen bond-driven reassembly of cellulose molecules using a green binary solvent.
2 The nano-cracked structures endow the separator with high porosity (70.2%) and excellent electrolyte retention (329%).
3 The supercapacitors with nano-cracked separators exhibit high specific capacitance (93.6 F g−1 at 1.0 A g−1) and a long cycling life (99.5% retention after 10,000 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10(2), 538–545 (2017). https://doi.org/10.1039/C6EE03716J
- J. Li, H. Jia, S. Ma, L. Xie, X.X. Wei et al., Separator design for high-performance supercapacitors: requirements, challenges, strategies, and prospects. ACS Energy Lett. 8(1), 56–78 (2023). https://doi.org/10.1021/acsenergylett.2c01853
- Y. Song, X. Liu, D. Ren, H. Liang, L. Wang et al., Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34(2), 2106335 (2022). https://doi.org/10.1002/adma.202106335
- H. Wu, J. Mu, Y. Xu, F. Xu, S. Ramaswamy et al., Heat-resistant, robust, and hydrophilic separators based on regenerated cellulose for advanced supercapacitors. Small 19(1), 2205152 (2023). https://doi.org/10.1002/smll.202205152
- S. Zhong, B. Yuan, Z. Guang, D. Chen, Q. Li et al., Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Mater. 41, 805–841 (2021). https://doi.org/10.1016/j.ensm.2021.07.028
- D. Guo, L.Q. Mu, F. Lin, G.L. Liu, Mesoporous polyimide thin films as dendrite-suppressing separators for lithium-metal batteries. ACS Nano 18(1), 155–163 (2023). https://doi.org/10.1021/acsnano.3c04159
- M. Liu, K. Turcheniuk, W. Fu, Y. Yang, M. Liu et al., Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire polyvinyl butyral nonwoven membranes. Nano Energy 71, 104627 (2020). https://doi.org/10.1016/j.nanoen.2020.104627
- Z. Zou, Y. Wei, Z. Hu, H. Pu, Synthesis of polypropylene nanofiber separators for lithium-ion batteries via nanolayer coextrusion. Chem. Eng. J. 474, 145724 (2023). https://doi.org/10.1016/j.cej.2023.145724
- X. Dai, X. Zhang, J. Wen, C. Wang, X. Ma et al., Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Mater. 51, 638–659 (2022). https://doi.org/10.1016/j.ensm.2022.07.011
- H. Li, D. Wu, J. Wu, L.Y. Dong, Y.J. Zhu et al., Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater. 29(44), 1703548 (2017). https://doi.org/10.1002/adma.201703548
- D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj et al., Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59(38), 16725–16734 (2020). https://doi.org/10.1002/anie.202007008
- H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), 2000682 (2021). https://doi.org/10.1002/adma.202000682
- A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
- R. Mendoza-Jiménez, J. Oliva, K.P. Padmasree, A.I. Mtz-Enriquez, C.R. Garcia, Enhancement of capacitance of waterproof supercapacitors by controlling the thickness of their composite electrodes (graphene/La0.2Gd1.8Zr2O7: La0.7Sr0.3MnO3). Ceram. Int. 50(12), 21827–21838 (2024). https://doi.org/10.1016/j.ceramint.2024.03.295
- R. Mendoza, M. Al-Sardar, A.I. Oliva, G. Robledo-Trujillo, V. Rodriguez-Gonzalez et al., Improving the electrochemical performance of flexible carbon nanotubes based supercapacitors by depositing Ni@TiO2: W nanops on their anodes. J. Phys. Chem. Solids 155, 110128 (2021). https://doi.org/10.1016/j.jpcs.2021.110128
- R. Mendoza, M. Balderas-Soto, R.G. Suarez, J. Zamora, A.I. Mtz-Enriquez et al., Role of the MnCoGe alloys to enhance the capacitance of flexible supercapacitors made with electrodes of recycled aluminum and carbon nanotubes. Synth. Met. 306, 117654 (2024). https://doi.org/10.1016/j.synthmet.2024.117654
- H.Z. Chen, Z.C. Wang, Y.T. Feng, S.Y. Cai, H.P. Gao et al., Cellulose-based separators for lithium batteries: source, preparation and performance. Chem. Eng. J. 471, 144593 (2023). https://doi.org/10.1016/j.cej.2023.144593
- H. Wu, H. Huang, Y. Xu, F. Xu, X. Zhang, Ultrathin separator with efficient ion transport and superior stability prepared from cotton cellulose for advanced supercapacitors. Chem. Eng. J. 470, 144089 (2023). https://doi.org/10.1016/j.cej.2023.144089
- L. Yao, K. Zheng, N. Koripally, N. Eedugurala, J.D. Azoulay, X. Zhang, T.N. Ng, Structural pseudocapacitors with reinforced interfaces to increase multifunctional efficiency. Sci. Adv. 9(25), adh0069 (2023). https://doi.org/10.1126/sciadv.adh0069
- D. Zhao, C. Chen, Q. Zhang, W. Chen, S. Liu et al., High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7(18), 1700739 (2017). https://doi.org/10.1002/aenm.201700739
- R. Mendoza, J. Oliva, V. Rodriguez-Gonzalez, Effect of the micro-, meso- and macropores on the electrochemical performance of supercapacitors: a review. Int. J. Energy Res. 46(6), 6989–7020 (2022). https://doi.org/10.1002/er.7670
- B. Dyatkin, V. Presser, M. Heon, M.R. Lukatskaya, M. Beidaghi et al., Development of a green supercapacitor composed entirely of environmentally friendly materials. ChemSusChem 6(12), 2269–2280 (2013). https://doi.org/10.1002/cssc.201300852
- S. Wang, A. Lu, L. Zhang, Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016). https://doi.org/10.1016/j.progpolymsci.2015.07.003
- L. Zhang, W. Shi, H. Sheng, S. Feng, M. Yao et al., Unique CO2-switched cellulose solution properties in the CO2/DBU/DMSO solvent system and the preparation of regenerated materials. Green Chem. 23(16), 5856–5865 (2021). https://doi.org/10.1039/D1GC01771C
- B. Medronho, B. Lindman, Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interface Sci. 222, 502–508 (2015). https://doi.org/10.1016/j.cis.2014.05.004
- X. Li, H. Li, Z. Ling, D. Xu, T.T. You et al., Room-temperature superbase-derived ionic liquids with facile synthesis and low viscosity: powerful solvents for cellulose dissolution by destroying the cellulose aggregate structure. Macromolecules 53(9), 3284–3295 (2020). https://doi.org/10.1021/acs.macromol.0c00592
- R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974–4975 (2002). https://doi.org/10.1021/ja025790m
- H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose. Chem. Soc. Rev. 41(4), 1519–1537 (2012). https://doi.org/10.1039/C2CS15311D
- A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose. Chem. Rev. 109(12), 6712–6728 (2009). https://doi.org/10.1021/cr9001947
- Xu. Daman, G. Teng, Y. Heng, Z. Chen, Hu. Dongying, Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Mater. Chem. Phys. 249, 122979 (2020). https://doi.org/10.1016/j.matchemphys.2020.122979
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- L. Szabó, R. Milotskyi, G. Sharma, K. Takahashi, Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chem. 25(14), 5338–5389 (2023). https://doi.org/10.1039/d2gc04730f
- S. Livazovic, Z. Li, A.R. Behzad, K.V. Peinemann, S.P. Nunes, Cellulose multilayer membranes manufacture with ionic liquid. J. Membr. Sci. 490, 282–293 (2015). https://doi.org/10.1016/j.memsci.2015.05.009
- M.E. Lamm, K. Li, J. Qian, L. Wang, N. Lavoine, R. Newman et al., Recent advances in functional materials through cellulose nanofiber templating. Adv. Mater. 33(12), 2005538 (2021). https://doi.org/10.1002/adma.202005538
- E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31(3), 2005646 (2021). https://doi.org/10.1002/adfm.202005646
- Y. Xie, H. Zhu, R. Zeng, B. Na, S. Zou et al., Chemical foaming integrated polydopamine hybridization towards high-performance cellulose-based separators for ultrastable and high-rate lithium metal batteries. J. Power Sources 538, 231562 (2022). https://doi.org/10.1016/j.jpowsour.2022.231562
- A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96(3), 2155–2160 (1992). https://doi.org/10.1063/1.462066
- P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994). https://doi.org/10.1021/j100096a001
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005). https://doi.org/10.1039/B508541A
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Molec. Graphics. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- Y. Zhou, X.C. Zhang, D.X. Yin, J.M. Zhang, Q.Y. Mi et al., The solution state and dissolution process of cellulose in ionic-liquid-based solvents with different hydrogen-bonding basicity and microstructures. Green Chem. 24(9), 3824–3833 (2022). https://doi.org/10.1039/d2gc00374k
- X.Y. Wang, T.T. You, W.Q. Zheng, X. Li, S. Chen et al., Efficient fabrication of cellulose nanofibers with novel superbase-derived ionic liquid/co-solvents: rapid cellulose dissolution and improved solution electrospinnability. Chem. Eng. J. 483, 148841 (2024). https://doi.org/10.1016/j.cej.2024.148841
- H.L. Li, M. Kruteva, M. Dulle, Z. Wang, K. Mystek et al., Understanding the drying behavior of regenerated cellulose gel beads: the effects of concentration and nonsolvents. ACS Nano 16(2), 2608–2620 (2022). https://doi.org/10.1021/acsnano.1c09338
- B.S. Beckingham, N.A. Lynd, D.J. Miller, Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. J. Membr. Sci. 550, 348–356 (2018). https://doi.org/10.1016/j.memsci.2017.12.072
- B.R. Liu, W.H. Li, Y. Xu, H. Zhang, R.W.M. Cai et al., Mechanism of cellulose regeneration from its ionic liquid solution as revealed by infrared spectroscopy. Polymer 257, 125280 (2022). https://doi.org/10.1016/j.polymer.2022.125280
- N. Dissanayake, V.D. Thalangamaarachchige, M. Thakurathi, M. Knight, E.L. Quitevis et al., Dissolution of cotton cellulose in 1:1 mixtures of 1-butyl-3-methylimidazolium methylphosphonate and 1-alkylimidazole co-solvents. Carbohydr. Polym. 221, 63–72 (2019). https://doi.org/10.1016/j.carbpol.2019.05.071
- Q.Z. Li, G.S. Wu, Z.W. Yu, The role of methyl groups in the formation of hydrogen bond in dmso-methanol mixtures. J. Am. Chem. Soc. 128(5), 1438–1439 (2006). https://doi.org/10.1021/ja0569149
- H.P. Fink, P. Weigel, H.J. Purz, J. Ganster, Structure formation of regenerated cellulose materials from nmmo-solutions. Prog. Polym. Sci. 26(9), 1473–1524 (2001). https://doi.org/10.1016/S0079-6700(01)00025-9
- S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney, A.K. Soper, Molecular segregation observed in a concentrated alcohol–water solution. Nature 416(6883), 829–832 (2002). https://doi.org/10.1038/416829a
- T. Lu, Q.X. Chen, Independent gradient model based on hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43(8), 539–555 (2022). https://doi.org/10.1002/jcc.26812
- P. Heasman, A.Y. Mehandzhiyski, S. Ghosh, I. Zozoulenko, A computational study of cellulose regeneration: all-atom molecular dynamics simulations. Carbohydr. Polym. 311, 120768 (2023). https://doi.org/10.1016/j.carbpol.2023.120768
- B.T. Yuan, K.C. Wen, D.J. Chen, Y.P. Liu, Y.F. Dong et al., Composite separators for robust high rate lithium ion batteries. Adv. Funct. Mater. 31(32), 2101420 (2021). https://doi.org/10.1002/adfm.202101420
- P. Zugenmaier, Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26(9), 1341–1417 (2001). https://doi.org/10.1016/S0079-6700(01)00019-3
- L. Geng, X. Peng, C. Zhan, A. Naderi, P.R. Sharma et al., Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 24(12), 5417–5429 (2017). https://doi.org/10.1007/s10570-017-1496-2
- X.F. Wang, X.H. Lu, B. Liu, D. Chen, Y.X. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26(28), 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
- H. Yang, X. Shi, S. Chu, Z. Shao, Y. Wang, Design of block-copolymer nanoporous membranes for robust and safer lithium-ion battery separators. Adv. Sci. 8(7), 2003096 (2021). https://doi.org/10.1002/advs.202003096
- W. Zhou, M. Yang, M. Chen, G. Zhang, X. Han et al., Ion-sieving effect enabled by sulfonation of cellulose separator realizing dendrite-free Zn deposition. Adv. Funct. Mater. 34(27), 2315444 (2024). https://doi.org/10.1002/adfm.202315444
- H. Ma, J. Yu, M. Chen, X. Han, J. Chen et al., Amino-enabled desolvation sieving effect realizes dendrite-inhibiting thin separator for durable aqueous zinc-ion batteries. Adv. Funct. Mater. 33(52), 2307384 (2023). https://doi.org/10.1002/adfm.202307384
- Y. Yang, W. Wang, G. Meng, J. Zhang, Function-directed design of battery separators based on microporous polyolefin membranes. J. Mater. Chem. A 10(27), 14137–14170 (2022). https://doi.org/10.1039/D2TA03511A
- L.H. Yu, J.S. Miao, Y. Jin, J.Y.S. Lin, A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Front. Chem. Sci. Eng. 11(3), 346–352 (2017). https://doi.org/10.1007/s11705-017-1648-9
- M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
- Z. Tang, S. Li, Y. Li, H. Xu, Y. Yu et al., Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy 69, 104399 (2020). https://doi.org/10.1016/j.nanoen.2019.104399
- Q. Zhang, C. Chen, W. Chen, G. Pastel, X. Guo et al., Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Appl. Mater. Interfaces 11(6), 5919–5927 (2019). https://doi.org/10.1021/acsami.8b17414
References
C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10(2), 538–545 (2017). https://doi.org/10.1039/C6EE03716J
J. Li, H. Jia, S. Ma, L. Xie, X.X. Wei et al., Separator design for high-performance supercapacitors: requirements, challenges, strategies, and prospects. ACS Energy Lett. 8(1), 56–78 (2023). https://doi.org/10.1021/acsenergylett.2c01853
Y. Song, X. Liu, D. Ren, H. Liang, L. Wang et al., Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34(2), 2106335 (2022). https://doi.org/10.1002/adma.202106335
H. Wu, J. Mu, Y. Xu, F. Xu, S. Ramaswamy et al., Heat-resistant, robust, and hydrophilic separators based on regenerated cellulose for advanced supercapacitors. Small 19(1), 2205152 (2023). https://doi.org/10.1002/smll.202205152
S. Zhong, B. Yuan, Z. Guang, D. Chen, Q. Li et al., Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Mater. 41, 805–841 (2021). https://doi.org/10.1016/j.ensm.2021.07.028
D. Guo, L.Q. Mu, F. Lin, G.L. Liu, Mesoporous polyimide thin films as dendrite-suppressing separators for lithium-metal batteries. ACS Nano 18(1), 155–163 (2023). https://doi.org/10.1021/acsnano.3c04159
M. Liu, K. Turcheniuk, W. Fu, Y. Yang, M. Liu et al., Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire polyvinyl butyral nonwoven membranes. Nano Energy 71, 104627 (2020). https://doi.org/10.1016/j.nanoen.2020.104627
Z. Zou, Y. Wei, Z. Hu, H. Pu, Synthesis of polypropylene nanofiber separators for lithium-ion batteries via nanolayer coextrusion. Chem. Eng. J. 474, 145724 (2023). https://doi.org/10.1016/j.cej.2023.145724
X. Dai, X. Zhang, J. Wen, C. Wang, X. Ma et al., Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Mater. 51, 638–659 (2022). https://doi.org/10.1016/j.ensm.2022.07.011
H. Li, D. Wu, J. Wu, L.Y. Dong, Y.J. Zhu et al., Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater. 29(44), 1703548 (2017). https://doi.org/10.1002/adma.201703548
D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj et al., Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59(38), 16725–16734 (2020). https://doi.org/10.1002/anie.202007008
H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), 2000682 (2021). https://doi.org/10.1002/adma.202000682
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
R. Mendoza-Jiménez, J. Oliva, K.P. Padmasree, A.I. Mtz-Enriquez, C.R. Garcia, Enhancement of capacitance of waterproof supercapacitors by controlling the thickness of their composite electrodes (graphene/La0.2Gd1.8Zr2O7: La0.7Sr0.3MnO3). Ceram. Int. 50(12), 21827–21838 (2024). https://doi.org/10.1016/j.ceramint.2024.03.295
R. Mendoza, M. Al-Sardar, A.I. Oliva, G. Robledo-Trujillo, V. Rodriguez-Gonzalez et al., Improving the electrochemical performance of flexible carbon nanotubes based supercapacitors by depositing Ni@TiO2: W nanops on their anodes. J. Phys. Chem. Solids 155, 110128 (2021). https://doi.org/10.1016/j.jpcs.2021.110128
R. Mendoza, M. Balderas-Soto, R.G. Suarez, J. Zamora, A.I. Mtz-Enriquez et al., Role of the MnCoGe alloys to enhance the capacitance of flexible supercapacitors made with electrodes of recycled aluminum and carbon nanotubes. Synth. Met. 306, 117654 (2024). https://doi.org/10.1016/j.synthmet.2024.117654
H.Z. Chen, Z.C. Wang, Y.T. Feng, S.Y. Cai, H.P. Gao et al., Cellulose-based separators for lithium batteries: source, preparation and performance. Chem. Eng. J. 471, 144593 (2023). https://doi.org/10.1016/j.cej.2023.144593
H. Wu, H. Huang, Y. Xu, F. Xu, X. Zhang, Ultrathin separator with efficient ion transport and superior stability prepared from cotton cellulose for advanced supercapacitors. Chem. Eng. J. 470, 144089 (2023). https://doi.org/10.1016/j.cej.2023.144089
L. Yao, K. Zheng, N. Koripally, N. Eedugurala, J.D. Azoulay, X. Zhang, T.N. Ng, Structural pseudocapacitors with reinforced interfaces to increase multifunctional efficiency. Sci. Adv. 9(25), adh0069 (2023). https://doi.org/10.1126/sciadv.adh0069
D. Zhao, C. Chen, Q. Zhang, W. Chen, S. Liu et al., High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7(18), 1700739 (2017). https://doi.org/10.1002/aenm.201700739
R. Mendoza, J. Oliva, V. Rodriguez-Gonzalez, Effect of the micro-, meso- and macropores on the electrochemical performance of supercapacitors: a review. Int. J. Energy Res. 46(6), 6989–7020 (2022). https://doi.org/10.1002/er.7670
B. Dyatkin, V. Presser, M. Heon, M.R. Lukatskaya, M. Beidaghi et al., Development of a green supercapacitor composed entirely of environmentally friendly materials. ChemSusChem 6(12), 2269–2280 (2013). https://doi.org/10.1002/cssc.201300852
S. Wang, A. Lu, L. Zhang, Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016). https://doi.org/10.1016/j.progpolymsci.2015.07.003
L. Zhang, W. Shi, H. Sheng, S. Feng, M. Yao et al., Unique CO2-switched cellulose solution properties in the CO2/DBU/DMSO solvent system and the preparation of regenerated materials. Green Chem. 23(16), 5856–5865 (2021). https://doi.org/10.1039/D1GC01771C
B. Medronho, B. Lindman, Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interface Sci. 222, 502–508 (2015). https://doi.org/10.1016/j.cis.2014.05.004
X. Li, H. Li, Z. Ling, D. Xu, T.T. You et al., Room-temperature superbase-derived ionic liquids with facile synthesis and low viscosity: powerful solvents for cellulose dissolution by destroying the cellulose aggregate structure. Macromolecules 53(9), 3284–3295 (2020). https://doi.org/10.1021/acs.macromol.0c00592
R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974–4975 (2002). https://doi.org/10.1021/ja025790m
H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose. Chem. Soc. Rev. 41(4), 1519–1537 (2012). https://doi.org/10.1039/C2CS15311D
A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose. Chem. Rev. 109(12), 6712–6728 (2009). https://doi.org/10.1021/cr9001947
Xu. Daman, G. Teng, Y. Heng, Z. Chen, Hu. Dongying, Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Mater. Chem. Phys. 249, 122979 (2020). https://doi.org/10.1016/j.matchemphys.2020.122979
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
L. Szabó, R. Milotskyi, G. Sharma, K. Takahashi, Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chem. 25(14), 5338–5389 (2023). https://doi.org/10.1039/d2gc04730f
S. Livazovic, Z. Li, A.R. Behzad, K.V. Peinemann, S.P. Nunes, Cellulose multilayer membranes manufacture with ionic liquid. J. Membr. Sci. 490, 282–293 (2015). https://doi.org/10.1016/j.memsci.2015.05.009
M.E. Lamm, K. Li, J. Qian, L. Wang, N. Lavoine, R. Newman et al., Recent advances in functional materials through cellulose nanofiber templating. Adv. Mater. 33(12), 2005538 (2021). https://doi.org/10.1002/adma.202005538
E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31(3), 2005646 (2021). https://doi.org/10.1002/adfm.202005646
Y. Xie, H. Zhu, R. Zeng, B. Na, S. Zou et al., Chemical foaming integrated polydopamine hybridization towards high-performance cellulose-based separators for ultrastable and high-rate lithium metal batteries. J. Power Sources 538, 231562 (2022). https://doi.org/10.1016/j.jpowsour.2022.231562
A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96(3), 2155–2160 (1992). https://doi.org/10.1063/1.462066
P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994). https://doi.org/10.1021/j100096a001
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005). https://doi.org/10.1039/B508541A
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Molec. Graphics. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
Y. Zhou, X.C. Zhang, D.X. Yin, J.M. Zhang, Q.Y. Mi et al., The solution state and dissolution process of cellulose in ionic-liquid-based solvents with different hydrogen-bonding basicity and microstructures. Green Chem. 24(9), 3824–3833 (2022). https://doi.org/10.1039/d2gc00374k
X.Y. Wang, T.T. You, W.Q. Zheng, X. Li, S. Chen et al., Efficient fabrication of cellulose nanofibers with novel superbase-derived ionic liquid/co-solvents: rapid cellulose dissolution and improved solution electrospinnability. Chem. Eng. J. 483, 148841 (2024). https://doi.org/10.1016/j.cej.2024.148841
H.L. Li, M. Kruteva, M. Dulle, Z. Wang, K. Mystek et al., Understanding the drying behavior of regenerated cellulose gel beads: the effects of concentration and nonsolvents. ACS Nano 16(2), 2608–2620 (2022). https://doi.org/10.1021/acsnano.1c09338
B.S. Beckingham, N.A. Lynd, D.J. Miller, Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. J. Membr. Sci. 550, 348–356 (2018). https://doi.org/10.1016/j.memsci.2017.12.072
B.R. Liu, W.H. Li, Y. Xu, H. Zhang, R.W.M. Cai et al., Mechanism of cellulose regeneration from its ionic liquid solution as revealed by infrared spectroscopy. Polymer 257, 125280 (2022). https://doi.org/10.1016/j.polymer.2022.125280
N. Dissanayake, V.D. Thalangamaarachchige, M. Thakurathi, M. Knight, E.L. Quitevis et al., Dissolution of cotton cellulose in 1:1 mixtures of 1-butyl-3-methylimidazolium methylphosphonate and 1-alkylimidazole co-solvents. Carbohydr. Polym. 221, 63–72 (2019). https://doi.org/10.1016/j.carbpol.2019.05.071
Q.Z. Li, G.S. Wu, Z.W. Yu, The role of methyl groups in the formation of hydrogen bond in dmso-methanol mixtures. J. Am. Chem. Soc. 128(5), 1438–1439 (2006). https://doi.org/10.1021/ja0569149
H.P. Fink, P. Weigel, H.J. Purz, J. Ganster, Structure formation of regenerated cellulose materials from nmmo-solutions. Prog. Polym. Sci. 26(9), 1473–1524 (2001). https://doi.org/10.1016/S0079-6700(01)00025-9
S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney, A.K. Soper, Molecular segregation observed in a concentrated alcohol–water solution. Nature 416(6883), 829–832 (2002). https://doi.org/10.1038/416829a
T. Lu, Q.X. Chen, Independent gradient model based on hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43(8), 539–555 (2022). https://doi.org/10.1002/jcc.26812
P. Heasman, A.Y. Mehandzhiyski, S. Ghosh, I. Zozoulenko, A computational study of cellulose regeneration: all-atom molecular dynamics simulations. Carbohydr. Polym. 311, 120768 (2023). https://doi.org/10.1016/j.carbpol.2023.120768
B.T. Yuan, K.C. Wen, D.J. Chen, Y.P. Liu, Y.F. Dong et al., Composite separators for robust high rate lithium ion batteries. Adv. Funct. Mater. 31(32), 2101420 (2021). https://doi.org/10.1002/adfm.202101420
P. Zugenmaier, Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26(9), 1341–1417 (2001). https://doi.org/10.1016/S0079-6700(01)00019-3
L. Geng, X. Peng, C. Zhan, A. Naderi, P.R. Sharma et al., Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 24(12), 5417–5429 (2017). https://doi.org/10.1007/s10570-017-1496-2
X.F. Wang, X.H. Lu, B. Liu, D. Chen, Y.X. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26(28), 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
H. Yang, X. Shi, S. Chu, Z. Shao, Y. Wang, Design of block-copolymer nanoporous membranes for robust and safer lithium-ion battery separators. Adv. Sci. 8(7), 2003096 (2021). https://doi.org/10.1002/advs.202003096
W. Zhou, M. Yang, M. Chen, G. Zhang, X. Han et al., Ion-sieving effect enabled by sulfonation of cellulose separator realizing dendrite-free Zn deposition. Adv. Funct. Mater. 34(27), 2315444 (2024). https://doi.org/10.1002/adfm.202315444
H. Ma, J. Yu, M. Chen, X. Han, J. Chen et al., Amino-enabled desolvation sieving effect realizes dendrite-inhibiting thin separator for durable aqueous zinc-ion batteries. Adv. Funct. Mater. 33(52), 2307384 (2023). https://doi.org/10.1002/adfm.202307384
Y. Yang, W. Wang, G. Meng, J. Zhang, Function-directed design of battery separators based on microporous polyolefin membranes. J. Mater. Chem. A 10(27), 14137–14170 (2022). https://doi.org/10.1039/D2TA03511A
L.H. Yu, J.S. Miao, Y. Jin, J.Y.S. Lin, A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Front. Chem. Sci. Eng. 11(3), 346–352 (2017). https://doi.org/10.1007/s11705-017-1648-9
M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
Z. Tang, S. Li, Y. Li, H. Xu, Y. Yu et al., Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy 69, 104399 (2020). https://doi.org/10.1016/j.nanoen.2019.104399
Q. Zhang, C. Chen, W. Chen, G. Pastel, X. Guo et al., Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Appl. Mater. Interfaces 11(6), 5919–5927 (2019). https://doi.org/10.1021/acsami.8b17414