Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring
Corresponding Author: Xianhai Zeng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 84
Abstract
Wood-based hydrogel with a unique anisotropic structure is an attractive soft material, but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible. In this study, an all-wood hydrogel was constructed by cross-linking cellulose fibers, polyvinyl alcohol (PVA) chains, and lignin molecules through the Hofmeister effect. The all-wood hydrogel shows a high tensile strength of 36.5 MPa and a strain up to ~ 438% in the longitudinal direction, which is much higher than its tensile strength (~ 2.6 MPa) and strain (~ 198%) in the radial direction, respectively. The high mechanical strength of all-wood hydrogels is mainly attributed to the strong hydrogen bonding, physical entanglement, and van der Waals forces between lignin molecules, cellulose nanofibers, and PVA chains. Thanks to its excellent flexibility, good conductivity, and sensitivity, the all-wood hydrogel can accurately distinguish diverse macroscale or subtle human movements, including finger flexion, pulse, and swallowing behavior. In particular, when “An Qi” was called four times within 15 s, two variations of the pronunciation could be identified. With recyclable, biodegradable, and adjustable mechanical properties, the all-wood hydrogel is a multifunctional soft material with promising applications, such as human motion monitoring, tissue engineering, and robotics materials.
Highlights:
1 An all-wood hydrogel was synthesized via a simply Hofmeister effect without the use of any chemical cross-linking agent.
2 The all-wood hydrogel shows a high tensile strength of 36.5 MPa, a strain up to ~ 438%, and good conductivity, and can accurately distinguish diverse large or subtle human movements.
3 The all-wood hydrogel has good recyclable, biodegradable, and adjustable mechanical properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.H. Yang, Z.G. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
- Y.X. Liu, J. Liu, S.C. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
- H. Yuk, S.T. Lin, C. Ma, M. Takaffoli, N.X. Fang et al., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017). https://doi.org/10.1038/ncomms14230
- F. Pinelli, L. Magagnin, F. Rossi, Progress in hydrogels for sensing applications: a review. Mater. Today Chem. 17, 100317 (2020). https://doi.org/10.1016/j.mtchem.2020.100317
- Y.H. Ye, Y.F. Zhang, Y. Chen, X.S. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
- Z. Qiao, M.J. Cao, K. Michels, L. Hoffman, H.F. Ji, Design and fabrication of highly stretchable and tough hydrogels. Polym. Rev. 60(3), 420–441 (2020). https://doi.org/10.1080/15583724.2019.1691590
- J.Y. Sun, X.H. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012). https://doi.org/10.1038/nature11409
- S.T. Lin, J. Liu, X.Y. Liu, X.H. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training. PNAS 116(21), 10244–10249 (2019). https://doi.org/10.1073/pnas.1903019116
- H.L. Fan, J.P. Gong, Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 53(8), 2769–2782 (2020). https://doi.org/10.1021/acs.macromol.0c00238
- W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934
- G. Yan, Y. Feng, H. Wang, Y. Sun, X. Tang et al., Interfacial assembly of self-healing and mechanically stable hydrogels for degradation of organic dyes in water. Commun. Mater. 1(1), 41 (2020). https://doi.org/10.1038/s43246-020-0043-0
- S. Pradhan, K.A. Keller, J.L. Sperduto, J.H. Slater, Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering. Adv. Healthc. Mater. 6(24), 1700681 (2017). https://doi.org/10.1002/adhm.201700681
- G. Yan, G. Chen, Z. Peng, Z. Shen, X. Tang et al., The crosslinking mechanism and applications of catechol-metal polymer materials. Adv. Mater. Interfaces 8(19), 2100239 (2021). https://doi.org/10.1002/admi.202100239
- Y. Qiu, E. Askounis, F.Y. Guan, Z.H. Peng, W.K. Xiao et al., Dual-stimuli-responsive polymer composite with ultrawide tunable stiffness range triggered by water and temperature. ACS Appl. Polym. Mater. 2(5), 2008–2015 (2020). https://doi.org/10.1021/acsapm.0c00181
- J.R. Capadona, K. Shanmuganathan, D.J. Tyler, S.J. Rowan, C. Weder, Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868), 1370–1374 (2008). https://doi.org/10.1126/science.1153307
- Y.L. Tan, B.R. Hu, J. Song, Z.Y. Chu, W.J. Wu, Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nano-Micro Lett. 12, 101 (2020). https://doi.org/10.1007/s40820-020-00436-y
- H.L. Qin, T. Zhang, N. Li, H.P. Cong, S.H. Yu, Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 10, 2202 (2019). https://doi.org/10.1038/s41467-019-10243-8
- M.T.I. Mredha, H.H. Le, V.T. Tran, P. Trtik, J.X. Cui et al., Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 6(7), 1504–1511 (2019). https://doi.org/10.1039/c9mh00320g
- R. Bai, J. Yang, X.P. Morelle, Z. Suo, Flaw-insensitive hydrogels under static and cyclic loads. Macromol. Rapid Commun. 40(8), 1800883 (2019). https://doi.org/10.1002/marc.201800883
- G.H. Yan, S.M. He, G.F. Chen, X. Tang, Y. Sun et al., Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Carbohyd. Polym. 276, 118783 (2022). https://doi.org/10.1016/j.carbpol.2021.118783
- C.P. Xiang, Z.J. Wang, C.H. Yang, X. Yao, Y.C. Wang et al., Stretchable and fatigue-resistant materials. Mater. Today 34(7), 7–16 (2020). https://doi.org/10.1016/j.mattod.2019.08.009
- T. Li, C.J. Chen, A.H. Brozena, J.Y. Zhu, L.X. Xu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
- G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244–11252 (2021). https://doi.org/10.1021/acsnano.0c10117
- C.J. Chen, J.W. Song, J. Cheng, Z.Q. Pang, W.T. Gan et al., Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 14(12), 16723–16734 (2020). https://doi.org/10.1021/acsnano.0c04298
- C.J. Chen, L.B. Hu, Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33(28), 2002890 (2021). https://doi.org/10.1002/adma.202002890
- Y.Y. Li, X. Yang, Q.L. Fu, R. Rojas, M. Yan et al., Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6(3), 1094–1101 (2018). https://doi.org/10.1039/c7ta09973h
- J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
- R. Ajdary, B.L. Tardy, B.D. Mattos, L. Bai, O.J. Rojas, Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 33(28), 2001085 (2021). https://doi.org/10.1002/adma.202001085
- W.H. Sun, S. Schaffer, K. Dai, L.N. Yao, A. Feinberg et al., 3D printing hydrogel-based soft and biohybrid actuators: a mini-review on fabrication techniques, applications, and challenges. Front. Robot. AI 8(1), 673533 (2021). https://doi.org/10.3389/frobt.2021.673533
- K.C. Nie, Z.S. Wang, R.X. Tang, L. Zheng, C.C. Li et al., Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing. ACS Appl. Mater. Interfaces 12(38), 43024–43031 (2020). https://doi.org/10.1021/acsami.0c13962
- V.K. Thakur, M.K. Thakur, P. Raghavan, M.R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2(5), 1072–1092 (2014). https://doi.org/10.1021/sc500087z
- D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap et al., Towards lignin-based functional materials in a sustainable world. Green Chem. 18(5), 1175–1200 (2016). https://doi.org/10.1039/c5gc02616d
- Q. Xia, C. Chen, Y. Yao, J. Li, S. He et al., A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4(7), 627–635 (2021). https://doi.org/10.1038/s41893-021-00702-w
- Y. Chen, T.C. Mu, Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy Environ. 4(2), 95–115 (2019). https://doi.org/10.1016/j.gee.2019.01.012
- M.T. Hua, S.W. Wu, Y.F. Ma, Y.S. Zhao, Z.L. Chen et al., Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847), 594–599 (2021). https://doi.org/10.1038/s41586-021-03212-z
- S.W. Wu, M.T. Hua, Y. Alsaid, Y.J. Du, Y.F. Ma et al., Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
- Q.Y. He, Y. Huang, S.Y. Wang, Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28(5), 1705069 (2018). https://doi.org/10.1002/adfm.201705069
- M.T. Hua, S.W. Wu, Y. Jin, Y.S. Zhao, B.W. Yao et al., Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 33(26), 2100983 (2021). https://doi.org/10.1002/adma.202100983
- S. Kubo, J.F. Kadla, The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin. Biomacromol 4(3), 561–567 (2003). https://doi.org/10.1021/bm025727p
- H.Y. Bian, L.Q. Wei, C.X. Lin, Q.L. Ma, H.Q. Dai et al., Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain. Chem. Eng. 6(4), 4821–4828 (2018). https://doi.org/10.1021/acssuschemeng.7b04172
- A. Kumar, S.S. Han, PVA-based hydrogels for tissue engineering: a review. Int. J. Polym. Mater. Polym. Biomater. 66(4), 159–182 (2017). https://doi.org/10.1080/00914037.2016.1190930
- J.W. Song, C.J. Chen, Z. Yang, Y.D. Kuang, T. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1), 140–147 (2018). https://doi.org/10.1021/acsnano.7b04246
- C. Jia, C. Chen, R. Mi, T. Li, J. Dai et al., Clear wood toward high-performance building materials. ACS Nano 13(9), 9993–10001 (2019). https://doi.org/10.1021/acsnano.9b00089
- S. Wang, F. Jiang, X. Xu, Y. Kuang, K. Fu et al., Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29(35), 1702498 (2017). https://doi.org/10.1002/adma.201702498
- M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427
- G. Yan, S. He, S. Ma, A. Zeng, G. Chen et al., Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing. Chem. Eng. J. 427, 131896 (2022). https://doi.org/10.1016/j.cej.2021.131896
- Y. Shang, C. Wu, C. Hang, H. Lu, Q. Wang, Hofmeister-effect-guided ionohydrogel design as printable bioelectronic devices. Adv. Mater. 32(30), 2000189 (2020). https://doi.org/10.1002/adma.202000189
- J. Wei, G. Wei, Z. Wang, W. Li, D. Wu et al., Enhanced solar-driven-heating and tough hydrogel electrolyte by photothermal effect and hofmeister effect. Small 16(44), 2004091 (2020). https://doi.org/10.1002/smll.202004091
- J. Wei, Q. Wang, Hofmeister effect-aided assembly of enhanced hydrogel supercapacitor with excellent interfacial contact and reliability. Small Methods 3(11), 1900558 (2019). https://doi.org/10.1002/smtd.201900558
- C.C. Chen, Y.R. Wang, Q.J. Wu, Z.M. Wan, D.G. Li et al., Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chem. Eng. J. 400, 125876 (2020). https://doi.org/10.1016/j.cej.2020.125876
- K. Sanderson, Lignocellulose: a chewy problem. Nature 474, S12–S14 (2011). https://doi.org/10.1038/474S012a
References
C.H. Yang, Z.G. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
Y.X. Liu, J. Liu, S.C. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
H. Yuk, S.T. Lin, C. Ma, M. Takaffoli, N.X. Fang et al., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017). https://doi.org/10.1038/ncomms14230
F. Pinelli, L. Magagnin, F. Rossi, Progress in hydrogels for sensing applications: a review. Mater. Today Chem. 17, 100317 (2020). https://doi.org/10.1016/j.mtchem.2020.100317
Y.H. Ye, Y.F. Zhang, Y. Chen, X.S. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
Z. Qiao, M.J. Cao, K. Michels, L. Hoffman, H.F. Ji, Design and fabrication of highly stretchable and tough hydrogels. Polym. Rev. 60(3), 420–441 (2020). https://doi.org/10.1080/15583724.2019.1691590
J.Y. Sun, X.H. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012). https://doi.org/10.1038/nature11409
S.T. Lin, J. Liu, X.Y. Liu, X.H. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training. PNAS 116(21), 10244–10249 (2019). https://doi.org/10.1073/pnas.1903019116
H.L. Fan, J.P. Gong, Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 53(8), 2769–2782 (2020). https://doi.org/10.1021/acs.macromol.0c00238
W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934
G. Yan, Y. Feng, H. Wang, Y. Sun, X. Tang et al., Interfacial assembly of self-healing and mechanically stable hydrogels for degradation of organic dyes in water. Commun. Mater. 1(1), 41 (2020). https://doi.org/10.1038/s43246-020-0043-0
S. Pradhan, K.A. Keller, J.L. Sperduto, J.H. Slater, Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering. Adv. Healthc. Mater. 6(24), 1700681 (2017). https://doi.org/10.1002/adhm.201700681
G. Yan, G. Chen, Z. Peng, Z. Shen, X. Tang et al., The crosslinking mechanism and applications of catechol-metal polymer materials. Adv. Mater. Interfaces 8(19), 2100239 (2021). https://doi.org/10.1002/admi.202100239
Y. Qiu, E. Askounis, F.Y. Guan, Z.H. Peng, W.K. Xiao et al., Dual-stimuli-responsive polymer composite with ultrawide tunable stiffness range triggered by water and temperature. ACS Appl. Polym. Mater. 2(5), 2008–2015 (2020). https://doi.org/10.1021/acsapm.0c00181
J.R. Capadona, K. Shanmuganathan, D.J. Tyler, S.J. Rowan, C. Weder, Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868), 1370–1374 (2008). https://doi.org/10.1126/science.1153307
Y.L. Tan, B.R. Hu, J. Song, Z.Y. Chu, W.J. Wu, Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nano-Micro Lett. 12, 101 (2020). https://doi.org/10.1007/s40820-020-00436-y
H.L. Qin, T. Zhang, N. Li, H.P. Cong, S.H. Yu, Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 10, 2202 (2019). https://doi.org/10.1038/s41467-019-10243-8
M.T.I. Mredha, H.H. Le, V.T. Tran, P. Trtik, J.X. Cui et al., Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 6(7), 1504–1511 (2019). https://doi.org/10.1039/c9mh00320g
R. Bai, J. Yang, X.P. Morelle, Z. Suo, Flaw-insensitive hydrogels under static and cyclic loads. Macromol. Rapid Commun. 40(8), 1800883 (2019). https://doi.org/10.1002/marc.201800883
G.H. Yan, S.M. He, G.F. Chen, X. Tang, Y. Sun et al., Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Carbohyd. Polym. 276, 118783 (2022). https://doi.org/10.1016/j.carbpol.2021.118783
C.P. Xiang, Z.J. Wang, C.H. Yang, X. Yao, Y.C. Wang et al., Stretchable and fatigue-resistant materials. Mater. Today 34(7), 7–16 (2020). https://doi.org/10.1016/j.mattod.2019.08.009
T. Li, C.J. Chen, A.H. Brozena, J.Y. Zhu, L.X. Xu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244–11252 (2021). https://doi.org/10.1021/acsnano.0c10117
C.J. Chen, J.W. Song, J. Cheng, Z.Q. Pang, W.T. Gan et al., Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 14(12), 16723–16734 (2020). https://doi.org/10.1021/acsnano.0c04298
C.J. Chen, L.B. Hu, Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33(28), 2002890 (2021). https://doi.org/10.1002/adma.202002890
Y.Y. Li, X. Yang, Q.L. Fu, R. Rojas, M. Yan et al., Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6(3), 1094–1101 (2018). https://doi.org/10.1039/c7ta09973h
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
R. Ajdary, B.L. Tardy, B.D. Mattos, L. Bai, O.J. Rojas, Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 33(28), 2001085 (2021). https://doi.org/10.1002/adma.202001085
W.H. Sun, S. Schaffer, K. Dai, L.N. Yao, A. Feinberg et al., 3D printing hydrogel-based soft and biohybrid actuators: a mini-review on fabrication techniques, applications, and challenges. Front. Robot. AI 8(1), 673533 (2021). https://doi.org/10.3389/frobt.2021.673533
K.C. Nie, Z.S. Wang, R.X. Tang, L. Zheng, C.C. Li et al., Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing. ACS Appl. Mater. Interfaces 12(38), 43024–43031 (2020). https://doi.org/10.1021/acsami.0c13962
V.K. Thakur, M.K. Thakur, P. Raghavan, M.R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2(5), 1072–1092 (2014). https://doi.org/10.1021/sc500087z
D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap et al., Towards lignin-based functional materials in a sustainable world. Green Chem. 18(5), 1175–1200 (2016). https://doi.org/10.1039/c5gc02616d
Q. Xia, C. Chen, Y. Yao, J. Li, S. He et al., A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4(7), 627–635 (2021). https://doi.org/10.1038/s41893-021-00702-w
Y. Chen, T.C. Mu, Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy Environ. 4(2), 95–115 (2019). https://doi.org/10.1016/j.gee.2019.01.012
M.T. Hua, S.W. Wu, Y.F. Ma, Y.S. Zhao, Z.L. Chen et al., Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847), 594–599 (2021). https://doi.org/10.1038/s41586-021-03212-z
S.W. Wu, M.T. Hua, Y. Alsaid, Y.J. Du, Y.F. Ma et al., Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
Q.Y. He, Y. Huang, S.Y. Wang, Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28(5), 1705069 (2018). https://doi.org/10.1002/adfm.201705069
M.T. Hua, S.W. Wu, Y. Jin, Y.S. Zhao, B.W. Yao et al., Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 33(26), 2100983 (2021). https://doi.org/10.1002/adma.202100983
S. Kubo, J.F. Kadla, The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin. Biomacromol 4(3), 561–567 (2003). https://doi.org/10.1021/bm025727p
H.Y. Bian, L.Q. Wei, C.X. Lin, Q.L. Ma, H.Q. Dai et al., Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain. Chem. Eng. 6(4), 4821–4828 (2018). https://doi.org/10.1021/acssuschemeng.7b04172
A. Kumar, S.S. Han, PVA-based hydrogels for tissue engineering: a review. Int. J. Polym. Mater. Polym. Biomater. 66(4), 159–182 (2017). https://doi.org/10.1080/00914037.2016.1190930
J.W. Song, C.J. Chen, Z. Yang, Y.D. Kuang, T. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1), 140–147 (2018). https://doi.org/10.1021/acsnano.7b04246
C. Jia, C. Chen, R. Mi, T. Li, J. Dai et al., Clear wood toward high-performance building materials. ACS Nano 13(9), 9993–10001 (2019). https://doi.org/10.1021/acsnano.9b00089
S. Wang, F. Jiang, X. Xu, Y. Kuang, K. Fu et al., Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29(35), 1702498 (2017). https://doi.org/10.1002/adma.201702498
M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427
G. Yan, S. He, S. Ma, A. Zeng, G. Chen et al., Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing. Chem. Eng. J. 427, 131896 (2022). https://doi.org/10.1016/j.cej.2021.131896
Y. Shang, C. Wu, C. Hang, H. Lu, Q. Wang, Hofmeister-effect-guided ionohydrogel design as printable bioelectronic devices. Adv. Mater. 32(30), 2000189 (2020). https://doi.org/10.1002/adma.202000189
J. Wei, G. Wei, Z. Wang, W. Li, D. Wu et al., Enhanced solar-driven-heating and tough hydrogel electrolyte by photothermal effect and hofmeister effect. Small 16(44), 2004091 (2020). https://doi.org/10.1002/smll.202004091
J. Wei, Q. Wang, Hofmeister effect-aided assembly of enhanced hydrogel supercapacitor with excellent interfacial contact and reliability. Small Methods 3(11), 1900558 (2019). https://doi.org/10.1002/smtd.201900558
C.C. Chen, Y.R. Wang, Q.J. Wu, Z.M. Wan, D.G. Li et al., Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chem. Eng. J. 400, 125876 (2020). https://doi.org/10.1016/j.cej.2020.125876
K. Sanderson, Lignocellulose: a chewy problem. Nature 474, S12–S14 (2011). https://doi.org/10.1038/474S012a