Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS
Corresponding Author: Weihai Ni
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 328-335
Abstract
We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns. The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB). Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield, which are, respectively, optimized to be 85 °C and 6. The highest yield that can be achieved is 60 % at the optimized condition. The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions. Therefore, the reported synthesis approach is a time- and cost-effective one. The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually. Interestingly, only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules, where a maximum enhancement factor of 1.7 × 107 was obtained. The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001). doi:10.1021/ar960016n
- P. Zijlstra, M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Prog. Phys. 74(10), 106401 (2011). doi:10.1088/0034-4885/74/10/106401
- W. Ni, X. Kou, Z. Yang, J. Wang, Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2(4), 677–686 (2008). doi:10.1021/nn7003603
- K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015). doi:10.1039/c5dt02964c
- L. Polavarapu, S. Mourdikoudis, I. Pastoriza-Santos, J. Perez-Juste, Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 17(20), 3727–3762 (2015). doi:10.1039/c5ce00112a
- Q. Ruan, L. Shao, Y. Shu, J. Wang, H. Wu, Growth of monodisperse gold nanospheres with diameters from 20 to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2(1), 65–73 (2014). doi:10.1002/adom.201300359
- T.K. Sau, C.J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126(28), 8648–8649 (2004). doi:10.1021/ja047846d
- T.K. Sau, C.J. Murphy, Seeded high yield synthesis of short au nanorods in aqueous solution. Langmuir 20(15), 6414–6420 (2004). doi:10.1021/la049463z
- Y. Shao, Y. Jin, S. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 9, 1104–1105 (2004). doi:10.1039/b315732f
- T. Soejima, N. Kimizuka, One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water. J. Am. Chem. Soc. 131(40), 14407–14412 (2009). doi:10.1021/ja904910m
- Z. Huo, C.K. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal Au nanowires. Nano Lett. 8(7), 2041–2044 (2008). doi:10.1021/nl8013549
- F. Kim, K. Sohn, J. Wu, J. Huang, Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 130(44), 14442–14443 (2008). doi:10.1021/ja806759v
- B. Radha, G.U. Kulkarni, A real time microscopy study of the growth of giant Au microplates. Cryst. Growth Des. 11(1), 320–327 (2011). doi:10.1021/cg1015548
- X. Wu, R. Kullock, E. Krauss, B. Hecht, Single-crystalline gold microplates grown on substrates by solution-phase synthesis. Cryst. Res. Technol. 50(8), 595–602 (2015). doi:10.1002/crat.201400429
- J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 44(17), 6330–6374 (2015). doi:10.1039/c5cs00133a
- H. Hu, J.Y. Zhou, Q.S. Kong, C.X. Li, Two-dimensional au nanocrystals: shape/size controlling synthesis, morphologies, and applications. Part. Part. Syst. Char. 32(8), 796–808 (2015). doi:10.1002/ppsc.201500035
- Ping Cai, Shu-Mei Zhou, De-Kun Ma, Shen-Nan Liu, Wei Chen, Shao-Ming Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
- N. Li, P.X. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53(7), 1756–1789 (2014). doi:10.1002/anie.201300441
- J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern et al., Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1(9), 749–763 (2010). doi:10.1038/ncomms1143
- T. Deckert-Gaudig, V. Deckert, Ultraflat transparent gold nanoplates: ideal substrates for tip-enhanced Raman scattering experiments. Small 5(4), 432–436 (2009). doi:10.1002/smll.200801237
- J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan et al., Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat. Commun. 5, 3313 (2014). doi:10.1038/ncomms4313
- H.C. Chu, C.H. Kuo, M.H. Huang, Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem. 45(2), 808–813 (2006). doi:10.1021/ic051758s
- B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry 11(2), 454–463 (2005). doi:10.1002/chem.200400927
- Y. Xiong, I. Washio, J. Chen, H. Cai, Z.Y. Li, Y. Xia, Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22(20), 8563–8570 (2006). doi:10.1021/la061323x
- C. Wang, C. Kan, J. Zhu, X. Zeng, X. Wang, H. Li, D. Shi, Synthesis of high-yield gold nanoplates: fast growth assistant with binary surfactants. J. Nanomater. 2010, 1–9 (2010). doi:10.1155/2010/969030
- W. Zhu, Y.Y. Wu, C.Y. Wang, M. Zhang, G.X. Dong, Fabrication of large-area 3-d ordered silver-coated colloidal crystals and macroporous silver films using polystyrene templates. Nano-Micro Lett. 5(3), 182–190 (2013). doi:10.5101/nml.v5i3.082-190
- B. Liu, J. Xie, J.Y. Lee, Y.P. Ting, J.P. Chen, Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 109(32), 15256–15263 (2005). doi:10.1021/jp051449n
- L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, Q. Zhang, High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14(12), 7201–7206 (2014). doi:10.1021/nl504126u
- Y. Huang, A.R. Ferhan, Y. Gao, A. Dandapat, D.H. Kim, High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6(12), 6496–6500 (2014). doi:10.1039/c4nr00834k
- J.E. Millstone, G.S. Métraux, C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Funct. Mater. 16(9), 1209–1214 (2006). doi:10.1002/adfm.200600066
- W.L. Huang, C.H. Chen, M.H. Huang, Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 111(6), 2533–2538 (2007). doi:10.1021/jp0672454
- L. Wang, X. Chen, J. Zhan, Y. Chai, C. Yang, L. Xu, W. Zhuang, B. Jing, Synthesis of gold nano- and microplates in hexagonal liquid crystals. J. Phys. Chem. B 109(8), 3189–3194 (2005). doi:10.1021/jp0449152
- S. Hong, J.A.I. Acapulco, H.-J. Jang, A.S. Kulkarni, S. Park, Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bull. Korean Chem. Soc. 35(6), 1737–1742 (2014). doi:10.5012/bkcs.2014.35.6.1737
- C. Kan, X. Zhu, G. Wang, Single-crystalline gold microplates: synthesis, characterization, and thermal stability. J. Phys. Chem. B 110(10), 4651–4656 (2006). doi:10.1021/jp054800d
- J.E. Millstone, S. Park, K.L. Shuford, L. Qin, G.C. Schatz, C.A. Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127(15), 5312–5313 (2005). doi:10.1021/ja043245a
- A.R. Siekkinen, J.M. McLellan, J. Chen, Y. Xia, Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 432(4–6), 491–496 (2006). doi:10.1016/j.cplett.2006.10.095
- S. Kumar-Krishnan, E. Prokhorov, O. Arias de Fuentes, M. Ramírez, N. Bogdanchikova, I.C. Sanchez, J.D. Mota-Morales, G. Luna-Bárcenas, Temperature-induced au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis. J. Mater. Chem. A 3(31), 15869–15875 (2015). doi:10.1039/c5ta02606g
- J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li, Y. Xia, Successive deposition of silver on silver nanoplates: lateral versus vertical growth. Angew. Chem. Int. Ed. Engl. 50(1), 244–249 (2011). doi:10.1002/anie.201005549
- J. Heo, Y.W. Lee, M. Kim, W.S. Yun, S.W. Han, Nanoparticle assembly on nanoplates. Chem. Commun. 15, 1981–1983 (2009). doi:10.1039/b821713k
- J.K. Daniels, G. Chumanov, Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. J. Phys. Chem. B 109(38), 17936–17942 (2005). doi:10.1021/jp053432a
- K. Kim, J.K. Yoon, Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth au substrate. J. Phys. Chem. B 109(44), 20731–20736 (2005). doi:10.1021/jp052829b
- J. Wu, Y. Xu, P. Xu, Z. Pan, S. Chen, Q. Shen, L. Zhan, Y. Zhang, W. Ni, Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures. Nanoscale 7(41), 17529–17537 (2015). doi:10.1039/c5nr04500b
- J. Tang, F.S. Ou, H.P. Kuo, M. Hu, W.F. Stickle, Z. Li, R.S. Williams, Silver-coated si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates. Appl. Phy. A 96(4), 793–797 (2009). doi:10.1007/s00339-009-5305-0
- S. Nie, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). doi:10.1126/science.275.5303.1102
- J. Jiang, K. Bosnick, M. Maillard, L. Brus, Single molecule Raman spectroscopy at the junctions of large ag nanocrystals. J. Phys. Chem. B 107(37), 9964–9972 (2003). doi:10.1021/jp034632u
- W. Ji, X. Xue, W. Ruan, C. Wang, N. Ji, L. Chen, Z. Li, W. Song, B. Zhao, J.R. Lombardi, Scanned chemical enhancement of surface-enhanced Raman scattering using a charge-transfer complex. Chem. Commun. 47(8), 2426–2428 (2011). doi:10.1039/c0cc03697h
- J. Cabalo, J.A. Guicheteau, S. Christesen, Toward understanding the influence of intermolecular interactions and molecular orientation on the chemical enhancement of sers. J. Phys. Chem. A 117(37), 9028–9038 (2013). doi:10.1021/jp403458k
References
M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001). doi:10.1021/ar960016n
P. Zijlstra, M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Prog. Phys. 74(10), 106401 (2011). doi:10.1088/0034-4885/74/10/106401
W. Ni, X. Kou, Z. Yang, J. Wang, Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2(4), 677–686 (2008). doi:10.1021/nn7003603
K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015). doi:10.1039/c5dt02964c
L. Polavarapu, S. Mourdikoudis, I. Pastoriza-Santos, J. Perez-Juste, Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 17(20), 3727–3762 (2015). doi:10.1039/c5ce00112a
Q. Ruan, L. Shao, Y. Shu, J. Wang, H. Wu, Growth of monodisperse gold nanospheres with diameters from 20 to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2(1), 65–73 (2014). doi:10.1002/adom.201300359
T.K. Sau, C.J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126(28), 8648–8649 (2004). doi:10.1021/ja047846d
T.K. Sau, C.J. Murphy, Seeded high yield synthesis of short au nanorods in aqueous solution. Langmuir 20(15), 6414–6420 (2004). doi:10.1021/la049463z
Y. Shao, Y. Jin, S. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 9, 1104–1105 (2004). doi:10.1039/b315732f
T. Soejima, N. Kimizuka, One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water. J. Am. Chem. Soc. 131(40), 14407–14412 (2009). doi:10.1021/ja904910m
Z. Huo, C.K. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal Au nanowires. Nano Lett. 8(7), 2041–2044 (2008). doi:10.1021/nl8013549
F. Kim, K. Sohn, J. Wu, J. Huang, Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 130(44), 14442–14443 (2008). doi:10.1021/ja806759v
B. Radha, G.U. Kulkarni, A real time microscopy study of the growth of giant Au microplates. Cryst. Growth Des. 11(1), 320–327 (2011). doi:10.1021/cg1015548
X. Wu, R. Kullock, E. Krauss, B. Hecht, Single-crystalline gold microplates grown on substrates by solution-phase synthesis. Cryst. Res. Technol. 50(8), 595–602 (2015). doi:10.1002/crat.201400429
J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 44(17), 6330–6374 (2015). doi:10.1039/c5cs00133a
H. Hu, J.Y. Zhou, Q.S. Kong, C.X. Li, Two-dimensional au nanocrystals: shape/size controlling synthesis, morphologies, and applications. Part. Part. Syst. Char. 32(8), 796–808 (2015). doi:10.1002/ppsc.201500035
Ping Cai, Shu-Mei Zhou, De-Kun Ma, Shen-Nan Liu, Wei Chen, Shao-Ming Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
N. Li, P.X. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53(7), 1756–1789 (2014). doi:10.1002/anie.201300441
J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern et al., Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1(9), 749–763 (2010). doi:10.1038/ncomms1143
T. Deckert-Gaudig, V. Deckert, Ultraflat transparent gold nanoplates: ideal substrates for tip-enhanced Raman scattering experiments. Small 5(4), 432–436 (2009). doi:10.1002/smll.200801237
J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan et al., Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat. Commun. 5, 3313 (2014). doi:10.1038/ncomms4313
H.C. Chu, C.H. Kuo, M.H. Huang, Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem. 45(2), 808–813 (2006). doi:10.1021/ic051758s
B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry 11(2), 454–463 (2005). doi:10.1002/chem.200400927
Y. Xiong, I. Washio, J. Chen, H. Cai, Z.Y. Li, Y. Xia, Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22(20), 8563–8570 (2006). doi:10.1021/la061323x
C. Wang, C. Kan, J. Zhu, X. Zeng, X. Wang, H. Li, D. Shi, Synthesis of high-yield gold nanoplates: fast growth assistant with binary surfactants. J. Nanomater. 2010, 1–9 (2010). doi:10.1155/2010/969030
W. Zhu, Y.Y. Wu, C.Y. Wang, M. Zhang, G.X. Dong, Fabrication of large-area 3-d ordered silver-coated colloidal crystals and macroporous silver films using polystyrene templates. Nano-Micro Lett. 5(3), 182–190 (2013). doi:10.5101/nml.v5i3.082-190
B. Liu, J. Xie, J.Y. Lee, Y.P. Ting, J.P. Chen, Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 109(32), 15256–15263 (2005). doi:10.1021/jp051449n
L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, Q. Zhang, High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14(12), 7201–7206 (2014). doi:10.1021/nl504126u
Y. Huang, A.R. Ferhan, Y. Gao, A. Dandapat, D.H. Kim, High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6(12), 6496–6500 (2014). doi:10.1039/c4nr00834k
J.E. Millstone, G.S. Métraux, C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Funct. Mater. 16(9), 1209–1214 (2006). doi:10.1002/adfm.200600066
W.L. Huang, C.H. Chen, M.H. Huang, Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 111(6), 2533–2538 (2007). doi:10.1021/jp0672454
L. Wang, X. Chen, J. Zhan, Y. Chai, C. Yang, L. Xu, W. Zhuang, B. Jing, Synthesis of gold nano- and microplates in hexagonal liquid crystals. J. Phys. Chem. B 109(8), 3189–3194 (2005). doi:10.1021/jp0449152
S. Hong, J.A.I. Acapulco, H.-J. Jang, A.S. Kulkarni, S. Park, Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bull. Korean Chem. Soc. 35(6), 1737–1742 (2014). doi:10.5012/bkcs.2014.35.6.1737
C. Kan, X. Zhu, G. Wang, Single-crystalline gold microplates: synthesis, characterization, and thermal stability. J. Phys. Chem. B 110(10), 4651–4656 (2006). doi:10.1021/jp054800d
J.E. Millstone, S. Park, K.L. Shuford, L. Qin, G.C. Schatz, C.A. Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127(15), 5312–5313 (2005). doi:10.1021/ja043245a
A.R. Siekkinen, J.M. McLellan, J. Chen, Y. Xia, Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 432(4–6), 491–496 (2006). doi:10.1016/j.cplett.2006.10.095
S. Kumar-Krishnan, E. Prokhorov, O. Arias de Fuentes, M. Ramírez, N. Bogdanchikova, I.C. Sanchez, J.D. Mota-Morales, G. Luna-Bárcenas, Temperature-induced au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis. J. Mater. Chem. A 3(31), 15869–15875 (2015). doi:10.1039/c5ta02606g
J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li, Y. Xia, Successive deposition of silver on silver nanoplates: lateral versus vertical growth. Angew. Chem. Int. Ed. Engl. 50(1), 244–249 (2011). doi:10.1002/anie.201005549
J. Heo, Y.W. Lee, M. Kim, W.S. Yun, S.W. Han, Nanoparticle assembly on nanoplates. Chem. Commun. 15, 1981–1983 (2009). doi:10.1039/b821713k
J.K. Daniels, G. Chumanov, Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. J. Phys. Chem. B 109(38), 17936–17942 (2005). doi:10.1021/jp053432a
K. Kim, J.K. Yoon, Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth au substrate. J. Phys. Chem. B 109(44), 20731–20736 (2005). doi:10.1021/jp052829b
J. Wu, Y. Xu, P. Xu, Z. Pan, S. Chen, Q. Shen, L. Zhan, Y. Zhang, W. Ni, Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures. Nanoscale 7(41), 17529–17537 (2015). doi:10.1039/c5nr04500b
J. Tang, F.S. Ou, H.P. Kuo, M. Hu, W.F. Stickle, Z. Li, R.S. Williams, Silver-coated si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates. Appl. Phy. A 96(4), 793–797 (2009). doi:10.1007/s00339-009-5305-0
S. Nie, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). doi:10.1126/science.275.5303.1102
J. Jiang, K. Bosnick, M. Maillard, L. Brus, Single molecule Raman spectroscopy at the junctions of large ag nanocrystals. J. Phys. Chem. B 107(37), 9964–9972 (2003). doi:10.1021/jp034632u
W. Ji, X. Xue, W. Ruan, C. Wang, N. Ji, L. Chen, Z. Li, W. Song, B. Zhao, J.R. Lombardi, Scanned chemical enhancement of surface-enhanced Raman scattering using a charge-transfer complex. Chem. Commun. 47(8), 2426–2428 (2011). doi:10.1039/c0cc03697h
J. Cabalo, J.A. Guicheteau, S. Christesen, Toward understanding the influence of intermolecular interactions and molecular orientation on the chemical enhancement of sers. J. Phys. Chem. A 117(37), 9028–9038 (2013). doi:10.1021/jp403458k