A Review of Anode Materials for Dual-Ion Batteries
Corresponding Author: Wenhui Yuan
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 252
Abstract
Distinct from "rocking-chair" lithium-ion batteries (LIBs), the unique anionic intercalation chemistry on the cathode side of dual-ion batteries (DIBs) endows them with intrinsic advantages of low cost, high voltage, and eco-friendly, which is attracting widespread attention, and is expected to achieve the next generation of large-scale energy storage applications. Although the electrochemical reactions on the anode side of DIBs are similar to that of LIBs, in fact, to match the rapid insertion kinetics of anions on the cathode side and consider the compatibility with electrolyte system which also serves as an active material, the anode materials play a very important role, and there is an urgent demand for rational structural design and performance optimization. A review and summarization of previous studies will facilitate the exploration and optimization of DIBs in the future. Here, we summarize the development process and working mechanism of DIBs and exhaustively categorize the latest research of DIBs anode materials and their applications in different battery systems. Moreover, the structural design, reaction mechanism and electrochemical performance of anode materials are briefly discussed. Finally, the fundamental challenges, potential strategies and perspectives are also put forward. It is hoped that this review could shed some light for researchers to explore more superior anode materials and advanced systems to further promote the development of DIBs.
Highlights:
1 The development history and working mechanism of dual-ion batteries are reviewed, with an emphasis on the latest advancement in anode materials.
2 A comprehensive and detailed summary of the synthesis strategies, structural optimization, performance characterization, and reaction principles of four types of anode materials for dual-ion batteries is presented.
3 The current challenges of anode materials are highlighted, and the optimization strategies of advanced anode materials and battery systems are discussed, providing future research directions for the design of commercial dual-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhang, P. Sayavong, X. Xiao, S.T. Oyakhire, S.B. Shuchi et al., Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024). https://doi.org/10.1038/s41586-023-06992-8
- Z. Wang, Z. Du, L. Wang, G. He, I.P. Parkin et al., Disordered materials for high-performance lithium-ion batteries: a review. Nano Energy 121, 109250 (2024). https://doi.org/10.1016/j.nanoen.2023.109250
- Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4
- H. Du, Y. Kang, C. Li, Y. Zhao, J. Wozny et al., Easily recyclable lithium-ion batteries: recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder. Battery Energy 2, 20230011 (2023). https://doi.org/10.1002/bte2.20230011
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- M. Dubarry, N. Costa, D. Matthews, Data-driven direct diagnosis of Li-ion batteries connected to photovoltaics. Nat. Commun. 14, 3138 (2023). https://doi.org/10.1038/s41467-023-38895-7
- J. Bae, S. Oh, B. Lee, C.H. Lee, J. Chung et al., High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries. Energy Storage Mater. 57, 277–288 (2023). https://doi.org/10.1016/j.ensm.2023.02.016
- H. Li, A. Berbille, X. Zhao, Z. Wang, W. Tang et al., A contact-electro-catalytic cathode recycling method for spent lithium–ion batteries. Nat. Energy 8, 1137–1144 (2023). https://doi.org/10.1038/s41560-023-01348-y
- S. Lei, Z. Zeng, S. Cheng, J. Xie, Fast-charging of lithium-ion batteries: a review of electrolyte design aspects. Battery Energy 2, 20230018 (2023). https://doi.org/10.1002/bte2.20230018
- H. Zhang, L. Wang, X. He, Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy 1, 20210011 (2022). https://doi.org/10.1002/bte2.20210011
- X. Wang, Q. Zhang, C. Zhao, H. Li, B. Zhang et al., Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024). https://doi.org/10.1038/s41560-023-01425-2
- Y. Shi, F. Geng, Y. Sun, P. Jiang, W.H. Kan et al., Sustainable anionic redox by inhibiting Li cross-layer migration in Na-based layered oxide cathodes. ACS Nano 18, 5609–5621 (2024). https://doi.org/10.1021/acsnano.3c11146
- S. Kim, M. Lee, C. Park, A. Park, S. Kwon et al., Molecular dynamics study on lithium-ion transport in PEO branched nanopores with PYR14TFSI ionic liquid. Battery Energy 1, 20210013 (2022). https://doi.org/10.1002/bte2.20210013
- Y. Wei, S. Zhang, D. Zhai, F. Kang, Escape of lattice water in potassium iron hexacyanoferrate for cyclic optimization in potassium-ion batteries. Battery Energy 2, 20220027 (2023). https://doi.org/10.1002/bte2.20220027
- D. Schäfer, K. Hankins, M. Allion, U. Krewer, F. Karcher et al., Multiscale investigation of sodium-ion battery anodes: analytical techniques and applications. Adv. Energy Mater. 14, 2302830 (2024). https://doi.org/10.1002/aenm.202302830
- J. Liu, Y. Wang, N. Jiang, B. Wen, C. Yang et al., Vacancies-regulated Prussian blue analogues through precipitation conversion for cathodes in sodium-ion batteries with energy densities over 500 Wh/kg. Angew. Chem. Int. Ed. e202400214 (2024). https://doi.org/10.1002/anie.202400214
- D. Zhang, H. Xu Nickel modified TiO2/C nanodisks with defective and near-amorphous structure for high-performance sodium-ion batteries. Battery Energy 3, 20230032 (2024). https://doi.org/10.1002/bte2.20230032
- J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7
- Y. Gao, W. Li, B. Ou, S. Zhang, H. Wang et al., A dilute fluorinated phosphate electrolyte enables 4.9V-class potassium ion full batteries. Adv. Funct. Mater. 33, 2305829 (2023). https://doi.org/10.1002/adfm.202305829
- Q. Yao, F. Xiao, C. Lin, P. Xiong, W. Lai et al., Regeneration of spent lithium manganate into cation-doped and oxygen-deficient MnO2 cathodes towardultralong lifespan and wide-temperature-tolerant aqueous Zn-ion batteries. Battery Energy 2, 20220065 (2023). https://doi.org/10.1002/bte2.20220065
- Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
- M. Li, M. Liu, Y. Lu, G. Zhang, Y. Zhang et al., A dual active site organic–inorganic poly(O-phenylenediamine)/NH4V3O8 composite cathode material for aqueous zinc-ion batteries. Adv. Funct. Mater. 34, 2312789 (2024). https://doi.org/10.1002/adfm.202312789
- X. Lan, S. Yang, T. Meng, C. Zhang, X. Hu, A multifunctional electrolyte additive with solvation structure regulation and electrode/electrolyte interface manipulation enabling high-performance Li-ion batteries in wide temperature range. Adv. Energy Mater. 13, 2203449 (2023). https://doi.org/10.1002/aenm.202203449
- Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2300682 (2023). https://doi.org/10.1002/aenm.202300682
- X. Qin, X. Zhao, G. Zhang, Z. Wei, L. Li et al., Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile-water hybrid electrolyte. ACS Nano 17, 12040–12051 (2023). https://doi.org/10.1021/acsnano.2c07061
- X. Hao, L. Zheng, S. Hu, Y. Wu, G. Zhang et al., Stabilizing Ca-ion batteries with a 7000-cycle lifespan and superior rate capability by a superlattice-like vanadium heterostructure. Mater. Today Energy 38, 101456 (2023). https://doi.org/10.1016/j.mtener.2023.101456
- G. Studer, A. Schmidt, J. Büttner, M. Schmidt, A. Fischer et al., On a high-capacity aluminium battery with a two-electron phenothiazine redox polymer as a positive electrode. Energy Environ. Sci. 16, 3760–3769 (2023). https://doi.org/10.1039/D3EE00235G
- Y.-N. Liu, J.-L. Yang, Z.-Y. Gu, X.-Y. Zhang, Y. Liu et al., Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al–ion batteries. Angew. Chem. Int. Ed. 63, e202316925 (2024). https://doi.org/10.1002/anie.202316925
- Q. Sun, L. Chai, S. Chen, W. Zhang, H.Y. Yang et al., Dual-salt mixed electrolyte for high performance aqueous aluminum batteries. ACS Appl. Mater. Interfaces 16, 10061–10069 (2024). https://doi.org/10.1021/acsami.3c17059
- X. Liu, H. Wu, Z. Xuan, L. Li, Y. Fang et al., Stable organic polymer anode for high rate and fast charge sodium based dual-ion battery. Chemsuschem 17, e202301223 (2024). https://doi.org/10.1002/cssc.202301223
- W. Luo, D. Yu, T. Ge, J. Yang, S. Dong et al., Balancing salt concentration and fluorinated cosolvent for graphite cathode-based dual-ion batteries. Appl. Energy 358, 122652 (2024). https://doi.org/10.1016/j.apenergy.2024.122652
- R. Yang, W. Yao, L. Zhou, F. Zhang, Y. Zheng et al., Secondary amines functionalized organocatalytic iodine redox for high-performance aqueous dual-ion batteries. Adv. Mater. 36, e2314247 (2024). https://doi.org/10.1002/adma.202314247
- S. Guan, J. Zhou, S. Sun, Q. Peng, X. Guo et al., Nonmetallic Se/N Co-doped amorphous carbon anode collaborates to realize ultra-high capacity and fast potassium storage for potassium dual-ion batteries. Adv. Funct. Mater. 34, 2314890 (2024). https://doi.org/10.1002/adfm.202314890
- J. Ding, Y. Huang, W. Cheng, R. Sheng, Z. Liu et al., Boosting ion diffusion kinetics of Fe2O3/MoC@NG via heterointerface engineering and pseudocapacitance behavior: an alternative high-rate anode for high-capacity lithium dual-ion batteries. Chem. Eng. J. 481, 148499 (2024). https://doi.org/10.1016/j.cej.2023.148499
- Y. Li, B. Wang, High rate and ultralong cyclelife fiber-shaped sodium dual-ion battery based on bismuth anodes and polytriphenylamine cathodes. Battery Energy 2, 20220035 (2023). https://doi.org/10.1002/bte2.20220035
- Y. Song, Y. Wu, Y. Wang, Y. Jia, H. Gou et al., “Graphene bubble bridging” enabled flexible multifunctional carbon fiber membrane toward K+ storage devices. Adv. Funct. Mater. 34, 2311458 (2024). https://doi.org/10.1002/adfm.202311458
- H.D. Asfaw, A. Kotronia, A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Rep. Phys. Sci. 3, 100693 (2022). https://doi.org/10.1016/j.xcrp.2021.100693
- H.D. Asfaw, A. Kotronia, N. Garcia-Araez, K. Edström, D. Brandell, Charting the course to solid-state dual-ion batteries. Carbon Energy 6, e425 (2024). https://doi.org/10.1002/cey2.425
- F. Zhang, B. Ji, X. Tong, M. Sheng, X. Zhang et al., A dual-ion battery constructed with aluminum foil anode and mesocarbon microbead cathode via an alloying/intercalation process in an ionic liquid electrolyte. Adv. Mater. Interfaces 3, 1600605 (2016). https://doi.org/10.1002/admi.201600605
- B. Pattavathi, V. Surendran, S. Palani, M.M. Shaijumon, Artificial neural network-enabled approaches toward mass balancing and cell optimization of lithium dual ion batteries. J. Energy Storage 68, 107878 (2023). https://doi.org/10.1016/j.est.2023.107878
- H. Liu, J. Zhang, L. Zhang, G. Xu, H. Wang, Anion intercalation into graphite electrode from ethylene carbonate solutions dissolving both lithium hexafluorophosphate and lithium bis(trifluoromethanesulfonyl)imide J. Phys. Chem. C 128, 1574–1581 (2024). https://doi.org/10.1021/acs.jpcc.3c06738
- M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018). https://doi.org/10.1002/aenm.201703320
- T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018). https://doi.org/10.1016/j.joule.2018.09.003
- X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59, 3802–3832 (2020). https://doi.org/10.1002/anie.201814294
- L. Zhang, H. Wang, X. Zhang, Y. Tang, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31, 2010958 (2021). https://doi.org/10.1002/adfm.202010958
- J. Hao, X. Li, X. Song, Z. Guo, Recent progress and perspectives on dual-ion batteries. EnergyChem 1, 100004 (2019). https://doi.org/10.1016/j.enchem.2019.100004
- H.-G. Wang, Y. Wang, Q. Wu, G. Zhu, Recent developments in electrode materials for dual-ion batteries: Potential alternatives to conventional batteries. Mater. Today 52, 269–298 (2022). https://doi.org/10.1016/j.mattod.2021.11.008
- W. Rüdorff, U. Hofmann, Über graphitsalze. Z. Anorg. Allg. Chem. 238, 1–50 (1938). https://doi.org/10.1002/zaac.19382380102
- F.P. Mccullough, A.F. Beale, Secondary electrical energy storage device and electrode therefor. US04865931A. 1989.
- R.T. Carlin, H.C. De Long, J. Fuller, P.C. Trulove, Dual intercalating molten electrolyte batteries. J. Electrochem. Soc. 141, L73–L76 (1994). https://doi.org/10.1149/1.2055041
- J.A. Seel, J.R. Dahn, Electrochemical intercalation of PF6 into graphite. J. Electrochem. Soc. 147, 892 (2000). https://doi.org/10.1149/1.1393288
- T. Ishihara, M. Koga, H. Matsumoto, M. Yoshio, Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery. Electrochem. Solid-State Lett. 10, A74 (2007). https://doi.org/10.1149/1.2424263
- T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel et al., Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-Ion cells. J. Electrochem. Soc. 159, A1755–A1765 (2012). https://doi.org/10.1149/2.011211jes
- S. Rothermel, P. Meister, G. Schmuelling, O. Fromm, H.-W. Meyer et al., Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ. Sci. 7, 3412–3423 (2014). https://doi.org/10.1039/C4EE01873G
- M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015). https://doi.org/10.1038/nature14340
- X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588
- M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7, 1601963 (2017). https://doi.org/10.1002/aenm.201601963
- B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017). https://doi.org/10.1002/adma.201700519
- M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4
- X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
- X. Lei, Y. Zheng, F. Zhang, Y. Wang, Y. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Mater. 30, 34–41 (2020). https://doi.org/10.1016/j.ensm.2020.04.025
- X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential ≈6.0V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11, 2100151 (2021). https://doi.org/10.1002/aenm.202100151
- H. Wu, S. Luo, L. Li, H. Xiao, W. Yuan, A high-capacity dual-ion full battery based on nitrogen-doped carbon nanosphere anode and concentrated electrolyte. Battery Energy 2, 20230009 (2023). https://doi.org/10.1002/bte2.20230009
- B. Wang, Y. Huang, Y. Wang, H. Wang, Synergistic solvation of anion: an effective strategy toward economical high-performance dual-ion battery. Adv. Funct. Mater. 33, 2212287 (2023). https://doi.org/10.1002/adfm.202212287
- L. Che, Z. Hu, T. Zhang, P. Dai, C. Chen et al., Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries. Battery Energy 3, 20230064 (2024). https://doi.org/10.1002/bte2.20230064
- Y. Huang, J. Li, H. Wang, Abnormal inverse current during anion deintercalation from graphite electrode. ACS Appl. Energy Mater. 2, 4544–4550 (2019). https://doi.org/10.1021/acsaem.9b00792
- J. Kang, S. Lee, J. Hwang, S. Kim, S. Lee et al., Azacyclic anchor-enabled cohesive graphite electrodes for sustainable anion storage. Adv. Mater. 35, 2306157 (2023). https://doi.org/10.1002/adma.202306157
- S. Zhao, Y. Huang, Y. Wang, D. Zhu, L. Zhang et al., Intercalation behavior of tetrafluoroborate anion in a graphite electrode from mixed cyclic carbonates. ACS Appl. Energy Mater. 4, 737–744 (2021). https://doi.org/10.1021/acsaem.0c02600
- I.A. Rodríguez-Pérez, X. Ji, Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2, 1762–1770 (2017). https://doi.org/10.1021/acsenergylett.7b00321
- R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. Oxf. 36, 638–670 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.003
- S. Kumar, P. Bhauriyal, B. Pathak, Computational insights into the working mechanism of the LiPF6–graphite dual-ion battery. J. Phys. Chem. C 123, 23863–23871 (2019). https://doi.org/10.1021/acs.jpcc.9b07046
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- S. Ji, A. Zhang, W. Hua, S. Yan, X. Chen, Regeneration of graphite from spent lithium-ion batteries as anode materials through stepwise purification and mild temperature restoration. Battery Energy 3, 20230067 (2024). https://doi.org/10.1002/bte2.20230067
- C. Sole, N.E. Drewett, L.J. Hardwick, In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 172, 223–237 (2014). https://doi.org/10.1039/c4fd00079j
- G. Wang, F. Wang, P. Zhang, J. Zhang, T. Zhang et al., Polarity-switchable symmetric graphite batteries with high energy and high power densities. Adv. Mater. 30, e1802949 (2018). https://doi.org/10.1002/adma.201802949
- J.A. Read, A.V. Cresce, M.H. Ervin, K. Xu, Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 7, 617–620 (2014). https://doi.org/10.1039/C3EE43333A
- L. Fan, Q. Liu, S. Chen, Z. Xu, B. Lu, Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv. Energy Mater. 7, 1602778 (2017). https://doi.org/10.1002/aenm.201602778
- K. Li, G. Ma, D. Yu, W. Luo, J. Li et al., A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Res. 16, 6353–6360 (2023). https://doi.org/10.1007/s12274-023-5438-z
- X. Li, X. Ou, Y. Tang, 6.0 V High-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 10, 2002567 (2020). https://doi.org/10.1002/aenm.202002567
- J. Fan, Z. Zhang, Y. Liu, A. Wang, L. Li et al., An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem. Commun. 53, 6891–6894 (2017). https://doi.org/10.1039/c7cc02534c
- A. Wang, W. Yuan, J. Fan, L. Li, A dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol. 6, 2172–2178 (2018). https://doi.org/10.1002/ente.201800269
- D.S. Kim, J.U. Lee, S.H. Kim, J.-Y. Hong, Electrochemically exfoliated graphite as a highly efficient conductive additive for an anode in lithium-ion batteries. Battery Energy 2, 20230012 (2023). https://doi.org/10.1002/bte2.20230012
- X.M. Nguyen Thi, K.M. Le, Q. Phung, D.Q. Truong, H. Van Nguyen et al., Improving the electrochemical performance of lithium-ion battery using silica/carbon anode through prelithiation techniques. Battery Energy 2, 20230003 (2023). https://doi.org/10.1002/bte2.20230003
- Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31, 2102360 (2021). https://doi.org/10.1002/adfm.202102360
- X. Han, G. Xu, Z. Zhang, X. Du, P. Han et al., An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 9, 1804022 (2019). https://doi.org/10.1002/aenm.201804022
- X. Hu, Y. Ma, W. Qu, J. Qian, Y. Li et al., Large interlayer distance and heteroatom-doping of graphite provide new insights into the dual-ion storage mechanism in dual-carbon batteries. Angew. Chem. Int. Ed. 62, e202307083 (2023). https://doi.org/10.1002/anie.202307083
- Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35, e2212186 (2023). https://doi.org/10.1002/adma.202212186
- T. Ke, S. Yun, K. Wang, T. Xing, J. Dang et al., Constructing bimetal, alloy, and compound-modified nitrogen-doped biomass-derived carbon from coconut shell as accelerants for boosting methane production in bioenergy system. Energy Mater. 4, 400011 (2024). https://doi.org/10.20517/energymater.2023.62
- L.-F. Zhao, Z. Hu, W.-H. Lai, Y. Tao, J. Peng et al., Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 11, 2002704 (2021). https://doi.org/10.1002/aenm.202002704
- A. Nagmani, S. Kumar, Puravankara, Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/ full-cell sodium-ion batteries. Battery Energy 1, 20220007 (2022). https://doi.org/10.1002/bte2.20220007
- C. Ma, L. Tang, H. Cheng, Z. Li, W. Li et al., Biochar for supercapacitor electrodes: Mechanisms in aqueous electrolytes. Battery Energy 3, 20230058 (2024). https://doi.org/10.1002/bte2.20230058
- Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng et al., Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35, e2304091 (2023). https://doi.org/10.1002/adma.202304091
- G. Wang, J. Gao, W. Wang, Z. Tao, X. He et al., Evoking surface-driven capacitive process through sulfur implantation into nitrogen-coordinated hard carbon hollow spheres achieves superior alkali metal ion storage beyond lithium. Battery Energy 2, 20230031 (2023). https://doi.org/10.1002/bte2.20230031
- Y. Chen, H. Sun, J. Guo, Y. Zhao, H. Yang et al., Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater. 3, 300044 (2023). https://doi.org/10.20517/energymater.2023.35
- R. Xu, N. Sun, H. Zhou, X. Chang, R.A. Soomro et al., Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries. Battery Energy 2, 20220054 (2023). https://doi.org/10.1002/bte2.20220054
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- N. LeGe, X.-X. He, Y.-X. Wang, Y. Lei, Y.-X. Yang et al., Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 16, 5688–5720 (2023). https://doi.org/10.1039/D3EE02202A
- X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong et al., Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 4, 1133–1150 (2022). https://doi.org/10.1002/cey2.196
- Z.-L. Yu, S. Xin, Y. You, L. Yu, Y. Lin et al., Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 138, 14915–14922 (2016). https://doi.org/10.1021/jacs.6b06673
- S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang et al., An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 8, 1800140 (2018). https://doi.org/10.1002/aenm.201800140
- X. Wang, C. Zheng, L. Qi, H. Wang, Carbon derived from pine needles as a Na+-storage electrode material in dual-ion batteries. Glob. Chall. 1, 1700055 (2017). https://doi.org/10.1002/gch2.201700055
- S. Chen, Q. Kuang, H.J. Fan, Dual-carbon batteries: materials and mechanism. Small 16, e2002803 (2020). https://doi.org/10.1002/smll.202002803
- H. Kim, J.C. Hyun, D.H. Kim, J.H. Kwak, J.B. Lee et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv. Mater. 35, e2209128 (2023). https://doi.org/10.1002/adma.202209128
- J. Wang, L. Xi, C. Peng, X. Song, X. Wan et al., Recent progress in hard carbon anodes for sodium-ion batteries. Adv. Eng. Mater. 26, 2302063 (2024). https://doi.org/10.1002/adem.202302063
- C. Zheng, B. Jian, X. Xu, J. Zhong, H. Yang et al., Regulating microstructure of walnut shell-derived hard carbon for high rate and long cycling sodium-based dual-ion batteries. Chem. Eng. J. 455, 140434 (2023). https://doi.org/10.1016/j.cej.2022.140434
- X. Jiang, X. Liu, Z. Zeng, L. Xiao, X. Ai et al., A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life. Adv. Energy Mater. 8, 1802176 (2018). https://doi.org/10.1002/aenm.201802176
- C. Chen, M. Wu, Y. Wang, K. Zaghib, Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J. Power. Sources 444, 227310 (2019). https://doi.org/10.1016/j.jpowsour.2019.227310
- K. Zhang, Q. He, F. Xiong, J. Zhou, Y. Zhao et al., Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano Energy 77, 105018 (2020). https://doi.org/10.1016/j.nanoen.2020.105018
- R. Hou, B. Liu, Y. Sun, L. Liu, J. Meng et al., Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72, 104728 (2020). https://doi.org/10.1016/j.nanoen.2020.104728
- A. Phukhrongthung, M. Sawangphruk, P. Iamprasertkun, C. Santhaweesuk, C. Puchongkawarin et al., Rocking chair-type aqueous sodium-ion capacitors with biomass-derived activated carbon and Na3V2(PO4)2F3 nanoflower in a water-in-salt electrolyte. J. Energy Storage 80, 110369 (2024). https://doi.org/10.1016/j.est.2023.110369
- L. Wang, M. Peng, J. Chen, X. Tang, L. Li et al., High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 16, 2877–2888 (2022). https://doi.org/10.1021/acsnano.1c09936
- G.G. Bizuneh, A.M.M. Adam, J. Ma Progress on carbon for electrochemical capacitors. Battery Energy 2, 20220021 (2023). https://doi.org/10.1002/bte2.20220021
- H. Li, T. Kurihara, D. Yang, M. Watanabe, T. Ishihara, A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Storage Mater. 38, 454–461 (2021). https://doi.org/10.1016/j.ensm.2021.03.029
- H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 4, 5149–5158 (2016). https://doi.org/10.1039/C6TA01392A
- Q. Wang, S. Wang, W. Liu, D. Wang, S. Luo et al., N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. J. Energy Storage 54, 105285 (2022). https://doi.org/10.1016/j.est.2022.105285
- P. Meister, V. Küpers, M. Kolek, J. Kasnatscheew, S. Pohlmann et al., Enabling Mg-based ionic liquid electrolytes for hybrid dual-ion capacitors. Batter. Supercaps 4, 504–512 (2021). https://doi.org/10.1002/batt.202000246
- H. Yang, X. Shi, T. Deng, T. Qin, L. Sui et al., Carbon-based dual-ion battery with enhanced capacity and cycling stability. ChemElectroChem 5, 3612–3618 (2018). https://doi.org/10.1002/celc.201801108
- F. Sun, X. Liu, H.B. Wu, L. Wang, J. Gao et al., In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368–3376 (2018). https://doi.org/10.1021/acs.nanolett.8b00134
- X. Wang, M. Hou, Z. Shi, X. Liu, I. Mizota et al., Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 13, 12059–12068 (2021). https://doi.org/10.1021/acsami.0c23165
- M. Wang, Q. Liu, G. Wu, J. Ma, Y. Tang, Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy Environ. 8, 548–558 (2023). https://doi.org/10.1016/j.gee.2021.03.007
- K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
- S. Trano, D. Versaci, M. Castellino, M. Fontana, L. Fagiolari et al., Exploring nature-behaviour relationship of carbon black materials for potassium-ion battery electrodes. Energy Mater. 4, 400008 (2024). https://doi.org/10.20517/energymater.2023.79
- X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021). https://doi.org/10.1039/D1EE00166C
- H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang et al., Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020). https://doi.org/10.1021/acs.chemrev.0c00080
- Y. Hou, H. Sun, F. Kong, M. Wang, L. Li et al., Direct synthesis of N, S Co-doped graphynes via copolymerization strategy for electrocatalytic application. Battery Energy 3, 20230026 (2024). https://doi.org/10.1002/bte2.20230026
- D. Qu, B. Zhao, Z. Song, D. Wang, H. Kong et al., Two-dimensional N/O Co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries. J. Mater. Chem. A 9, 25094–25103 (2021). https://doi.org/10.1039/D1TA07782A
- Y. Sun, Y.-L. Yang, X.-L. Shi, L. Ye, Y. Hou et al., An ultra-stable sodium half/full battery based on a unique micro-channel pine-derived carbon/SnS2@reduced graphene oxide film. Battery Energy 2, 20220046 (2023). https://doi.org/10.1002/bte2.20220046
- Y. Guo, C. Liu, L. Xu, K. Huang, H. Wu et al., A cigarette filter-derived nitrogen-doped carbon nanop coating layer for stable Zn-ion battery anodes. Energy Mater. 2, 200032 (2022). https://doi.org/10.20517/energymater.2022.45
- L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 41 (2023). https://doi.org/10.1007/s40820-022-01006-0
- H. Tan, X. Du, R. Zhou, Z. Hou, B. Zhang, Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 176, 383–389 (2021). https://doi.org/10.1016/j.carbon.2021.02.003
- S. Huang, D. Yang, X. Qiu, W. Zhang, Y. Qin et al., Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32, 2203279 (2022). https://doi.org/10.1002/adfm.202203279
- W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: activation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14, 5425–5438 (2022). https://doi.org/10.1021/acsami.1c22576
- G. Qiu, M. Ning, M. Zhang, J. Hu, Z. Duan et al., Flexible hard−soft carbon heterostructure based on mesopore confined carbonization for ultrafast and highly durable sodium storage. Carbon 205, 310–320 (2023). https://doi.org/10.1016/j.carbon.2023.01.018
- X. Cheng, H. Yang, C. Wei, F. Huang, Y. Yao et al., Synergistic effect of 1D bismuth Nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries. J. Mater. Chem. A 11, 8081–8090 (2023). https://doi.org/10.1039/D3TA01214J
- R. Zhao, N. Sun, B. Xu, Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small Struct. 2, 2100132 (2021). https://doi.org/10.1002/sstr.202100132
- Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai et al., Designing g-C3N4/N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ. Mater. 4, 638–645 (2021). https://doi.org/10.1002/eem2.12148
- X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004). https://doi.org/10.1021/ja040082h
- Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014). https://doi.org/10.1039/C4TC00988F
- R. Guo, L. Li, B. Wang, Y. Xiang, G. Zou et al., Functionalized carbon dots for advanced batteries. Energy Storage Mater. 37, 8–39 (2021). https://doi.org/10.1016/j.ensm.2021.01.020
- M. Shaker, T. Shahalizade, A. Mumtaz, M. Hemmati Saznaghi, S. Javanmardi et al., A review on the role of graphene quantum dots and carbon quantum dots in secondary-ion battery electrodes. FlatChem 40, 100516 (2023). https://doi.org/10.1016/j.flatc.2023.100516
- F. Wang, Z. Liu, P. Zhang, H. Li, W. Sheng et al., Dual-graphene rechargeable sodium battery. Small 13, https://doi.org/10.1002/smll.201702449 (2017). https://doi.org/10.1002/smll.201702449
- M. Peng, K. Shin, L. Jiang, Y. Jin, K. Zeng et al., Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem. Int. Ed. 61, e202206770 (2022). https://doi.org/10.1002/anie.202206770
- Li, G.; Guo S.; Xiang B.; Mei S.; Zheng Y et al., Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater. 2, 200020 (2022). https://doi.org/10.20517/energymater.2022.24
- T. Wulandari, D. Fawcett, S.B. Majumder, G.E.J. Poinern, Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2, 20230030 (2023). https://doi.org/10.1002/bte2.20230030
- X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Advances and prospects of dual-ion batteries. Adv. Energy Mater. 11, 2102498 (2021). https://doi.org/10.1002/aenm.202102498
- D. Gong, C. Wei, Z. Liang, Y. Tang, Recent advances on sodium-ion batteries and sodium dual-ion batteries: state-of-the-art Na+ host anode materials. Small Sci. 1, 2100014 (2021). https://doi.org/10.1002/smsc.202100014
- W. Liu, Y. Li, H. Yang, B. Long, Y. Li et al., Pursuing high voltage and long lifespan for low-cost Al-based rechargeable batteries: Dual-ion design and prospects. Energy Storage Mater. 62, 102922 (2023). https://doi.org/10.1016/j.ensm.2023.102922
- L. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li et al., Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew. Chem. Int. Ed. 59, 17924–17930 (2020). https://doi.org/10.1002/anie.202006595
- K.V. Kravchyk, M.V. Kovalenko, On achievable gravimetric and volumetric energy densities of Al dual-ion batteries. ACS Energy Lett. 8, 1266–1269 (2023). https://doi.org/10.1021/acsenergylett.2c02908
- Y.H. Heo, J. Lee, S. Ha, J.C. Hyun, D.H. Kang et al., 3D-structured bifunctional MXene paper electrodes for protection and activation of Al metal anodes. J. Mater. Chem. A 11, 14380–14389 (2023). https://doi.org/10.1039/D3TA01840G
- C. Han, G. Chen, Y. Ma, J. Ma, X. Shui et al., Strategies towards inhibition of aluminum current collector corrosion in lithium batteries. Energy Mater. 3, 300052 (2023). https://doi.org/10.20517/energymater.2023.53
- X. Tong, F. Zhang, G. Chen, X. Liu, L. Gu et al., Core–shell Aluminum@Carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater. 8, 1701967 (2018). https://doi.org/10.1002/aenm.201701967
- X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 28, 9979–9985 (2016). https://doi.org/10.1002/adma.201603735
- S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod. Amorphous carbon nano- interface-modified aluminum anodes for high-performance dual-ion batteries. ACS Sustain Chem. Eng. 9, 3710-3717 (2021). https://doi.org/10.1021/acssuschemeng.0c08119
- B. Sun, D. Xu, Z. Wang, Y. Zhan, K. Zhang, Interfacial structure design for triboelectric nanogenerators. Battery Energy 1, 20220001 (2022). https://doi.org/10.1002/bte2.20220001
- T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 35 (2022). https://doi.org/10.20517/energymater.2022.46
- H. Zhang, D. Xu, F. Yang, J. Xie, Q. Liu et al., A high-capacity Sn metal anode for aqueous acidic batteries. Joule 7, 971–985 (2023). https://doi.org/10.1016/j.joule.2023.04.011
- X. Wu, X. Lan, R. Hu, Y. Yao, Y. Yu et al., Tin-based anode materials for stable sodium storage: progress and perspective. Adv. Mater. 34, e2106895 (2022). https://doi.org/10.1002/adma.202106895
- A. Amardeep, D.J. Freschi, J. Wang, J. Liu, Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Res. 16, 8191–8218 (2023). https://doi.org/10.1007/s12274-023-5448-x
- A.B. Ikhe, J.Y. Seo, W.B. Park, J.-W. Lee, K.-S. Sohn et al., 3-V class Mg-based dual-ion battery with astonishingly high energy/power densities in common electrolytes. J. Power. Sources 506, 230261 (2021). https://doi.org/10.1016/j.jpowsour.2021.230261
- C. Jiang, X. Meng, Y. Zheng, J. Yan, Z. Zhou et al., High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 3, 85–94 (2021). https://doi.org/10.31635/ccschem.020.202000463
- M. Zhang, J. Zhong, W. Kong, L. Wang, T. Wang et al., A high capacity and working voltage potassium-based dual ion batteries. Energy Environ. Mater. 4, 413–420 (2021). https://doi.org/10.1002/eem2.12086
- J. Zhou, Y. Zhou, X. Zhang, L. Cheng, M. Qian et al., Germanium-based high-performance dual-ion batteries. Nanoscale 12, 79–84 (2020). https://doi.org/10.1039/c9nr08783d
- G. Liu, X. Liu, X. Ma, X. Tang, X. Zhang et al., High-performance dual-ion battery based on silicon-graphene composite anode and expanded graphite cathode. Molecules 28, 4280 (2023). https://doi.org/10.3390/molecules28114280
- S. He, S. Huang, Y. Zhao, H. Qin, Y. Shan et al., Design of a dual-electrolyte battery system based on a high-energy NCM811-Si/C full battery electrode-compatible electrolyte. ACS Appl. Mater. Interfaces 13, 54069–54078 (2021). https://doi.org/10.1021/acsami.1c17841
- Y. Lv, Z. Han, R. Jia, L. Shi, S. Yuan, Porous interface for fast charging silicon anode. Battery Energy 1, 20220009 (2022). https://doi.org/10.1002/bte2.20220009
- T. Li, X. Huang, S. Lei, J. Zhang, X. Li et al., Two-dimensional nitrogen and phosphorus Co-doped mesoporous carbon-graphene nanosheets anode for high-performance potassium-ion capacitor. Energy Mater. 3, 300018 (2023). https://doi.org/10.20517/energymater.2022.93
- X.L. Huang, F. Zhao, Y. Qi, Y.-A. Qiu, J.S. Chen et al., Red phosphorus: a rising star of anode materials for advanced K-ion batteries. Energy Storage Mater. 42, 193–208 (2021). https://doi.org/10.1016/j.ensm.2021.07.030
- C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32, e1908470 (2020). https://doi.org/10.1002/adma.201908470
- D. Yu, L. Cheng, M. Chen, J. Wang, W. Zhou et al., High-performance phosphorus-graphite dual-ion battery. ACS Appl. Mater. Interfaces 11, 45755–45762 (2019). https://doi.org/10.1021/acsami.9b16819
- C. Wu, S.-X. Dou, Y. Yu The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14, 1703671 (2018). https://doi.org/10.1002/smll.201703671
- L. Fang, N. Bahlawane, W. Sun, H. Pan, B.B. Xu et al., Conversion-alloying anode materials for sodium ion batteries. Small 17, e2101137 (2021). https://doi.org/10.1002/smll.202101137
- J. Kang, Z. Zhao, H. Li, Y. Meng, B. Hu et al., An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater. 2, 200009 (2022). https://doi.org/10.20517/energymater.2022.05
- M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang et al., Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5, 1700592 (2018). https://doi.org/10.1002/advs.201700592
- S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nuñez et al., WS2-graphite dual-ion batteries. Nano Lett. 18, 7155–7164 (2018). https://doi.org/10.1021/acs.nanolett.8b03227
- X. Yang, Y. Gao, L. Fan, A.M. Rao, J. Zhou et al., Skin-inspired conversion anodes for high-capacity and stable potassium ion batteries. Adv. Energy Mater. 13, 2302589 (2023). https://doi.org/10.1002/aenm.202302589
- C. Wei, J. Song, Y. Wang, X. Tang, X. Liu, Recent development of aqueous multivalent-ion batteries based on conversion chemistry. Adv. Funct. Mater. 33, 2304223 (2023). https://doi.org/10.1002/adfm.202304223
- J. Huang, Y. Gao, Z. Peng, A primitive model for intercalation–conversion bifunctional battery materials. Battery Energy 1, 20210016 (2022). https://doi.org/10.1002/BTE2.20210016
- B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31, 2101066 (2021). https://doi.org/10.1002/adfm.202101066
- Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15, 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
- H. Wu, L. Li, W. Yuan, Nano-cubic α-Fe2O3 anode for Li+/Na+ based dual-ion full battery. Chem. Eng. J. 442, 136259 (2022). https://doi.org/10.1016/j.cej.2022.136259
- H. Zhu, F. Zhang, J. Li, Y. Tang, Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small 14, 1703951 (2018). https://doi.org/10.1002/smll.201703951
- K. Qian, L. Li, D. Yang, B. Wang, H. Wang et al., Metal-electronegativity-induced, synchronously formed hetero- and vacancy-structures of selenide molybdenum for non-aqueous sodium-based dual-ion storage. Adv. Funct. Mater. 33, 2213009 (2023). https://doi.org/10.1002/adfm.202213009
- L. Su, H. Charalambous, Z. Cui, A. Manthiram, High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy Environ. Sci. 15, 843–854 (2022). https://doi.org/10.1039/d1ee03103a
- J. Liu, N. Pei, X. Yang, R. Li, H. Hua et al., Recent advances in lithiophilic materials: material design and prospects for lithium metal anode application. Energy Mater. 3, 300024 (2023). https://doi.org/10.20517/energymater.2023.08
- X. Lei, Z. Ma, L. Bai, L. Wang, Y. Ding et al., Porous ZnP matrix for long-lifespan and dendrite-free Zn metal anodes. Battery Energy 2, 20230024 (2023). https://doi.org/10.1002/bte2.20230024
- G. Lu, S. Li, K. Yue, H. Yuan, J. Luo et al., Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode. Battery Energy 2, 20230044 (2023). https://doi.org/10.1002/bte2.20230044
- Y. Wang, S. Wang, Y. Zhang, P.-K. Lee, D.Y.W. Yu, Unlocking the true capability of graphite-based dual-ion batteries with ethyl methyl carbonate electrolyte. ACS Appl. Energy Mater. 2, 7512–7517 (2019). https://doi.org/10.1021/acsaem.9b01499
- B. Ji, W. Yao, Y. Tang, High-performance rechargeable zinc-based dual-ion batteries. Sustainable Energy Fuels 4, 101–107 (2020). https://doi.org/10.1039/C9SE00744J
- H. Sun, A. Celadon, S.G. Cloutier, K. Al-Haddad, S. Sun et al., Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy 3, 20230062 (2024). https://doi.org/10.1002/bte2.20230062
- Z. Li, A.W. Robertson, Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2, 20220029 (2023). https://doi.org/10.1002/bte2.20220029
- Yuan Y., S.D. Pu, Gao X., A.W. Robertson, The application of in situ liquid cell TEM in advanced battery research. Energy Mater. 3, 300034 (2023). https://doi.org/10.20517/energymater.2023.14
- X.-T. Xi, W.-H. Li, B.-H. Hou, Y. Yang, Z.-Y. Gu et al., Dendrite-free lithium anode enables the lithium// graphite dual-ion battery with much improved cyclic stability. ACS Appl. Energy Mater. 2, 201–206 (2019). https://doi.org/10.1021/acsaem.8b01764i
- L.-N. Wu, J. Peng, Y.-K. Sun, F.-M. Han, Y.-F. Wen et al., High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte. ACS Appl. Mater. Interfaces 11, 18504–18510 (2019). https://doi.org/10.1021/acsami.9b05053
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- H. Wu, S. Luo, W. Zheng, L. Li, Y. Fang et al., Metal- and binder-free dual-ion battery based on green synthetic nano-embroidered spherical organic anode and pure ionic liquid electrolyte. Energy Mater. 4, 400015 (2024). https://doi.org/10.20517/energymater.2023.75
- J.J. Shea, C. Luo, Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces 12, 5361–5380 (2020). https://doi.org/10.1021/acsami.9b20384
- J. Peng, D. Wu, H. Li, L. Chen, F. Wu, Long-life high-capacity lithium battery with liquid organic cathode and sulfide solid electrolyte. Battery Energy 2, 20220059 (2023). https://doi.org/10.1002/bte2.20220059
- J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko et al., Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023). https://doi.org/10.1038/s41578-022-00478-1
- C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo et al., Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chem. Eng. J. 474, 145114 (2023). https://doi.org/10.1016/j.cej.2023.145114
- T. Huang, M. Long, J. Xiao, H. Liu, G. Wang, Recent research on emerging organic electrode materials for energy storage. Energy Mater. 1, 100009 (2022). https://doi.org/10.20517/energymater.2021.09
- A. Banerjee, N. Khossossi, W. Luo, R. Ahuja, Promise and reality of organic electrodes from materials design and charge storage perspective. J. Mater. Chem. A 10, 15215–15234 (2022). https://doi.org/10.1039/D2TA00896C
- X. Li, Y. Wang, L. Lv, G. Zhu, Q. Qu et al., Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy Mater. 2, 200014 (2022). https://doi.org/10.20517/energymater.2022.11
- I.A. Rodríguez-Pérez, C. Bommier, D.D. Fuller, D.P. Leonard, A.G. Williams et al., Toward higher capacities of hydrocarbon cathodes in dual-ion batteries. ACS Appl. Mater. Interfaces 10, 43311–43315 (2018). https://doi.org/10.1021/acsami.8b17105
- D. Kong, T. Cai, H. Fan, H. Hu, X. Wang et al., Polycyclic aromatic hydrocarbons as a new class of promising cathode materials for aluminum-ion batteries. Angew. Chem. Int. Ed. 61, e202114681 (2022). https://doi.org/10.1002/anie.202114681
- K. Minami, T. Masese, K. Yoshii, Coronene: a high-voltage anion insertion and de-insertion cathode for potassium-ion batteries. New J. Chem. 45, 4921–4924 (2021). https://doi.org/10.1039/D1NJ00387A
- S.S. Manna, B. Pathak, Pyrrolidinium-based organic cation (BMP)-intercalated organic (coronene) anode for high-voltage dual-ion batteries: a comparative study with graphite. J. Phys. Chem. C 126, 9264–9274 (2022). https://doi.org/10.1021/acs.jpcc.2c01724
- Y. Fang, W. Bi, A. Wang, W. Zheng, W. Yuan et al., Enabling dual-ion batteries via the reversible storage of Pyr14+ cations into coronene crystal. Energy Technol. 8, 2000223 (2020). https://doi.org/10.1002/ente.202000223
- C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021). https://doi.org/10.1039/D0EE03356A
- Q. Yu, Z. Xue, M. Li, P. Qiu, C. Li et al., Electrochemical activity of nitrogen-containing groups in organic electrode materials and related improvement strategies. Adv. Energy Mater. 11, 2002523 (2021). https://doi.org/10.1002/aenm.202002523
- F.A. Obrezkov, A.F. Shestakov, S.G. Vasil’ev, K.J. Stevenson, P.A. Troshin, Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 9, 2864–2871 (2021). https://doi.org/10.1039/D0TA09427G
- P. Acker, L. Rzesny, C.F.N. Marchiori, C.M. Araujo, B. Esser, π-conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials. Adv. Funct. Mater. 29, 1906436 (2019). https://doi.org/10.1002/adfm.201906436
- J. Wang, Y. Tong, W. Huang, Q. Zhang, Conjugated Azo compounds as a ctive materials for rechargeable sodium-metal batteries with high-rate performance. Batteries Supercaps 6, e202200413 (2023). https://doi.org/10.1002/batt.202200413
- G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58, 9902–9906 (2019). https://doi.org/10.1002/anie.201901040
- H.-G. Wang, H. Wang, Y. Li, Y. Wang, Z. Si, A bipolar metal phthalocyanine complex for sodium dual-ion battery. J. Energy Chem. 58, 9–16 (2021). https://doi.org/10.1016/j.jechem.2020.09.023
- W. Ma, L.-W. Luo, P. Dong, P. Zheng, X. Huang et al., Toward high-performance dihydrophenazine-based conjugated microporous polymer cathodes for dual-ion batteries through donor–acceptor structural design. Adv. Funct. Mater. 31, 2105027 (2021). https://doi.org/10.1002/adfm.202105027
- J. Wang, G. Li, Q. Wang, L. Huang, X. Gan et al., Influence of alkali metal ions (Li+, Na+, and K+) on the redox thermodynamics and kinetics of organic electrode materials for rechargeable batteries. Energy Storage Mater. 63, 102956 (2023). https://doi.org/10.1016/j.ensm.2023.102956
- T. Kong, W. Zhu, B. Jiang, X. Liao, R. Xiao, The mechanism of modification of poly(anthraquinonylsulfide) organic electrode materials. ChemistrySelect 7, e202201683 (2022). https://doi.org/10.1002/slct.202201683
- Y.-B. Fang, W. Zheng, L. Li, W.-H. Yuan, An ultrahigh rate ionic liquid dual-ion battery based on a poly(anthraquinonyl sulfide) anode. ACS Appl. Energy Mater. 3, 12276–12283 (2020). https://doi.org/10.1021/acsaem.0c02335
- F. Lambert, Y. Danten, C. Gatti, B. Bocquet, A.A. Franco et al., Carbonyl-based redox-active compounds as organic electrodes for batteries: escape from middle-high redox potentials and further improvement? J. Phys. Chem. A 127, 5104–5119 (2023). https://doi.org/10.1021/acs.jpca.3c00478
- S. Zhang, K. Zhu, Y. Gao, D. Cao, A long cycle stability and high rate performance organic anode for rechargeable aqueous ammonium-ion battery. ACS Energy Lett. 8, 889–897 (2023). https://doi.org/10.1021/acsenergylett.2c01962
- Q.-Q. Sun, T. Sun, J.-Y. Du, Z.-L. Xie, D.-Y. Yang et al., In situ electrochemical activation of hydroxyl polymer cathode for high-performance aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 62, e202307365 (2023). https://doi.org/10.1002/anie.202307365
- E.Y. Kim, M. Mohammadiroudbari, F. Chen, Z. Yang, C. Luo, A carbonyl and azo-based polymer cathode for low-temperature Na-ion batteries. ACS Nano 18, 4159–4169 (2024). https://doi.org/10.1021/acsnano.3c08860
- A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30, 2001440 (2020). https://doi.org/10.1002/adfm.202001440
- F. Zhang, M. Wu, X. Wang, Q. Xiang, Y. Wu et al., Reversible multi-electron redox chemistry of organic salt as anode for high-performance Li-ion/dual-ion batteries. Chem. Eng. J. 457, 141335 (2023). https://doi.org/10.1016/j.cej.2023.141335
- H. Wu, T. Hu, S. Chang, L. Li, W. Yuan, Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl. Mater. Interfaces 13, 44254–44265 (2021). https://doi.org/10.1021/acsami.1c10836
- J. Li, C. Han, X. Ou, Y. Tang, Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew. Chem. Int. Ed. 61, e202116668 (2022). https://doi.org/10.1002/anie.202116668
- W. Zhu, Y. Huang, B. Jiang, R. Xiao, A metal-free ionic liquid dual-ion battery based on the reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 1, 4, 5, 8-naphthalenetetracarboxylic dianhydride. J. Mol. Liq. 339, 116789 (2021). https://doi.org/10.1016/j.molliq.2021.116789
- Y. Fang, C. Chen, J. Fan, M. Zhang, W. Yuan et al., Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5, 7, 12, 14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. Chem. Commun. 55, 8333–8336 (2019). https://doi.org/10.1039/c9cc04626g
- K.-I. Kim, L. Tang, J.M. Muratli, C. Fang, X. Ji, A graphite∥PTCDI aqueous dual-ion battery. ChemSusChem 15, e202102394 (2022). https://doi.org/10.1002/cssc.202102394
- W.-Y. Jao, C.-W. Tai, C.-C. Chang, C.-C. Hu, Non-aqueous calcium-based dual-ion batteries with an organic electrode of high-rate performance. Energy Storage Mater. 63, 102990 (2023). https://doi.org/10.1016/j.ensm.2023.102990
- Z. Zhao, Y. Lei, L. Shi, Z. Tian, M.N. Hedhili et al., A 2.75 V ammonium-based dual-ion battery. Angew. Chem. Int. Ed. 61, e202212941 (2022). https://doi.org/10.1002/anie.202212941
- H. Wu, Z. Ye, J. Zhu, S. Luo, L. Li et al., High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 14, 49774–49784 (2022). https://doi.org/10.1021/acsami.2c14206
- Zhu Y., Yin J., A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31, 2107523 (2021). https://doi.org/10.1002/adfm.202107523
- C. Li, Y. Yuan, M. Yue, Q. Hu, X. Ren et al., Recent advances in pristine iron triad metal-organic framework cathodes for alkali metal-ion batteries. Small 20, e2310373 (2024). https://doi.org/10.1002/smll.202310373
- L. Yang, J. Chen, S. Park, H. Wang, Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy Mater. 3, 300042 (2023). https://doi.org/10.20517/energymater.2023.29
- R. Sun, M. Dou, Z. Chen, R. Wang, X. Zheng et al., Engineering strategies of metal-organic frameworks towardadvanced batteries. Battery Energy 2, 20220064 (2023). https://doi.org/10.1002/bte2.20220064
- X. Wu, S. Zhang, X. Xu, F. Wen, H. Wang et al., Lithiophilic covalent organic framework as anode coating for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 63, e202319355 (2024). https://doi.org/10.1002/anie.202319355
- J.H. Cho, Y. Kim, H.K. Yu, S.Y. Kim, Advancements in two-dimensional covalent organic framework nanosheets for electrocatalytic energy conversion: current and future prospects. Energy Mater. 4, 400013 (2024). https://doi.org/10.20517/energymater.2023.72
- C. Zheng, Y. Yao, X. Rui, Y. Feng, D. Yang et al., Functional MXene-based materials for next-generation rechargeable batteries. Adv. Mater. 34, e2204988 (2022). https://doi.org/10.1002/adma.202204988
- R.S. Mane, S. Mane, V. Somkuwar, N.V. Thombre, A.V. Patwardhan et al., A novel hierarchically hybrid structure of MXene and Bi-ligand ZIF-67 based trifunctional electrocatalyst for zinc-air battery and water splitting. Battery Energy 2, 20230019 (2023). https://doi.org/10.1002/bte2.20230019
- J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal-organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36, e2312471 (2024). https://doi.org/10.1002/adma.202312471
- Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63, e202402202 (2024). https://doi.org/10.1002/anie.202402202
- Y. Du, Y. Liu, F. Cao, H. Ye, Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Mater. 4, 400014 (2024). https://doi.org/10.20517/energymater.2023.76
- J. Li, R. Li, W. Wang, K. Lan, D. Zhao, Ordered mesoporous crystalline frameworks toward promising energy applications. Adv. Mater. 36, e2311460 (2024). https://doi.org/10.1002/adma.202311460
- L. Wen, K. Sun, X. Liu, W. Yang, L. Li et al., Electronic state and microenvironment modulation of metal nanops stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. 35, e2210669 (2023). https://doi.org/10.1002/adma.202210669
- Y. Zhang, Q. Li, G. Zhang, T. Lv, P. Geng et al., Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks. Energy Mater. 3, 300022 (2023). https://doi.org/10.20517/energymater.2023.06
- J. Liu, Y. Zhou, G. Xing, M. Qi, Z. Tang et al., 2D conductive metal–organic framework with anthraquinone built-In active sites as cathode for aqueous zinc ion battery. Adv. Funct. Mater. 34, 2312636 (2024). https://doi.org/10.1002/adfm.202312636
- H. Lu, Q. Zeng, L. Xu, Y. Xiao, L. Xie et al., Multimodal engineering of catalytic interfaces confers multi-site metal-organic framework for internal preconcentration and accelerating redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202318859 (2024). https://doi.org/10.1002/anie.202318859
- B.-J. Xin, X.-L. Wu, Research progresses on metal-organic frameworks for sodium/potassium-ion batteries. Battery Energy 3, 20230074 (2024). https://doi.org/10.1002/bte2.20230074
- M.L. Aubrey, J.R. Long, A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015). https://doi.org/10.1021/jacs.5b08022
- J. Fan, Y. Fang, Q. Xiao, R. Huang, L. Li et al., A dual-ion battery with a ferric ferricyanide anode enabling reversible Na+ intercalation. Energy Technol. 7, 1800978 (2019). https://doi.org/10.1002/ente.201800978
- Q. Jiang, P. Xiong, J. Liu, Z. Xie, Q. Wang et al., A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem. Int. Ed. 59, 5273–5277 (2020). https://doi.org/10.1002/anie.201914395
- H. Wang, Q. Wu, Y. Wang, X. Lv, H.-G. Wang, A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries. J. Colloid Interface Sci. 606, 1024–1030 (2022). https://doi.org/10.1016/j.jcis.2021.08.113
- K. Fan, C. Fu, Y. Chen, C. Zhang, G. Zhang et al., Framework dimensional control boosting charge storage in conjugated coordination polymers. Adv. Sci. 10, e2205760 (2023). https://doi.org/10.1002/advs.202205760
- H.-G. Wang, Q. Li, Q. Wu, Z. Si, X. Lv et al., Conjugated microporous polymers with bipolar and double redox-active centers for high-performance dual-ion, organic symmetric battery. Adv. Energy Mater. 11, 2100381 (2021). https://doi.org/10.1002/aenm.202100381
- D. Zhu, L. Sheng, J. Wang, L. Wang, H. Xu et al., Boosting sulfur-based cathode performance via confined reactions in covalent organic frameworks with polarized sites. Battery Energy 2, 20230002 (2023). https://doi.org/10.1002/bte2.20230002
- X. Liu, X. Ding, T. Zheng, Y. Jin, H. Wang et al., Single cobalt ion-immobilized covalent organic framework for lithium-sulfur batteries with enhanced rate capabilities. ACS Appl. Mater. Interfaces 16, 4741–4750 (2024). https://doi.org/10.1021/acsami.3c16319
- X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
- S. Wei, J. Wang, Y. Li, Z. Fang, L. Wang et al., Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Res. 16, 6753–6770 (2023). https://doi.org/10.1007/s12274-022-5366-3
- Y. Xu, P. Cai, K. Chen, Q. Chen, Z. Wen et al., Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem. Int. Ed. 62, e202215584 (2023). https://doi.org/10.1002/anie.202215584
- B. Sun, Z. Sun, Y. Yang, X.L. Huang, S.C. Jun et al., Covalent organic frameworks: their composites and derivatives for rechargeable metal-ion batteries. ACS Nano 18, 28–66 (2024). https://doi.org/10.1021/acsnano.3c08240
- L. Zhou, S. Jo, M. Park, L. Fang, K. Zhang et al., Structural engineering of covalent organic frameworks for rechargeable batteries. Adv. Energy Mater. 11, 2003054 (2021). https://doi.org/10.1002/aenm.202003054
- S. Haldar, A. Schneemann, S. Kaskel, Covalent organic frameworks as model materials for fundamental and mechanistic understanding of organic battery design principles. J. Am. Chem. Soc. 145, 13494–13513 (2023). https://doi.org/10.1021/jacs.3c01131
- L. Zhang, X. Zhang, D. Han, L. Zhai, L. Mi, Recent progress in design principles of covalent organic frameworks for rechargeable metal-ion batteries. Small Methods 7, e2300687 (2023). https://doi.org/10.1002/smtd.202300687
- Y. Ge, J. Li, Y. Meng, D. Xiao, Tuning the structure characteristic of the flexible covalent organic framework (COF) meets a high performance for lithium-sulfur batteries. Nano Energy 109, 108297 (2023). https://doi.org/10.1016/j.nanoen.2023.108297
- L. Li, Y. Shi, S. Jia, C. Wang, D. Zhang, Recent advances in emerging metal–organic and covalent–organic frameworks for zinc-ion batteries. J. Energy Storage 73, 108914 (2023). https://doi.org/10.1016/j.est.2023.108914
- B. Hu, J. Xu, Z. Fan, C. Xu, S. Han et al., Covalent organic framework based lithium–sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 13, 2203540 (2023). https://doi.org/10.1002/aenm.202203540
- M. Chafiq, A. Chaouiki, Y.G. Ko, Advances in COFs for energy storage devices: Harnessing the potential of covalent organic framework materials. Energy Storage Mater. 63, 103014 (2023). https://doi.org/10.1016/j.ensm.2023.103014
- G. Zhao, Y. Sun, Y. Yang, C. Zhang, Q. An et al., Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. EcoMat 4, e12221 (2022). https://doi.org/10.1002/eom2.12221
- H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33, e2101857 (2021). https://doi.org/10.1002/adma.202101857
- R. Kushwaha, C. Jain, P. Shekhar, D. Rase, R. Illathvalappil et al., Made to measure squaramide COF cathode for zinc dual-ion battery with enriched storage via redox electrolyte. Adv. Energy Mater. 13, 2301049 (2023). https://doi.org/10.1002/aenm.202301049
- Y. Liu, Y. Lu, A. Hossain Khan, G. Wang, Y. Wang et al., Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries. Angew. Chem. Int. Ed. 62, e202306091 (2023). https://doi.org/10.1002/anie.202306091
- S. Gu, J. Chen, R. Hao, X. Chen, Z. Wang et al., Redox of anionic and cationic radical intermediates in a bipolar polyimide COF for high-performance dual-ion organic batteries. Chem. Eng. J. 454, 139877 (2023). https://doi.org/10.1016/j.cej.2022.139877
- Q. Ai, Q. Fang, J. Liang, X. Xu, T. Zhai et al., Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72, 104657 (2020). https://doi.org/10.1016/j.nanoen.2020.104657
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- X. Jin, Y. Huang, M. Zhang, Z. Wang, Q. Meng et al., A flower-like VO2(B)/V2CTx heterojunction as high kinetic rechargeable anode for sodium-ion batteries. Battery Energy 2, 20230029 (2023). https://doi.org/10.1002/bte2.20230029
- Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18, 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
- A. Sikdar, F. Héraly, H. Zhang, S. Hall, K. Pang et al., Hierarchically porous 3D freestanding holey-MXene framework via mild oxidation of self-assembled MXene hydrogel for ultrafast pseudocapacitive energy storage. ACS Nano 18, 3707–3719 (2024). https://doi.org/10.1021/acsnano.3c11551
- N. Kitchamsetti, J.S. Cho, A roadmap of recent advances in MXene@MOF hybrids, its derived composites: Synthesis, properties, and their utilization as an electrode for supercapacitors, rechargeable batteries and electrocatalysis. J. Energy Storage 80, 110293 (2024). https://doi.org/10.1016/j.est.2023.110293
- W. Hu, M. Yang, T. Fan, Z. Li, Y. Wang et al., A simple, efficient, fluorine-free synthesis method of MXene/Ti3C2Tx anode through molten salt etching for sodium-ion batteries. Battery Energy 2, 20230021 (2023). https://doi.org/10.1002/bte2.20230021
- J. Li, J. Hao, R. Wang, Q. Yuan, T. Wang et al., Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries. Battery Energy 3, 20230033 (2024). https://doi.org/10.1002/bte2.20230033
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- T. Sun, S. Wang, M. Xu, N. Qiao, Q. Zhu et al., High-performance sulfurized polyacrylonitrile cathode by using MXene as a conductive and catalytic binder for room-temperature Na/S batteries. ACS Appl. Mater. Interfaces 16, 10093–10103 (2024). https://doi.org/10.1021/acsami.3c17874
- M. Zhang, R. Liang, N. Yang, R. Gao, Y. Zheng et al., Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode. Adv. Energy Mater. 12, 2102493 (2022). https://doi.org/10.1002/aenm.202102493
- D. Sabaghi, J. Polčák, H. Yang, X. Li, A. Morag et al., Multifunctional molecule-grafted V2C MXe
References
W. Zhang, P. Sayavong, X. Xiao, S.T. Oyakhire, S.B. Shuchi et al., Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024). https://doi.org/10.1038/s41586-023-06992-8
Z. Wang, Z. Du, L. Wang, G. He, I.P. Parkin et al., Disordered materials for high-performance lithium-ion batteries: a review. Nano Energy 121, 109250 (2024). https://doi.org/10.1016/j.nanoen.2023.109250
Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4
H. Du, Y. Kang, C. Li, Y. Zhao, J. Wozny et al., Easily recyclable lithium-ion batteries: recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder. Battery Energy 2, 20230011 (2023). https://doi.org/10.1002/bte2.20230011
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
M. Dubarry, N. Costa, D. Matthews, Data-driven direct diagnosis of Li-ion batteries connected to photovoltaics. Nat. Commun. 14, 3138 (2023). https://doi.org/10.1038/s41467-023-38895-7
J. Bae, S. Oh, B. Lee, C.H. Lee, J. Chung et al., High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries. Energy Storage Mater. 57, 277–288 (2023). https://doi.org/10.1016/j.ensm.2023.02.016
H. Li, A. Berbille, X. Zhao, Z. Wang, W. Tang et al., A contact-electro-catalytic cathode recycling method for spent lithium–ion batteries. Nat. Energy 8, 1137–1144 (2023). https://doi.org/10.1038/s41560-023-01348-y
S. Lei, Z. Zeng, S. Cheng, J. Xie, Fast-charging of lithium-ion batteries: a review of electrolyte design aspects. Battery Energy 2, 20230018 (2023). https://doi.org/10.1002/bte2.20230018
H. Zhang, L. Wang, X. He, Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy 1, 20210011 (2022). https://doi.org/10.1002/bte2.20210011
X. Wang, Q. Zhang, C. Zhao, H. Li, B. Zhang et al., Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024). https://doi.org/10.1038/s41560-023-01425-2
Y. Shi, F. Geng, Y. Sun, P. Jiang, W.H. Kan et al., Sustainable anionic redox by inhibiting Li cross-layer migration in Na-based layered oxide cathodes. ACS Nano 18, 5609–5621 (2024). https://doi.org/10.1021/acsnano.3c11146
S. Kim, M. Lee, C. Park, A. Park, S. Kwon et al., Molecular dynamics study on lithium-ion transport in PEO branched nanopores with PYR14TFSI ionic liquid. Battery Energy 1, 20210013 (2022). https://doi.org/10.1002/bte2.20210013
Y. Wei, S. Zhang, D. Zhai, F. Kang, Escape of lattice water in potassium iron hexacyanoferrate for cyclic optimization in potassium-ion batteries. Battery Energy 2, 20220027 (2023). https://doi.org/10.1002/bte2.20220027
D. Schäfer, K. Hankins, M. Allion, U. Krewer, F. Karcher et al., Multiscale investigation of sodium-ion battery anodes: analytical techniques and applications. Adv. Energy Mater. 14, 2302830 (2024). https://doi.org/10.1002/aenm.202302830
J. Liu, Y. Wang, N. Jiang, B. Wen, C. Yang et al., Vacancies-regulated Prussian blue analogues through precipitation conversion for cathodes in sodium-ion batteries with energy densities over 500 Wh/kg. Angew. Chem. Int. Ed. e202400214 (2024). https://doi.org/10.1002/anie.202400214
D. Zhang, H. Xu Nickel modified TiO2/C nanodisks with defective and near-amorphous structure for high-performance sodium-ion batteries. Battery Energy 3, 20230032 (2024). https://doi.org/10.1002/bte2.20230032
J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7
Y. Gao, W. Li, B. Ou, S. Zhang, H. Wang et al., A dilute fluorinated phosphate electrolyte enables 4.9V-class potassium ion full batteries. Adv. Funct. Mater. 33, 2305829 (2023). https://doi.org/10.1002/adfm.202305829
Q. Yao, F. Xiao, C. Lin, P. Xiong, W. Lai et al., Regeneration of spent lithium manganate into cation-doped and oxygen-deficient MnO2 cathodes towardultralong lifespan and wide-temperature-tolerant aqueous Zn-ion batteries. Battery Energy 2, 20220065 (2023). https://doi.org/10.1002/bte2.20220065
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
M. Li, M. Liu, Y. Lu, G. Zhang, Y. Zhang et al., A dual active site organic–inorganic poly(O-phenylenediamine)/NH4V3O8 composite cathode material for aqueous zinc-ion batteries. Adv. Funct. Mater. 34, 2312789 (2024). https://doi.org/10.1002/adfm.202312789
X. Lan, S. Yang, T. Meng, C. Zhang, X. Hu, A multifunctional electrolyte additive with solvation structure regulation and electrode/electrolyte interface manipulation enabling high-performance Li-ion batteries in wide temperature range. Adv. Energy Mater. 13, 2203449 (2023). https://doi.org/10.1002/aenm.202203449
Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2300682 (2023). https://doi.org/10.1002/aenm.202300682
X. Qin, X. Zhao, G. Zhang, Z. Wei, L. Li et al., Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile-water hybrid electrolyte. ACS Nano 17, 12040–12051 (2023). https://doi.org/10.1021/acsnano.2c07061
X. Hao, L. Zheng, S. Hu, Y. Wu, G. Zhang et al., Stabilizing Ca-ion batteries with a 7000-cycle lifespan and superior rate capability by a superlattice-like vanadium heterostructure. Mater. Today Energy 38, 101456 (2023). https://doi.org/10.1016/j.mtener.2023.101456
G. Studer, A. Schmidt, J. Büttner, M. Schmidt, A. Fischer et al., On a high-capacity aluminium battery with a two-electron phenothiazine redox polymer as a positive electrode. Energy Environ. Sci. 16, 3760–3769 (2023). https://doi.org/10.1039/D3EE00235G
Y.-N. Liu, J.-L. Yang, Z.-Y. Gu, X.-Y. Zhang, Y. Liu et al., Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al–ion batteries. Angew. Chem. Int. Ed. 63, e202316925 (2024). https://doi.org/10.1002/anie.202316925
Q. Sun, L. Chai, S. Chen, W. Zhang, H.Y. Yang et al., Dual-salt mixed electrolyte for high performance aqueous aluminum batteries. ACS Appl. Mater. Interfaces 16, 10061–10069 (2024). https://doi.org/10.1021/acsami.3c17059
X. Liu, H. Wu, Z. Xuan, L. Li, Y. Fang et al., Stable organic polymer anode for high rate and fast charge sodium based dual-ion battery. Chemsuschem 17, e202301223 (2024). https://doi.org/10.1002/cssc.202301223
W. Luo, D. Yu, T. Ge, J. Yang, S. Dong et al., Balancing salt concentration and fluorinated cosolvent for graphite cathode-based dual-ion batteries. Appl. Energy 358, 122652 (2024). https://doi.org/10.1016/j.apenergy.2024.122652
R. Yang, W. Yao, L. Zhou, F. Zhang, Y. Zheng et al., Secondary amines functionalized organocatalytic iodine redox for high-performance aqueous dual-ion batteries. Adv. Mater. 36, e2314247 (2024). https://doi.org/10.1002/adma.202314247
S. Guan, J. Zhou, S. Sun, Q. Peng, X. Guo et al., Nonmetallic Se/N Co-doped amorphous carbon anode collaborates to realize ultra-high capacity and fast potassium storage for potassium dual-ion batteries. Adv. Funct. Mater. 34, 2314890 (2024). https://doi.org/10.1002/adfm.202314890
J. Ding, Y. Huang, W. Cheng, R. Sheng, Z. Liu et al., Boosting ion diffusion kinetics of Fe2O3/MoC@NG via heterointerface engineering and pseudocapacitance behavior: an alternative high-rate anode for high-capacity lithium dual-ion batteries. Chem. Eng. J. 481, 148499 (2024). https://doi.org/10.1016/j.cej.2023.148499
Y. Li, B. Wang, High rate and ultralong cyclelife fiber-shaped sodium dual-ion battery based on bismuth anodes and polytriphenylamine cathodes. Battery Energy 2, 20220035 (2023). https://doi.org/10.1002/bte2.20220035
Y. Song, Y. Wu, Y. Wang, Y. Jia, H. Gou et al., “Graphene bubble bridging” enabled flexible multifunctional carbon fiber membrane toward K+ storage devices. Adv. Funct. Mater. 34, 2311458 (2024). https://doi.org/10.1002/adfm.202311458
H.D. Asfaw, A. Kotronia, A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Rep. Phys. Sci. 3, 100693 (2022). https://doi.org/10.1016/j.xcrp.2021.100693
H.D. Asfaw, A. Kotronia, N. Garcia-Araez, K. Edström, D. Brandell, Charting the course to solid-state dual-ion batteries. Carbon Energy 6, e425 (2024). https://doi.org/10.1002/cey2.425
F. Zhang, B. Ji, X. Tong, M. Sheng, X. Zhang et al., A dual-ion battery constructed with aluminum foil anode and mesocarbon microbead cathode via an alloying/intercalation process in an ionic liquid electrolyte. Adv. Mater. Interfaces 3, 1600605 (2016). https://doi.org/10.1002/admi.201600605
B. Pattavathi, V. Surendran, S. Palani, M.M. Shaijumon, Artificial neural network-enabled approaches toward mass balancing and cell optimization of lithium dual ion batteries. J. Energy Storage 68, 107878 (2023). https://doi.org/10.1016/j.est.2023.107878
H. Liu, J. Zhang, L. Zhang, G. Xu, H. Wang, Anion intercalation into graphite electrode from ethylene carbonate solutions dissolving both lithium hexafluorophosphate and lithium bis(trifluoromethanesulfonyl)imide J. Phys. Chem. C 128, 1574–1581 (2024). https://doi.org/10.1021/acs.jpcc.3c06738
M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018). https://doi.org/10.1002/aenm.201703320
T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018). https://doi.org/10.1016/j.joule.2018.09.003
X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59, 3802–3832 (2020). https://doi.org/10.1002/anie.201814294
L. Zhang, H. Wang, X. Zhang, Y. Tang, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31, 2010958 (2021). https://doi.org/10.1002/adfm.202010958
J. Hao, X. Li, X. Song, Z. Guo, Recent progress and perspectives on dual-ion batteries. EnergyChem 1, 100004 (2019). https://doi.org/10.1016/j.enchem.2019.100004
H.-G. Wang, Y. Wang, Q. Wu, G. Zhu, Recent developments in electrode materials for dual-ion batteries: Potential alternatives to conventional batteries. Mater. Today 52, 269–298 (2022). https://doi.org/10.1016/j.mattod.2021.11.008
W. Rüdorff, U. Hofmann, Über graphitsalze. Z. Anorg. Allg. Chem. 238, 1–50 (1938). https://doi.org/10.1002/zaac.19382380102
F.P. Mccullough, A.F. Beale, Secondary electrical energy storage device and electrode therefor. US04865931A. 1989.
R.T. Carlin, H.C. De Long, J. Fuller, P.C. Trulove, Dual intercalating molten electrolyte batteries. J. Electrochem. Soc. 141, L73–L76 (1994). https://doi.org/10.1149/1.2055041
J.A. Seel, J.R. Dahn, Electrochemical intercalation of PF6 into graphite. J. Electrochem. Soc. 147, 892 (2000). https://doi.org/10.1149/1.1393288
T. Ishihara, M. Koga, H. Matsumoto, M. Yoshio, Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery. Electrochem. Solid-State Lett. 10, A74 (2007). https://doi.org/10.1149/1.2424263
T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel et al., Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-Ion cells. J. Electrochem. Soc. 159, A1755–A1765 (2012). https://doi.org/10.1149/2.011211jes
S. Rothermel, P. Meister, G. Schmuelling, O. Fromm, H.-W. Meyer et al., Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ. Sci. 7, 3412–3423 (2014). https://doi.org/10.1039/C4EE01873G
M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015). https://doi.org/10.1038/nature14340
X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588
M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7, 1601963 (2017). https://doi.org/10.1002/aenm.201601963
B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017). https://doi.org/10.1002/adma.201700519
M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4
X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
X. Lei, Y. Zheng, F. Zhang, Y. Wang, Y. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Mater. 30, 34–41 (2020). https://doi.org/10.1016/j.ensm.2020.04.025
X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential ≈6.0V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11, 2100151 (2021). https://doi.org/10.1002/aenm.202100151
H. Wu, S. Luo, L. Li, H. Xiao, W. Yuan, A high-capacity dual-ion full battery based on nitrogen-doped carbon nanosphere anode and concentrated electrolyte. Battery Energy 2, 20230009 (2023). https://doi.org/10.1002/bte2.20230009
B. Wang, Y. Huang, Y. Wang, H. Wang, Synergistic solvation of anion: an effective strategy toward economical high-performance dual-ion battery. Adv. Funct. Mater. 33, 2212287 (2023). https://doi.org/10.1002/adfm.202212287
L. Che, Z. Hu, T. Zhang, P. Dai, C. Chen et al., Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries. Battery Energy 3, 20230064 (2024). https://doi.org/10.1002/bte2.20230064
Y. Huang, J. Li, H. Wang, Abnormal inverse current during anion deintercalation from graphite electrode. ACS Appl. Energy Mater. 2, 4544–4550 (2019). https://doi.org/10.1021/acsaem.9b00792
J. Kang, S. Lee, J. Hwang, S. Kim, S. Lee et al., Azacyclic anchor-enabled cohesive graphite electrodes for sustainable anion storage. Adv. Mater. 35, 2306157 (2023). https://doi.org/10.1002/adma.202306157
S. Zhao, Y. Huang, Y. Wang, D. Zhu, L. Zhang et al., Intercalation behavior of tetrafluoroborate anion in a graphite electrode from mixed cyclic carbonates. ACS Appl. Energy Mater. 4, 737–744 (2021). https://doi.org/10.1021/acsaem.0c02600
I.A. Rodríguez-Pérez, X. Ji, Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2, 1762–1770 (2017). https://doi.org/10.1021/acsenergylett.7b00321
R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. Oxf. 36, 638–670 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.003
S. Kumar, P. Bhauriyal, B. Pathak, Computational insights into the working mechanism of the LiPF6–graphite dual-ion battery. J. Phys. Chem. C 123, 23863–23871 (2019). https://doi.org/10.1021/acs.jpcc.9b07046
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
S. Ji, A. Zhang, W. Hua, S. Yan, X. Chen, Regeneration of graphite from spent lithium-ion batteries as anode materials through stepwise purification and mild temperature restoration. Battery Energy 3, 20230067 (2024). https://doi.org/10.1002/bte2.20230067
C. Sole, N.E. Drewett, L.J. Hardwick, In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 172, 223–237 (2014). https://doi.org/10.1039/c4fd00079j
G. Wang, F. Wang, P. Zhang, J. Zhang, T. Zhang et al., Polarity-switchable symmetric graphite batteries with high energy and high power densities. Adv. Mater. 30, e1802949 (2018). https://doi.org/10.1002/adma.201802949
J.A. Read, A.V. Cresce, M.H. Ervin, K. Xu, Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 7, 617–620 (2014). https://doi.org/10.1039/C3EE43333A
L. Fan, Q. Liu, S. Chen, Z. Xu, B. Lu, Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv. Energy Mater. 7, 1602778 (2017). https://doi.org/10.1002/aenm.201602778
K. Li, G. Ma, D. Yu, W. Luo, J. Li et al., A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Res. 16, 6353–6360 (2023). https://doi.org/10.1007/s12274-023-5438-z
X. Li, X. Ou, Y. Tang, 6.0 V High-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 10, 2002567 (2020). https://doi.org/10.1002/aenm.202002567
J. Fan, Z. Zhang, Y. Liu, A. Wang, L. Li et al., An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem. Commun. 53, 6891–6894 (2017). https://doi.org/10.1039/c7cc02534c
A. Wang, W. Yuan, J. Fan, L. Li, A dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol. 6, 2172–2178 (2018). https://doi.org/10.1002/ente.201800269
D.S. Kim, J.U. Lee, S.H. Kim, J.-Y. Hong, Electrochemically exfoliated graphite as a highly efficient conductive additive for an anode in lithium-ion batteries. Battery Energy 2, 20230012 (2023). https://doi.org/10.1002/bte2.20230012
X.M. Nguyen Thi, K.M. Le, Q. Phung, D.Q. Truong, H. Van Nguyen et al., Improving the electrochemical performance of lithium-ion battery using silica/carbon anode through prelithiation techniques. Battery Energy 2, 20230003 (2023). https://doi.org/10.1002/bte2.20230003
Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31, 2102360 (2021). https://doi.org/10.1002/adfm.202102360
X. Han, G. Xu, Z. Zhang, X. Du, P. Han et al., An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 9, 1804022 (2019). https://doi.org/10.1002/aenm.201804022
X. Hu, Y. Ma, W. Qu, J. Qian, Y. Li et al., Large interlayer distance and heteroatom-doping of graphite provide new insights into the dual-ion storage mechanism in dual-carbon batteries. Angew. Chem. Int. Ed. 62, e202307083 (2023). https://doi.org/10.1002/anie.202307083
Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35, e2212186 (2023). https://doi.org/10.1002/adma.202212186
T. Ke, S. Yun, K. Wang, T. Xing, J. Dang et al., Constructing bimetal, alloy, and compound-modified nitrogen-doped biomass-derived carbon from coconut shell as accelerants for boosting methane production in bioenergy system. Energy Mater. 4, 400011 (2024). https://doi.org/10.20517/energymater.2023.62
L.-F. Zhao, Z. Hu, W.-H. Lai, Y. Tao, J. Peng et al., Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 11, 2002704 (2021). https://doi.org/10.1002/aenm.202002704
A. Nagmani, S. Kumar, Puravankara, Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/ full-cell sodium-ion batteries. Battery Energy 1, 20220007 (2022). https://doi.org/10.1002/bte2.20220007
C. Ma, L. Tang, H. Cheng, Z. Li, W. Li et al., Biochar for supercapacitor electrodes: Mechanisms in aqueous electrolytes. Battery Energy 3, 20230058 (2024). https://doi.org/10.1002/bte2.20230058
Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng et al., Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35, e2304091 (2023). https://doi.org/10.1002/adma.202304091
G. Wang, J. Gao, W. Wang, Z. Tao, X. He et al., Evoking surface-driven capacitive process through sulfur implantation into nitrogen-coordinated hard carbon hollow spheres achieves superior alkali metal ion storage beyond lithium. Battery Energy 2, 20230031 (2023). https://doi.org/10.1002/bte2.20230031
Y. Chen, H. Sun, J. Guo, Y. Zhao, H. Yang et al., Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater. 3, 300044 (2023). https://doi.org/10.20517/energymater.2023.35
R. Xu, N. Sun, H. Zhou, X. Chang, R.A. Soomro et al., Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries. Battery Energy 2, 20220054 (2023). https://doi.org/10.1002/bte2.20220054
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016). https://doi.org/10.1002/aenm.201501874
N. LeGe, X.-X. He, Y.-X. Wang, Y. Lei, Y.-X. Yang et al., Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 16, 5688–5720 (2023). https://doi.org/10.1039/D3EE02202A
X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong et al., Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 4, 1133–1150 (2022). https://doi.org/10.1002/cey2.196
Z.-L. Yu, S. Xin, Y. You, L. Yu, Y. Lin et al., Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 138, 14915–14922 (2016). https://doi.org/10.1021/jacs.6b06673
S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang et al., An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 8, 1800140 (2018). https://doi.org/10.1002/aenm.201800140
X. Wang, C. Zheng, L. Qi, H. Wang, Carbon derived from pine needles as a Na+-storage electrode material in dual-ion batteries. Glob. Chall. 1, 1700055 (2017). https://doi.org/10.1002/gch2.201700055
S. Chen, Q. Kuang, H.J. Fan, Dual-carbon batteries: materials and mechanism. Small 16, e2002803 (2020). https://doi.org/10.1002/smll.202002803
H. Kim, J.C. Hyun, D.H. Kim, J.H. Kwak, J.B. Lee et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv. Mater. 35, e2209128 (2023). https://doi.org/10.1002/adma.202209128
J. Wang, L. Xi, C. Peng, X. Song, X. Wan et al., Recent progress in hard carbon anodes for sodium-ion batteries. Adv. Eng. Mater. 26, 2302063 (2024). https://doi.org/10.1002/adem.202302063
C. Zheng, B. Jian, X. Xu, J. Zhong, H. Yang et al., Regulating microstructure of walnut shell-derived hard carbon for high rate and long cycling sodium-based dual-ion batteries. Chem. Eng. J. 455, 140434 (2023). https://doi.org/10.1016/j.cej.2022.140434
X. Jiang, X. Liu, Z. Zeng, L. Xiao, X. Ai et al., A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life. Adv. Energy Mater. 8, 1802176 (2018). https://doi.org/10.1002/aenm.201802176
C. Chen, M. Wu, Y. Wang, K. Zaghib, Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J. Power. Sources 444, 227310 (2019). https://doi.org/10.1016/j.jpowsour.2019.227310
K. Zhang, Q. He, F. Xiong, J. Zhou, Y. Zhao et al., Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano Energy 77, 105018 (2020). https://doi.org/10.1016/j.nanoen.2020.105018
R. Hou, B. Liu, Y. Sun, L. Liu, J. Meng et al., Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72, 104728 (2020). https://doi.org/10.1016/j.nanoen.2020.104728
A. Phukhrongthung, M. Sawangphruk, P. Iamprasertkun, C. Santhaweesuk, C. Puchongkawarin et al., Rocking chair-type aqueous sodium-ion capacitors with biomass-derived activated carbon and Na3V2(PO4)2F3 nanoflower in a water-in-salt electrolyte. J. Energy Storage 80, 110369 (2024). https://doi.org/10.1016/j.est.2023.110369
L. Wang, M. Peng, J. Chen, X. Tang, L. Li et al., High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 16, 2877–2888 (2022). https://doi.org/10.1021/acsnano.1c09936
G.G. Bizuneh, A.M.M. Adam, J. Ma Progress on carbon for electrochemical capacitors. Battery Energy 2, 20220021 (2023). https://doi.org/10.1002/bte2.20220021
H. Li, T. Kurihara, D. Yang, M. Watanabe, T. Ishihara, A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Storage Mater. 38, 454–461 (2021). https://doi.org/10.1016/j.ensm.2021.03.029
H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 4, 5149–5158 (2016). https://doi.org/10.1039/C6TA01392A
Q. Wang, S. Wang, W. Liu, D. Wang, S. Luo et al., N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. J. Energy Storage 54, 105285 (2022). https://doi.org/10.1016/j.est.2022.105285
P. Meister, V. Küpers, M. Kolek, J. Kasnatscheew, S. Pohlmann et al., Enabling Mg-based ionic liquid electrolytes for hybrid dual-ion capacitors. Batter. Supercaps 4, 504–512 (2021). https://doi.org/10.1002/batt.202000246
H. Yang, X. Shi, T. Deng, T. Qin, L. Sui et al., Carbon-based dual-ion battery with enhanced capacity and cycling stability. ChemElectroChem 5, 3612–3618 (2018). https://doi.org/10.1002/celc.201801108
F. Sun, X. Liu, H.B. Wu, L. Wang, J. Gao et al., In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368–3376 (2018). https://doi.org/10.1021/acs.nanolett.8b00134
X. Wang, M. Hou, Z. Shi, X. Liu, I. Mizota et al., Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 13, 12059–12068 (2021). https://doi.org/10.1021/acsami.0c23165
M. Wang, Q. Liu, G. Wu, J. Ma, Y. Tang, Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy Environ. 8, 548–558 (2023). https://doi.org/10.1016/j.gee.2021.03.007
K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
S. Trano, D. Versaci, M. Castellino, M. Fontana, L. Fagiolari et al., Exploring nature-behaviour relationship of carbon black materials for potassium-ion battery electrodes. Energy Mater. 4, 400008 (2024). https://doi.org/10.20517/energymater.2023.79
X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021). https://doi.org/10.1039/D1EE00166C
H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang et al., Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020). https://doi.org/10.1021/acs.chemrev.0c00080
Y. Hou, H. Sun, F. Kong, M. Wang, L. Li et al., Direct synthesis of N, S Co-doped graphynes via copolymerization strategy for electrocatalytic application. Battery Energy 3, 20230026 (2024). https://doi.org/10.1002/bte2.20230026
D. Qu, B. Zhao, Z. Song, D. Wang, H. Kong et al., Two-dimensional N/O Co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries. J. Mater. Chem. A 9, 25094–25103 (2021). https://doi.org/10.1039/D1TA07782A
Y. Sun, Y.-L. Yang, X.-L. Shi, L. Ye, Y. Hou et al., An ultra-stable sodium half/full battery based on a unique micro-channel pine-derived carbon/SnS2@reduced graphene oxide film. Battery Energy 2, 20220046 (2023). https://doi.org/10.1002/bte2.20220046
Y. Guo, C. Liu, L. Xu, K. Huang, H. Wu et al., A cigarette filter-derived nitrogen-doped carbon nanop coating layer for stable Zn-ion battery anodes. Energy Mater. 2, 200032 (2022). https://doi.org/10.20517/energymater.2022.45
L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 41 (2023). https://doi.org/10.1007/s40820-022-01006-0
H. Tan, X. Du, R. Zhou, Z. Hou, B. Zhang, Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 176, 383–389 (2021). https://doi.org/10.1016/j.carbon.2021.02.003
S. Huang, D. Yang, X. Qiu, W. Zhang, Y. Qin et al., Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32, 2203279 (2022). https://doi.org/10.1002/adfm.202203279
W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: activation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14, 5425–5438 (2022). https://doi.org/10.1021/acsami.1c22576
G. Qiu, M. Ning, M. Zhang, J. Hu, Z. Duan et al., Flexible hard−soft carbon heterostructure based on mesopore confined carbonization for ultrafast and highly durable sodium storage. Carbon 205, 310–320 (2023). https://doi.org/10.1016/j.carbon.2023.01.018
X. Cheng, H. Yang, C. Wei, F. Huang, Y. Yao et al., Synergistic effect of 1D bismuth Nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries. J. Mater. Chem. A 11, 8081–8090 (2023). https://doi.org/10.1039/D3TA01214J
R. Zhao, N. Sun, B. Xu, Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small Struct. 2, 2100132 (2021). https://doi.org/10.1002/sstr.202100132
Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai et al., Designing g-C3N4/N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ. Mater. 4, 638–645 (2021). https://doi.org/10.1002/eem2.12148
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004). https://doi.org/10.1021/ja040082h
Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014). https://doi.org/10.1039/C4TC00988F
R. Guo, L. Li, B. Wang, Y. Xiang, G. Zou et al., Functionalized carbon dots for advanced batteries. Energy Storage Mater. 37, 8–39 (2021). https://doi.org/10.1016/j.ensm.2021.01.020
M. Shaker, T. Shahalizade, A. Mumtaz, M. Hemmati Saznaghi, S. Javanmardi et al., A review on the role of graphene quantum dots and carbon quantum dots in secondary-ion battery electrodes. FlatChem 40, 100516 (2023). https://doi.org/10.1016/j.flatc.2023.100516
F. Wang, Z. Liu, P. Zhang, H. Li, W. Sheng et al., Dual-graphene rechargeable sodium battery. Small 13, https://doi.org/10.1002/smll.201702449 (2017). https://doi.org/10.1002/smll.201702449
M. Peng, K. Shin, L. Jiang, Y. Jin, K. Zeng et al., Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem. Int. Ed. 61, e202206770 (2022). https://doi.org/10.1002/anie.202206770
Li, G.; Guo S.; Xiang B.; Mei S.; Zheng Y et al., Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater. 2, 200020 (2022). https://doi.org/10.20517/energymater.2022.24
T. Wulandari, D. Fawcett, S.B. Majumder, G.E.J. Poinern, Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2, 20230030 (2023). https://doi.org/10.1002/bte2.20230030
X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Advances and prospects of dual-ion batteries. Adv. Energy Mater. 11, 2102498 (2021). https://doi.org/10.1002/aenm.202102498
D. Gong, C. Wei, Z. Liang, Y. Tang, Recent advances on sodium-ion batteries and sodium dual-ion batteries: state-of-the-art Na+ host anode materials. Small Sci. 1, 2100014 (2021). https://doi.org/10.1002/smsc.202100014
W. Liu, Y. Li, H. Yang, B. Long, Y. Li et al., Pursuing high voltage and long lifespan for low-cost Al-based rechargeable batteries: Dual-ion design and prospects. Energy Storage Mater. 62, 102922 (2023). https://doi.org/10.1016/j.ensm.2023.102922
L. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li et al., Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew. Chem. Int. Ed. 59, 17924–17930 (2020). https://doi.org/10.1002/anie.202006595
K.V. Kravchyk, M.V. Kovalenko, On achievable gravimetric and volumetric energy densities of Al dual-ion batteries. ACS Energy Lett. 8, 1266–1269 (2023). https://doi.org/10.1021/acsenergylett.2c02908
Y.H. Heo, J. Lee, S. Ha, J.C. Hyun, D.H. Kang et al., 3D-structured bifunctional MXene paper electrodes for protection and activation of Al metal anodes. J. Mater. Chem. A 11, 14380–14389 (2023). https://doi.org/10.1039/D3TA01840G
C. Han, G. Chen, Y. Ma, J. Ma, X. Shui et al., Strategies towards inhibition of aluminum current collector corrosion in lithium batteries. Energy Mater. 3, 300052 (2023). https://doi.org/10.20517/energymater.2023.53
X. Tong, F. Zhang, G. Chen, X. Liu, L. Gu et al., Core–shell Aluminum@Carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater. 8, 1701967 (2018). https://doi.org/10.1002/aenm.201701967
X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 28, 9979–9985 (2016). https://doi.org/10.1002/adma.201603735
S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod. Amorphous carbon nano- interface-modified aluminum anodes for high-performance dual-ion batteries. ACS Sustain Chem. Eng. 9, 3710-3717 (2021). https://doi.org/10.1021/acssuschemeng.0c08119
B. Sun, D. Xu, Z. Wang, Y. Zhan, K. Zhang, Interfacial structure design for triboelectric nanogenerators. Battery Energy 1, 20220001 (2022). https://doi.org/10.1002/bte2.20220001
T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 35 (2022). https://doi.org/10.20517/energymater.2022.46
H. Zhang, D. Xu, F. Yang, J. Xie, Q. Liu et al., A high-capacity Sn metal anode for aqueous acidic batteries. Joule 7, 971–985 (2023). https://doi.org/10.1016/j.joule.2023.04.011
X. Wu, X. Lan, R. Hu, Y. Yao, Y. Yu et al., Tin-based anode materials for stable sodium storage: progress and perspective. Adv. Mater. 34, e2106895 (2022). https://doi.org/10.1002/adma.202106895
A. Amardeep, D.J. Freschi, J. Wang, J. Liu, Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Res. 16, 8191–8218 (2023). https://doi.org/10.1007/s12274-023-5448-x
A.B. Ikhe, J.Y. Seo, W.B. Park, J.-W. Lee, K.-S. Sohn et al., 3-V class Mg-based dual-ion battery with astonishingly high energy/power densities in common electrolytes. J. Power. Sources 506, 230261 (2021). https://doi.org/10.1016/j.jpowsour.2021.230261
C. Jiang, X. Meng, Y. Zheng, J. Yan, Z. Zhou et al., High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 3, 85–94 (2021). https://doi.org/10.31635/ccschem.020.202000463
M. Zhang, J. Zhong, W. Kong, L. Wang, T. Wang et al., A high capacity and working voltage potassium-based dual ion batteries. Energy Environ. Mater. 4, 413–420 (2021). https://doi.org/10.1002/eem2.12086
J. Zhou, Y. Zhou, X. Zhang, L. Cheng, M. Qian et al., Germanium-based high-performance dual-ion batteries. Nanoscale 12, 79–84 (2020). https://doi.org/10.1039/c9nr08783d
G. Liu, X. Liu, X. Ma, X. Tang, X. Zhang et al., High-performance dual-ion battery based on silicon-graphene composite anode and expanded graphite cathode. Molecules 28, 4280 (2023). https://doi.org/10.3390/molecules28114280
S. He, S. Huang, Y. Zhao, H. Qin, Y. Shan et al., Design of a dual-electrolyte battery system based on a high-energy NCM811-Si/C full battery electrode-compatible electrolyte. ACS Appl. Mater. Interfaces 13, 54069–54078 (2021). https://doi.org/10.1021/acsami.1c17841
Y. Lv, Z. Han, R. Jia, L. Shi, S. Yuan, Porous interface for fast charging silicon anode. Battery Energy 1, 20220009 (2022). https://doi.org/10.1002/bte2.20220009
T. Li, X. Huang, S. Lei, J. Zhang, X. Li et al., Two-dimensional nitrogen and phosphorus Co-doped mesoporous carbon-graphene nanosheets anode for high-performance potassium-ion capacitor. Energy Mater. 3, 300018 (2023). https://doi.org/10.20517/energymater.2022.93
X.L. Huang, F. Zhao, Y. Qi, Y.-A. Qiu, J.S. Chen et al., Red phosphorus: a rising star of anode materials for advanced K-ion batteries. Energy Storage Mater. 42, 193–208 (2021). https://doi.org/10.1016/j.ensm.2021.07.030
C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32, e1908470 (2020). https://doi.org/10.1002/adma.201908470
D. Yu, L. Cheng, M. Chen, J. Wang, W. Zhou et al., High-performance phosphorus-graphite dual-ion battery. ACS Appl. Mater. Interfaces 11, 45755–45762 (2019). https://doi.org/10.1021/acsami.9b16819
C. Wu, S.-X. Dou, Y. Yu The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14, 1703671 (2018). https://doi.org/10.1002/smll.201703671
L. Fang, N. Bahlawane, W. Sun, H. Pan, B.B. Xu et al., Conversion-alloying anode materials for sodium ion batteries. Small 17, e2101137 (2021). https://doi.org/10.1002/smll.202101137
J. Kang, Z. Zhao, H. Li, Y. Meng, B. Hu et al., An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater. 2, 200009 (2022). https://doi.org/10.20517/energymater.2022.05
M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang et al., Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5, 1700592 (2018). https://doi.org/10.1002/advs.201700592
S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nuñez et al., WS2-graphite dual-ion batteries. Nano Lett. 18, 7155–7164 (2018). https://doi.org/10.1021/acs.nanolett.8b03227
X. Yang, Y. Gao, L. Fan, A.M. Rao, J. Zhou et al., Skin-inspired conversion anodes for high-capacity and stable potassium ion batteries. Adv. Energy Mater. 13, 2302589 (2023). https://doi.org/10.1002/aenm.202302589
C. Wei, J. Song, Y. Wang, X. Tang, X. Liu, Recent development of aqueous multivalent-ion batteries based on conversion chemistry. Adv. Funct. Mater. 33, 2304223 (2023). https://doi.org/10.1002/adfm.202304223
J. Huang, Y. Gao, Z. Peng, A primitive model for intercalation–conversion bifunctional battery materials. Battery Energy 1, 20210016 (2022). https://doi.org/10.1002/BTE2.20210016
B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31, 2101066 (2021). https://doi.org/10.1002/adfm.202101066
Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15, 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
H. Wu, L. Li, W. Yuan, Nano-cubic α-Fe2O3 anode for Li+/Na+ based dual-ion full battery. Chem. Eng. J. 442, 136259 (2022). https://doi.org/10.1016/j.cej.2022.136259
H. Zhu, F. Zhang, J. Li, Y. Tang, Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small 14, 1703951 (2018). https://doi.org/10.1002/smll.201703951
K. Qian, L. Li, D. Yang, B. Wang, H. Wang et al., Metal-electronegativity-induced, synchronously formed hetero- and vacancy-structures of selenide molybdenum for non-aqueous sodium-based dual-ion storage. Adv. Funct. Mater. 33, 2213009 (2023). https://doi.org/10.1002/adfm.202213009
L. Su, H. Charalambous, Z. Cui, A. Manthiram, High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy Environ. Sci. 15, 843–854 (2022). https://doi.org/10.1039/d1ee03103a
J. Liu, N. Pei, X. Yang, R. Li, H. Hua et al., Recent advances in lithiophilic materials: material design and prospects for lithium metal anode application. Energy Mater. 3, 300024 (2023). https://doi.org/10.20517/energymater.2023.08
X. Lei, Z. Ma, L. Bai, L. Wang, Y. Ding et al., Porous ZnP matrix for long-lifespan and dendrite-free Zn metal anodes. Battery Energy 2, 20230024 (2023). https://doi.org/10.1002/bte2.20230024
G. Lu, S. Li, K. Yue, H. Yuan, J. Luo et al., Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode. Battery Energy 2, 20230044 (2023). https://doi.org/10.1002/bte2.20230044
Y. Wang, S. Wang, Y. Zhang, P.-K. Lee, D.Y.W. Yu, Unlocking the true capability of graphite-based dual-ion batteries with ethyl methyl carbonate electrolyte. ACS Appl. Energy Mater. 2, 7512–7517 (2019). https://doi.org/10.1021/acsaem.9b01499
B. Ji, W. Yao, Y. Tang, High-performance rechargeable zinc-based dual-ion batteries. Sustainable Energy Fuels 4, 101–107 (2020). https://doi.org/10.1039/C9SE00744J
H. Sun, A. Celadon, S.G. Cloutier, K. Al-Haddad, S. Sun et al., Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy 3, 20230062 (2024). https://doi.org/10.1002/bte2.20230062
Z. Li, A.W. Robertson, Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2, 20220029 (2023). https://doi.org/10.1002/bte2.20220029
Yuan Y., S.D. Pu, Gao X., A.W. Robertson, The application of in situ liquid cell TEM in advanced battery research. Energy Mater. 3, 300034 (2023). https://doi.org/10.20517/energymater.2023.14
X.-T. Xi, W.-H. Li, B.-H. Hou, Y. Yang, Z.-Y. Gu et al., Dendrite-free lithium anode enables the lithium// graphite dual-ion battery with much improved cyclic stability. ACS Appl. Energy Mater. 2, 201–206 (2019). https://doi.org/10.1021/acsaem.8b01764i
L.-N. Wu, J. Peng, Y.-K. Sun, F.-M. Han, Y.-F. Wen et al., High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte. ACS Appl. Mater. Interfaces 11, 18504–18510 (2019). https://doi.org/10.1021/acsami.9b05053
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
H. Wu, S. Luo, W. Zheng, L. Li, Y. Fang et al., Metal- and binder-free dual-ion battery based on green synthetic nano-embroidered spherical organic anode and pure ionic liquid electrolyte. Energy Mater. 4, 400015 (2024). https://doi.org/10.20517/energymater.2023.75
J.J. Shea, C. Luo, Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces 12, 5361–5380 (2020). https://doi.org/10.1021/acsami.9b20384
J. Peng, D. Wu, H. Li, L. Chen, F. Wu, Long-life high-capacity lithium battery with liquid organic cathode and sulfide solid electrolyte. Battery Energy 2, 20220059 (2023). https://doi.org/10.1002/bte2.20220059
J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko et al., Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023). https://doi.org/10.1038/s41578-022-00478-1
C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo et al., Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chem. Eng. J. 474, 145114 (2023). https://doi.org/10.1016/j.cej.2023.145114
T. Huang, M. Long, J. Xiao, H. Liu, G. Wang, Recent research on emerging organic electrode materials for energy storage. Energy Mater. 1, 100009 (2022). https://doi.org/10.20517/energymater.2021.09
A. Banerjee, N. Khossossi, W. Luo, R. Ahuja, Promise and reality of organic electrodes from materials design and charge storage perspective. J. Mater. Chem. A 10, 15215–15234 (2022). https://doi.org/10.1039/D2TA00896C
X. Li, Y. Wang, L. Lv, G. Zhu, Q. Qu et al., Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy Mater. 2, 200014 (2022). https://doi.org/10.20517/energymater.2022.11
I.A. Rodríguez-Pérez, C. Bommier, D.D. Fuller, D.P. Leonard, A.G. Williams et al., Toward higher capacities of hydrocarbon cathodes in dual-ion batteries. ACS Appl. Mater. Interfaces 10, 43311–43315 (2018). https://doi.org/10.1021/acsami.8b17105
D. Kong, T. Cai, H. Fan, H. Hu, X. Wang et al., Polycyclic aromatic hydrocarbons as a new class of promising cathode materials for aluminum-ion batteries. Angew. Chem. Int. Ed. 61, e202114681 (2022). https://doi.org/10.1002/anie.202114681
K. Minami, T. Masese, K. Yoshii, Coronene: a high-voltage anion insertion and de-insertion cathode for potassium-ion batteries. New J. Chem. 45, 4921–4924 (2021). https://doi.org/10.1039/D1NJ00387A
S.S. Manna, B. Pathak, Pyrrolidinium-based organic cation (BMP)-intercalated organic (coronene) anode for high-voltage dual-ion batteries: a comparative study with graphite. J. Phys. Chem. C 126, 9264–9274 (2022). https://doi.org/10.1021/acs.jpcc.2c01724
Y. Fang, W. Bi, A. Wang, W. Zheng, W. Yuan et al., Enabling dual-ion batteries via the reversible storage of Pyr14+ cations into coronene crystal. Energy Technol. 8, 2000223 (2020). https://doi.org/10.1002/ente.202000223
C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021). https://doi.org/10.1039/D0EE03356A
Q. Yu, Z. Xue, M. Li, P. Qiu, C. Li et al., Electrochemical activity of nitrogen-containing groups in organic electrode materials and related improvement strategies. Adv. Energy Mater. 11, 2002523 (2021). https://doi.org/10.1002/aenm.202002523
F.A. Obrezkov, A.F. Shestakov, S.G. Vasil’ev, K.J. Stevenson, P.A. Troshin, Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 9, 2864–2871 (2021). https://doi.org/10.1039/D0TA09427G
P. Acker, L. Rzesny, C.F.N. Marchiori, C.M. Araujo, B. Esser, π-conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials. Adv. Funct. Mater. 29, 1906436 (2019). https://doi.org/10.1002/adfm.201906436
J. Wang, Y. Tong, W. Huang, Q. Zhang, Conjugated Azo compounds as a ctive materials for rechargeable sodium-metal batteries with high-rate performance. Batteries Supercaps 6, e202200413 (2023). https://doi.org/10.1002/batt.202200413
G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58, 9902–9906 (2019). https://doi.org/10.1002/anie.201901040
H.-G. Wang, H. Wang, Y. Li, Y. Wang, Z. Si, A bipolar metal phthalocyanine complex for sodium dual-ion battery. J. Energy Chem. 58, 9–16 (2021). https://doi.org/10.1016/j.jechem.2020.09.023
W. Ma, L.-W. Luo, P. Dong, P. Zheng, X. Huang et al., Toward high-performance dihydrophenazine-based conjugated microporous polymer cathodes for dual-ion batteries through donor–acceptor structural design. Adv. Funct. Mater. 31, 2105027 (2021). https://doi.org/10.1002/adfm.202105027
J. Wang, G. Li, Q. Wang, L. Huang, X. Gan et al., Influence of alkali metal ions (Li+, Na+, and K+) on the redox thermodynamics and kinetics of organic electrode materials for rechargeable batteries. Energy Storage Mater. 63, 102956 (2023). https://doi.org/10.1016/j.ensm.2023.102956
T. Kong, W. Zhu, B. Jiang, X. Liao, R. Xiao, The mechanism of modification of poly(anthraquinonylsulfide) organic electrode materials. ChemistrySelect 7, e202201683 (2022). https://doi.org/10.1002/slct.202201683
Y.-B. Fang, W. Zheng, L. Li, W.-H. Yuan, An ultrahigh rate ionic liquid dual-ion battery based on a poly(anthraquinonyl sulfide) anode. ACS Appl. Energy Mater. 3, 12276–12283 (2020). https://doi.org/10.1021/acsaem.0c02335
F. Lambert, Y. Danten, C. Gatti, B. Bocquet, A.A. Franco et al., Carbonyl-based redox-active compounds as organic electrodes for batteries: escape from middle-high redox potentials and further improvement? J. Phys. Chem. A 127, 5104–5119 (2023). https://doi.org/10.1021/acs.jpca.3c00478
S. Zhang, K. Zhu, Y. Gao, D. Cao, A long cycle stability and high rate performance organic anode for rechargeable aqueous ammonium-ion battery. ACS Energy Lett. 8, 889–897 (2023). https://doi.org/10.1021/acsenergylett.2c01962
Q.-Q. Sun, T. Sun, J.-Y. Du, Z.-L. Xie, D.-Y. Yang et al., In situ electrochemical activation of hydroxyl polymer cathode for high-performance aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 62, e202307365 (2023). https://doi.org/10.1002/anie.202307365
E.Y. Kim, M. Mohammadiroudbari, F. Chen, Z. Yang, C. Luo, A carbonyl and azo-based polymer cathode for low-temperature Na-ion batteries. ACS Nano 18, 4159–4169 (2024). https://doi.org/10.1021/acsnano.3c08860
A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30, 2001440 (2020). https://doi.org/10.1002/adfm.202001440
F. Zhang, M. Wu, X. Wang, Q. Xiang, Y. Wu et al., Reversible multi-electron redox chemistry of organic salt as anode for high-performance Li-ion/dual-ion batteries. Chem. Eng. J. 457, 141335 (2023). https://doi.org/10.1016/j.cej.2023.141335
H. Wu, T. Hu, S. Chang, L. Li, W. Yuan, Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl. Mater. Interfaces 13, 44254–44265 (2021). https://doi.org/10.1021/acsami.1c10836
J. Li, C. Han, X. Ou, Y. Tang, Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew. Chem. Int. Ed. 61, e202116668 (2022). https://doi.org/10.1002/anie.202116668
W. Zhu, Y. Huang, B. Jiang, R. Xiao, A metal-free ionic liquid dual-ion battery based on the reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 1, 4, 5, 8-naphthalenetetracarboxylic dianhydride. J. Mol. Liq. 339, 116789 (2021). https://doi.org/10.1016/j.molliq.2021.116789
Y. Fang, C. Chen, J. Fan, M. Zhang, W. Yuan et al., Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5, 7, 12, 14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. Chem. Commun. 55, 8333–8336 (2019). https://doi.org/10.1039/c9cc04626g
K.-I. Kim, L. Tang, J.M. Muratli, C. Fang, X. Ji, A graphite∥PTCDI aqueous dual-ion battery. ChemSusChem 15, e202102394 (2022). https://doi.org/10.1002/cssc.202102394
W.-Y. Jao, C.-W. Tai, C.-C. Chang, C.-C. Hu, Non-aqueous calcium-based dual-ion batteries with an organic electrode of high-rate performance. Energy Storage Mater. 63, 102990 (2023). https://doi.org/10.1016/j.ensm.2023.102990
Z. Zhao, Y. Lei, L. Shi, Z. Tian, M.N. Hedhili et al., A 2.75 V ammonium-based dual-ion battery. Angew. Chem. Int. Ed. 61, e202212941 (2022). https://doi.org/10.1002/anie.202212941
H. Wu, Z. Ye, J. Zhu, S. Luo, L. Li et al., High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 14, 49774–49784 (2022). https://doi.org/10.1021/acsami.2c14206
Zhu Y., Yin J., A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31, 2107523 (2021). https://doi.org/10.1002/adfm.202107523
C. Li, Y. Yuan, M. Yue, Q. Hu, X. Ren et al., Recent advances in pristine iron triad metal-organic framework cathodes for alkali metal-ion batteries. Small 20, e2310373 (2024). https://doi.org/10.1002/smll.202310373
L. Yang, J. Chen, S. Park, H. Wang, Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy Mater. 3, 300042 (2023). https://doi.org/10.20517/energymater.2023.29
R. Sun, M. Dou, Z. Chen, R. Wang, X. Zheng et al., Engineering strategies of metal-organic frameworks towardadvanced batteries. Battery Energy 2, 20220064 (2023). https://doi.org/10.1002/bte2.20220064
X. Wu, S. Zhang, X. Xu, F. Wen, H. Wang et al., Lithiophilic covalent organic framework as anode coating for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 63, e202319355 (2024). https://doi.org/10.1002/anie.202319355
J.H. Cho, Y. Kim, H.K. Yu, S.Y. Kim, Advancements in two-dimensional covalent organic framework nanosheets for electrocatalytic energy conversion: current and future prospects. Energy Mater. 4, 400013 (2024). https://doi.org/10.20517/energymater.2023.72
C. Zheng, Y. Yao, X. Rui, Y. Feng, D. Yang et al., Functional MXene-based materials for next-generation rechargeable batteries. Adv. Mater. 34, e2204988 (2022). https://doi.org/10.1002/adma.202204988
R.S. Mane, S. Mane, V. Somkuwar, N.V. Thombre, A.V. Patwardhan et al., A novel hierarchically hybrid structure of MXene and Bi-ligand ZIF-67 based trifunctional electrocatalyst for zinc-air battery and water splitting. Battery Energy 2, 20230019 (2023). https://doi.org/10.1002/bte2.20230019
J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal-organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36, e2312471 (2024). https://doi.org/10.1002/adma.202312471
Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63, e202402202 (2024). https://doi.org/10.1002/anie.202402202
Y. Du, Y. Liu, F. Cao, H. Ye, Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Mater. 4, 400014 (2024). https://doi.org/10.20517/energymater.2023.76
J. Li, R. Li, W. Wang, K. Lan, D. Zhao, Ordered mesoporous crystalline frameworks toward promising energy applications. Adv. Mater. 36, e2311460 (2024). https://doi.org/10.1002/adma.202311460
L. Wen, K. Sun, X. Liu, W. Yang, L. Li et al., Electronic state and microenvironment modulation of metal nanops stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. 35, e2210669 (2023). https://doi.org/10.1002/adma.202210669
Y. Zhang, Q. Li, G. Zhang, T. Lv, P. Geng et al., Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks. Energy Mater. 3, 300022 (2023). https://doi.org/10.20517/energymater.2023.06
J. Liu, Y. Zhou, G. Xing, M. Qi, Z. Tang et al., 2D conductive metal–organic framework with anthraquinone built-In active sites as cathode for aqueous zinc ion battery. Adv. Funct. Mater. 34, 2312636 (2024). https://doi.org/10.1002/adfm.202312636
H. Lu, Q. Zeng, L. Xu, Y. Xiao, L. Xie et al., Multimodal engineering of catalytic interfaces confers multi-site metal-organic framework for internal preconcentration and accelerating redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202318859 (2024). https://doi.org/10.1002/anie.202318859
B.-J. Xin, X.-L. Wu, Research progresses on metal-organic frameworks for sodium/potassium-ion batteries. Battery Energy 3, 20230074 (2024). https://doi.org/10.1002/bte2.20230074
M.L. Aubrey, J.R. Long, A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015). https://doi.org/10.1021/jacs.5b08022
J. Fan, Y. Fang, Q. Xiao, R. Huang, L. Li et al., A dual-ion battery with a ferric ferricyanide anode enabling reversible Na+ intercalation. Energy Technol. 7, 1800978 (2019). https://doi.org/10.1002/ente.201800978
Q. Jiang, P. Xiong, J. Liu, Z. Xie, Q. Wang et al., A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem. Int. Ed. 59, 5273–5277 (2020). https://doi.org/10.1002/anie.201914395
H. Wang, Q. Wu, Y. Wang, X. Lv, H.-G. Wang, A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries. J. Colloid Interface Sci. 606, 1024–1030 (2022). https://doi.org/10.1016/j.jcis.2021.08.113
K. Fan, C. Fu, Y. Chen, C. Zhang, G. Zhang et al., Framework dimensional control boosting charge storage in conjugated coordination polymers. Adv. Sci. 10, e2205760 (2023). https://doi.org/10.1002/advs.202205760
H.-G. Wang, Q. Li, Q. Wu, Z. Si, X. Lv et al., Conjugated microporous polymers with bipolar and double redox-active centers for high-performance dual-ion, organic symmetric battery. Adv. Energy Mater. 11, 2100381 (2021). https://doi.org/10.1002/aenm.202100381
D. Zhu, L. Sheng, J. Wang, L. Wang, H. Xu et al., Boosting sulfur-based cathode performance via confined reactions in covalent organic frameworks with polarized sites. Battery Energy 2, 20230002 (2023). https://doi.org/10.1002/bte2.20230002
X. Liu, X. Ding, T. Zheng, Y. Jin, H. Wang et al., Single cobalt ion-immobilized covalent organic framework for lithium-sulfur batteries with enhanced rate capabilities. ACS Appl. Mater. Interfaces 16, 4741–4750 (2024). https://doi.org/10.1021/acsami.3c16319
X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
S. Wei, J. Wang, Y. Li, Z. Fang, L. Wang et al., Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Res. 16, 6753–6770 (2023). https://doi.org/10.1007/s12274-022-5366-3
Y. Xu, P. Cai, K. Chen, Q. Chen, Z. Wen et al., Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem. Int. Ed. 62, e202215584 (2023). https://doi.org/10.1002/anie.202215584
B. Sun, Z. Sun, Y. Yang, X.L. Huang, S.C. Jun et al., Covalent organic frameworks: their composites and derivatives for rechargeable metal-ion batteries. ACS Nano 18, 28–66 (2024). https://doi.org/10.1021/acsnano.3c08240
L. Zhou, S. Jo, M. Park, L. Fang, K. Zhang et al., Structural engineering of covalent organic frameworks for rechargeable batteries. Adv. Energy Mater. 11, 2003054 (2021). https://doi.org/10.1002/aenm.202003054
S. Haldar, A. Schneemann, S. Kaskel, Covalent organic frameworks as model materials for fundamental and mechanistic understanding of organic battery design principles. J. Am. Chem. Soc. 145, 13494–13513 (2023). https://doi.org/10.1021/jacs.3c01131
L. Zhang, X. Zhang, D. Han, L. Zhai, L. Mi, Recent progress in design principles of covalent organic frameworks for rechargeable metal-ion batteries. Small Methods 7, e2300687 (2023). https://doi.org/10.1002/smtd.202300687
Y. Ge, J. Li, Y. Meng, D. Xiao, Tuning the structure characteristic of the flexible covalent organic framework (COF) meets a high performance for lithium-sulfur batteries. Nano Energy 109, 108297 (2023). https://doi.org/10.1016/j.nanoen.2023.108297
L. Li, Y. Shi, S. Jia, C. Wang, D. Zhang, Recent advances in emerging metal–organic and covalent–organic frameworks for zinc-ion batteries. J. Energy Storage 73, 108914 (2023). https://doi.org/10.1016/j.est.2023.108914
B. Hu, J. Xu, Z. Fan, C. Xu, S. Han et al., Covalent organic framework based lithium–sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 13, 2203540 (2023). https://doi.org/10.1002/aenm.202203540
M. Chafiq, A. Chaouiki, Y.G. Ko, Advances in COFs for energy storage devices: Harnessing the potential of covalent organic framework materials. Energy Storage Mater. 63, 103014 (2023). https://doi.org/10.1016/j.ensm.2023.103014
G. Zhao, Y. Sun, Y. Yang, C. Zhang, Q. An et al., Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. EcoMat 4, e12221 (2022). https://doi.org/10.1002/eom2.12221
H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33, e2101857 (2021). https://doi.org/10.1002/adma.202101857
R. Kushwaha, C. Jain, P. Shekhar, D. Rase, R. Illathvalappil et al., Made to measure squaramide COF cathode for zinc dual-ion battery with enriched storage via redox electrolyte. Adv. Energy Mater. 13, 2301049 (2023). https://doi.org/10.1002/aenm.202301049
Y. Liu, Y. Lu, A. Hossain Khan, G. Wang, Y. Wang et al., Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries. Angew. Chem. Int. Ed. 62, e202306091 (2023). https://doi.org/10.1002/anie.202306091
S. Gu, J. Chen, R. Hao, X. Chen, Z. Wang et al., Redox of anionic and cationic radical intermediates in a bipolar polyimide COF for high-performance dual-ion organic batteries. Chem. Eng. J. 454, 139877 (2023). https://doi.org/10.1016/j.cej.2022.139877
Q. Ai, Q. Fang, J. Liang, X. Xu, T. Zhai et al., Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72, 104657 (2020). https://doi.org/10.1016/j.nanoen.2020.104657
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
X. Jin, Y. Huang, M. Zhang, Z. Wang, Q. Meng et al., A flower-like VO2(B)/V2CTx heterojunction as high kinetic rechargeable anode for sodium-ion batteries. Battery Energy 2, 20230029 (2023). https://doi.org/10.1002/bte2.20230029
Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18, 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
A. Sikdar, F. Héraly, H. Zhang, S. Hall, K. Pang et al., Hierarchically porous 3D freestanding holey-MXene framework via mild oxidation of self-assembled MXene hydrogel for ultrafast pseudocapacitive energy storage. ACS Nano 18, 3707–3719 (2024). https://doi.org/10.1021/acsnano.3c11551
N. Kitchamsetti, J.S. Cho, A roadmap of recent advances in MXene@MOF hybrids, its derived composites: Synthesis, properties, and their utilization as an electrode for supercapacitors, rechargeable batteries and electrocatalysis. J. Energy Storage 80, 110293 (2024). https://doi.org/10.1016/j.est.2023.110293
W. Hu, M. Yang, T. Fan, Z. Li, Y. Wang et al., A simple, efficient, fluorine-free synthesis method of MXene/Ti3C2Tx anode through molten salt etching for sodium-ion batteries. Battery Energy 2, 20230021 (2023). https://doi.org/10.1002/bte2.20230021
J. Li, J. Hao, R. Wang, Q. Yuan, T. Wang et al., Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries. Battery Energy 3, 20230033 (2024). https://doi.org/10.1002/bte2.20230033
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
T. Sun, S. Wang, M. Xu, N. Qiao, Q. Zhu et al., High-performance sulfurized polyacrylonitrile cathode by using MXene as a conductive and catalytic binder for room-temperature Na/S batteries. ACS Appl. Mater. Interfaces 16, 10093–10103 (2024). https://doi.org/10.1021/acsami.3c17874
M. Zhang, R. Liang, N. Yang, R. Gao, Y. Zheng et al., Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode. Adv. Energy Mater. 12, 2102493 (2022). https://doi.org/10.1002/aenm.202102493
D. Sabaghi, J. Polčák, H. Yang, X. Li, A. Morag et al., Multifunctional molecule-grafted V2C MXe