Multifunctional SiC@SiO2 Nanofiber Aerogel with Ultrabroadband Electromagnetic Wave Absorption
Corresponding Author: Bingbing Fan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 152
Abstract
Traditional ceramic materials are generally brittle and not flexible with high production costs, which seriously hinders their practical applications. Multifunctional nanofiber ceramic aerogels are highly desirable for applications in extreme environments, however, the integration of multiple functions in their preparation is extremely challenging. To tackle these challenges, we fabricated a multifunctional SiC@SiO2 nanofiber aerogel (SiC@SiO2 NFA) with a three-dimensional (3D) porous cross-linked structure through a simple chemical vapor deposition method and subsequent heat-treatment process. The as-prepared SiC@SiO2 NFA exhibits an ultralow density (~ 11 mg cm− 3), ultra-elastic, fatigue-resistant and refractory performance, high temperature thermal stability, thermal insulation properties, and significant strain-dependent piezoresistive sensing behavior. Furthermore, the SiC@SiO2 NFA shows a superior electromagnetic wave absorption performance with a minimum refection loss (RLmin) value of − 50.36 dB and a maximum effective absorption bandwidth (EABmax) of 8.6 GHz. The successful preparation of this multifunctional aerogel material provides a promising prospect for the design and fabrication of the cutting-edge ceramic materials.
Highlights:
1 A multifunctional SiC@SiO2 nanofber aerogel (NFA) was successfully prepared, which exhibits ultra-elastic, fatigue-resistant, high-temperature thermalstability, thermal insulation properties, and signifcant strain-dependent piezoresistive sensing behavior.
2 The SiC@SiO2 NFA shows excellent electromagnetic wave absorption performance with a minimum refection loss value of −50.36 dB and a maximum effective absorption bandwidth of 8.6 GHz.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31(25), 1901403 (2019). https://doi.org/10.1002/adma.201901403
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
- M. Chhowalla, D. Jariwala, Hyperbolic 3D architectures with 2D ceramics. Science 363(3428), 694–695 (2019). https://doi.org/10.1126/science.aaw5670
- Z. Yu, B. Qin, Z. Ma, J. Huang, S. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
- A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102(11), 4243–4266 (2002). https://doi.org/10.1021/cr0101306
- L.S. Zhang, Z.C. Tang, R. Tusiime, S.F. Wang, N.N. Feng et al., Synthesis and electromagnetic wave absorbing properties of a polymer-derived SiBNC ceramic aerogel. Ceram. Int. 47(13), 18984–18990 (2021). https://doi.org/10.1016/j.ceramint.2021.03.242
- W.Y. Zhao, G. Shao, M.J. Jiang, B. Zhao, H.L. Wang et al., Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. J. Eur. Ceram. Soc. 37, 3973–3980 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.068
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
- R. Kumar, W.C. Macedo, R.K. Singh, V.S. Tiwari, C.J.L. Constantino et al., Nitrogen-sulfur Co-doped reduced graphene oxide-nickel oxide nanop composites for electromagnetic interference shielding. ACS Appl. Nano Mater. 2, 4626–4636 (2019). https://doi.org/10.1021/acsanm.9b01002
- R. Kumar, A.V. Alaferdov, R.K. Singh, A.K. Singh, J. Shah et al., Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos. Part B Eng. 168, 66–76 (2019). https://doi.org/10.1016/j.compositesb.2018.12.047
- N. Leventis, A. Sadekar, N. Chandrasekaran, C. Sotiriou-Leventis, Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem. Mater. 22(9), 2790–2803 (2010). https://doi.org/10.1021/cm903662a
- Z. Lin, Z. Zeng, X. Gui, Z. Tang, M. Zou et al., Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications. Adv. Energy Mater. 6(17), 1600554 (2016). https://doi.org/10.1002/aenm.201600554
- S. Jiang, S. Agarwal, A. Greiner, Low-density open cellular sponges as functional materials. Angew. Chem. Int. Ed. 56(49), 15520–15538 (2017). https://doi.org/10.1002/anie.201700684
- Y. Si, X. Wang, C. Yan, L. Yang, J. Yu et al., Ultralight biomass-derived carbonaceous nanofibrous aerogels with super-elasticity and high pressure-sensitivity. Adv. Mater. 28(43), 9512–9518 (2016). https://doi.org/10.1002/adma.201603143
- C. Ziegler, A. Wolf, W. Liu, A.K. Herrmann, N. Gaponik et al., Modern inorganic aerogels. Angew. Chem. Int. Ed. 56(43), 13200–13221 (2017). https://doi.org/10.1002/anie.201611552
- J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada et al., Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. Int. Ed. 51(9), 2076–2079 (2012). https://doi.org/10.1002/anie.201105730
- L. Verdolotti, M. Lavorgna, R. Lamanna, E.D. Maio, S. Iannace, Polyurethane-silica hybrid foam by sol-gel approach: chemical and functional properties. Polymer 56, 20–28 (2015). https://doi.org/10.1016/j.polymer.2014.10.017
- L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 18(5), 509–522 (2008). https://doi.org/10.1039/b712874f
- P. Hu, S. Dong, X.H. Zhang, K.H. Gui, G.Q. Chen et al., Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties. Sci. Rep. 3011, 1–10 (2017). https://doi.org/10.1038/s41598-017-03588-x
- D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto et al., Ultrahigh-quality silicon carbide single crystals. Nature 430, 1009–1012 (2004). https://doi.org/10.1038/nature02810
- X.Y. Chen, X.H. Liu, X.J. Geng, Q.L. Jia, Photoluminescence properties of SiC/SiO2 heterojunctions obtained by TiO2-assisted chemical vapor deposition. Ceram. Int. 44(10), 11204–11210 (2018). https://doi.org/10.1016/j.ceramint.2018.03.152
- B. Khalid, X. Bai, H. Wei, Y. Huang, H. Wu et al., Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett. 17(2), 1140–1148 (2017). https://doi.org/10.1021/acs.nanolett.6b04771
- Y. Si, Z. Zhang, W. Wu, Q. Fu, K. Huang et al., Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4(3), eaar5931 (2018). https://doi.org/10.1126/sciadv.aar5931
- X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19(7), 403–414 (2016). https://doi.org/10.1016/j.mattod.2015.11.010
- D. Lu, L. Su, H.J. Wang, M. Niu, L. Xu et al., Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability. ACS Appl. Mater. Interfaces 11(48), 45338–45344 (2019). https://doi.org/10.1021/acsami.9b16811
- Y.Y. Dong, X.J. Zhu, F. Pan, L. Cai, H.J. Jiang et al., Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 190, 68–79 (2022). https://doi.org/10.1016/j.carbon.2022.01.008
- W.H. Huang, Q. Qiu, X.F. Yang, S.W. Zuo, J.A. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano Micro Lett. 14, 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
- Y.P. Zhao, X.Q. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- S.S. Wu, H. Fu, X.S. Hu, C.Y. Ding, X. Yan et al., High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent. J. Colloid Interface Sci. 622, 719–727 (2022). https://doi.org/10.1016/j.jcis.2022.04.128
- H.K. Jang, J. Kim, J.S. Park, J.B. Moon, J. Oh et al., Synthesis and characterization of a conductive polymer blend based on PEDOT:PSS and its electromagnetic applications. Polymers 14, 393 (2022). https://doi.org/10.3390/polym14030393
- C.P.R. Malere, B. Donati, N. Eras, V.A. Silva, L.F. Lona, Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic-inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 139(17), e52023 (2021). https://doi.org/10.1002/app.52023
- Y.B. Gong, Z.G. Yang, X.G. Wei, S.L. Song, S.Q. Ma, Synthesis and electromagnetic wave absorbing properties of high-entropy metal diboride-silicon carbide composite powders. J. Mater. Sci. 57, 9218–9230 (2022). https://doi.org/10.1007/s10853-022-07238-0
- Y.T. Fan, D. Yang, H. Mei, S.S. Xiao, Y.T. Yao et al., Tuning SiC nanowires interphase to improve the mechanical and electromagnetic wave absorption properties of SiCf/SiCnw/Si3N4 composites. J. Alloy. Compd. 896, 163017 (2022). https://doi.org/10.1016/j.jallcom.2021.163017
- R.B. Wu, K. Zhou, Z.H. Yang, X.K. Qian, J. Wei et al., Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 15, 570–576 (2013). https://doi.org/10.1039/c2ce26510a
- Y.H. Cheng, M.Y. Tan, Hu. Pi, X.H. Zhang, B.Q. Sun et al., Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018). https://doi.org/10.1016/j.apsusc.2018.04.132
- M. Han, X. Yin, W. Duan, S. Ren, L. Zhang et al., Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36(11), 2695–2703 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.003
- J. Chen, Q. Shi, W. Tang, Field emission performance of SiC nanowires directly grown on graphite substrate. Mater. Chem. Phys. 126(3), 655–659 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.066
- Z.M. An, C.S. Ye, R.B. Zhang, P. Zhou, Flexible and recoverable SiC nanofiber aerogels for electromagnetic wave absorption. Ceram. Int. 45, 22793–22801 (2019). https://doi.org/10.1016/j.ceramint.2019.07.321
- L. Su, H.J. Wang, M. Niu, S. Dai, Z.X. Cai et al., Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6(26), eaay6689 (2020). https://doi.org/10.1126/sciadv.aay6689
- M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, A Raman spectroscopy study of individual SiC nanowires. Adv. Funct. Mater. 17(6), 939–943 (2007). https://doi.org/10.1002/adfm.200600816
- C.L. Wang, Z.W. Fang, A.L. Yi, B.C. Yang, Z. Wang et al., High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 10, 139 (2021). https://doi.org/10.1038/s41377-021-00584-9
- G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno et al., Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12(1), 521–532 (2018). https://doi.org/10.1021/acsnano.7b07117
- K. Peng, J.X. Zhou, H.F. Gao, J.W. Wang, H.J. Wang et al., Emerging one-/two-dimensional heteronanostructure integrating SiC nanowires with MoS2 nanosheets for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 12(17), 19519–19529 (2020). https://doi.org/10.1021/acsami.0c02046
- H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, W.J. Zhang et al., Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51(21), 5101–5105 (2012). https://doi.org/10.1002/anie.201200710
- H.L. Wang, X. Zhang, N. Wang, Y. Li, X. Feng et al., Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci. Adv. 3(6), e1603170 (2017). https://doi.org/10.1126/sciadv.1603170
- L. Su, M.Z. Li, H.J. Wang, M. Niu, D. Lu et al., Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 11(17), 15795–15803 (2019). https://doi.org/10.1021/acsami.9b02869
- B. Ren, J.J. Liu, Y.D. Rong, L. Wang, Y.J. Lu et al., Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core−shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 13(10), 11603–11612 (2019). https://doi.org/10.1021/acsnano.9b05406
- S. Chabi, V.G. Rocha, E. Garcia-Tunon, C. Ferraro, E. Saiz et al., Ultralight, strong, three-dimensional SiC structures. ACS Nano 10(2), 1871–1876 (2016). https://doi.org/10.1021/acsnano.5b05533
- L. Wang, M.Y. Zhang, B. Yang, J.J. Tan, X.Y. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- Y. Chen, O. Ola, H.M. Chen, N.N. Wang, Y.D. Xia et al., SiC nanowire sponges as electropressure sensors. ACS Appl. Nano Mater. 2(12), 7540–7548 (2019). https://doi.org/10.1021/acsanm.9b01590
- C.Y. Liang, Z.F. Wang, L. Wu, X.C. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
- L. Su, H.J. Wang, M. Niu, X.Y. Fan, M.B. Ma et al., Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 12(4), 3103–3111 (2018). https://doi.org/10.1021/acsnano.7b08577
- Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B Eng. 169, 221–228 (2019). https://doi.org/10.1016/j.compositesb.2019.04.008
- H. Du, Q.P. Zhang, B. Zhao, F. Marken, Q.C. Gao et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Cream. 10, 1042–1051 (2021). https://doi.org/10.1007/s40145-021-0487-9
- B. Huang, Z.Q. Wang, H.L. Hu, X.Z. Tang, X.Z. Huang et al., Enhancement of the microwave absorption properties of PyC-SiCf/SiC composites by electrophoretic deposition of SiC nanowires on SiC fibers. Ceram. Int. 46(7), 9303–9310 (2020). https://doi.org/10.1016/j.ceramint.2019.12.185
- K.L. Zhang, J.Y. Zhang, Z.L. Hou, S. Bi, Q.L. Zhao, Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 141, 608–617 (2019). https://doi.org/10.1016/j.carbon.2018.10.024
- H.R. Cheng, Y.M. Pan, X. Wang, C.T. Liu, C.Y. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00820-w
- D. Ding, Y. Wang, X.D. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
- W. Xue, G. Yang, S. Bi, J.Y. Zhang, Z.L. Hou, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 173, 521–527 (2021). https://doi.org/10.1016/j.carbon.2020.11.016
- W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
- X. Shi, J. Yuan, W. Zhou, J. Rong, M. Cao, Preparation and dielectric properties of nanostructured ZnO whiskers. Chin. Phys. Lett. 24, 2994–2997 (2007). https://doi.org/10.1088/0256-307X/24/10/078
- X. Li, L. Wang, W.B. You, L.S. Xing, L.T. Yang et al., Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11(28), 13269–13281 (2019). https://doi.org/10.1039/c9nr02667c
- C.S. Wang, S.Q. Wu, Z.Q. Li, S. Chen, A.N. Chen et al., 3D printed porous biomass-derived SiCnw/SiC composite for structure-function integrated electromagnetic aoborption. Virtual Phys. Prototy. 17, 718–733 (2022). https://doi.org/10.1080/17452759.2022.2056950
- X.Y. Yuan, L.F. Cheng, L.T. Zhang, Electromagnetic wave absorbing properties of SiC/SiO2 composites with ordered inter-filled structure. J. Alloy. Compd. 680, 604–611 (2016). https://doi.org/10.1016/j.jallcom.2016.03.309
- Z.J. Li, X.H. Wang, H.L. Ling, H. Lin, T. Wang et al., Electromagnetic wave absorption properties of SiC@SiO2 nanops fabricated by a catalyst-free precursor pyrolysis method. J. Alloy. Compd. 830, 154643 (2020). https://doi.org/10.1016/j.jallcom.2020.154643
- C.H. Wang, Y.J. Ding, Y. Yuan, X.D. He, S.T. Wu et al., Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 3(45), 11893–11901 (2015). https://doi.org/10.1039/c5tc03127c
- C. Liang, H. Qiu, Y. Han, H. Gu, P. Song et al., Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7(9), 2725–2733 (2019). https://doi.org/10.1039/c8tc05955a
- B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- L.Y. Zhu, X.J. Zeng, M. Chen, R.H. Yu, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv. 7, 26801–26808 (2017). https://doi.org/10.1039/c7ra04456a
- P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- H. Zhang, Y. Xu, J. Zhou, J. Jiao, Y. Chen et al., Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires. J. Mater. Chem. C 3(17), 4416–4423 (2015). https://doi.org/10.1039/c5tc00405e
- M. Qin, L.M. Zhang, H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Appl. Surf. Sci. 515, 146132 (2020). https://doi.org/10.1016/j.apsusc.2020.146132
- T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25(47), 6905–6910 (2013). https://doi.org/10.1002/adma.201303088
- M. Kuriakose, S. Longuemart, M. Depriester, S. Delenclos, A.H. Sahraoui, Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E 89, 022511 (2014). https://doi.org/10.1103/PhysRevE.89.022511
- M. Li, X. Yin, G. Zheng, M. Chen, M. Tao et al., High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics. J. Mater. Sci. 50, 1478–1487 (2014). https://doi.org/10.1007/s10853-014-8709-y
References
G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31(25), 1901403 (2019). https://doi.org/10.1002/adma.201901403
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
M. Chhowalla, D. Jariwala, Hyperbolic 3D architectures with 2D ceramics. Science 363(3428), 694–695 (2019). https://doi.org/10.1126/science.aaw5670
Z. Yu, B. Qin, Z. Ma, J. Huang, S. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102(11), 4243–4266 (2002). https://doi.org/10.1021/cr0101306
L.S. Zhang, Z.C. Tang, R. Tusiime, S.F. Wang, N.N. Feng et al., Synthesis and electromagnetic wave absorbing properties of a polymer-derived SiBNC ceramic aerogel. Ceram. Int. 47(13), 18984–18990 (2021). https://doi.org/10.1016/j.ceramint.2021.03.242
W.Y. Zhao, G. Shao, M.J. Jiang, B. Zhao, H.L. Wang et al., Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. J. Eur. Ceram. Soc. 37, 3973–3980 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.068
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
R. Kumar, W.C. Macedo, R.K. Singh, V.S. Tiwari, C.J.L. Constantino et al., Nitrogen-sulfur Co-doped reduced graphene oxide-nickel oxide nanop composites for electromagnetic interference shielding. ACS Appl. Nano Mater. 2, 4626–4636 (2019). https://doi.org/10.1021/acsanm.9b01002
R. Kumar, A.V. Alaferdov, R.K. Singh, A.K. Singh, J. Shah et al., Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos. Part B Eng. 168, 66–76 (2019). https://doi.org/10.1016/j.compositesb.2018.12.047
N. Leventis, A. Sadekar, N. Chandrasekaran, C. Sotiriou-Leventis, Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem. Mater. 22(9), 2790–2803 (2010). https://doi.org/10.1021/cm903662a
Z. Lin, Z. Zeng, X. Gui, Z. Tang, M. Zou et al., Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications. Adv. Energy Mater. 6(17), 1600554 (2016). https://doi.org/10.1002/aenm.201600554
S. Jiang, S. Agarwal, A. Greiner, Low-density open cellular sponges as functional materials. Angew. Chem. Int. Ed. 56(49), 15520–15538 (2017). https://doi.org/10.1002/anie.201700684
Y. Si, X. Wang, C. Yan, L. Yang, J. Yu et al., Ultralight biomass-derived carbonaceous nanofibrous aerogels with super-elasticity and high pressure-sensitivity. Adv. Mater. 28(43), 9512–9518 (2016). https://doi.org/10.1002/adma.201603143
C. Ziegler, A. Wolf, W. Liu, A.K. Herrmann, N. Gaponik et al., Modern inorganic aerogels. Angew. Chem. Int. Ed. 56(43), 13200–13221 (2017). https://doi.org/10.1002/anie.201611552
J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada et al., Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. Int. Ed. 51(9), 2076–2079 (2012). https://doi.org/10.1002/anie.201105730
L. Verdolotti, M. Lavorgna, R. Lamanna, E.D. Maio, S. Iannace, Polyurethane-silica hybrid foam by sol-gel approach: chemical and functional properties. Polymer 56, 20–28 (2015). https://doi.org/10.1016/j.polymer.2014.10.017
L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 18(5), 509–522 (2008). https://doi.org/10.1039/b712874f
P. Hu, S. Dong, X.H. Zhang, K.H. Gui, G.Q. Chen et al., Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties. Sci. Rep. 3011, 1–10 (2017). https://doi.org/10.1038/s41598-017-03588-x
D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto et al., Ultrahigh-quality silicon carbide single crystals. Nature 430, 1009–1012 (2004). https://doi.org/10.1038/nature02810
X.Y. Chen, X.H. Liu, X.J. Geng, Q.L. Jia, Photoluminescence properties of SiC/SiO2 heterojunctions obtained by TiO2-assisted chemical vapor deposition. Ceram. Int. 44(10), 11204–11210 (2018). https://doi.org/10.1016/j.ceramint.2018.03.152
B. Khalid, X. Bai, H. Wei, Y. Huang, H. Wu et al., Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett. 17(2), 1140–1148 (2017). https://doi.org/10.1021/acs.nanolett.6b04771
Y. Si, Z. Zhang, W. Wu, Q. Fu, K. Huang et al., Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4(3), eaar5931 (2018). https://doi.org/10.1126/sciadv.aar5931
X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19(7), 403–414 (2016). https://doi.org/10.1016/j.mattod.2015.11.010
D. Lu, L. Su, H.J. Wang, M. Niu, L. Xu et al., Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability. ACS Appl. Mater. Interfaces 11(48), 45338–45344 (2019). https://doi.org/10.1021/acsami.9b16811
Y.Y. Dong, X.J. Zhu, F. Pan, L. Cai, H.J. Jiang et al., Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 190, 68–79 (2022). https://doi.org/10.1016/j.carbon.2022.01.008
W.H. Huang, Q. Qiu, X.F. Yang, S.W. Zuo, J.A. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano Micro Lett. 14, 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
Y.P. Zhao, X.Q. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
S.S. Wu, H. Fu, X.S. Hu, C.Y. Ding, X. Yan et al., High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent. J. Colloid Interface Sci. 622, 719–727 (2022). https://doi.org/10.1016/j.jcis.2022.04.128
H.K. Jang, J. Kim, J.S. Park, J.B. Moon, J. Oh et al., Synthesis and characterization of a conductive polymer blend based on PEDOT:PSS and its electromagnetic applications. Polymers 14, 393 (2022). https://doi.org/10.3390/polym14030393
C.P.R. Malere, B. Donati, N. Eras, V.A. Silva, L.F. Lona, Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic-inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 139(17), e52023 (2021). https://doi.org/10.1002/app.52023
Y.B. Gong, Z.G. Yang, X.G. Wei, S.L. Song, S.Q. Ma, Synthesis and electromagnetic wave absorbing properties of high-entropy metal diboride-silicon carbide composite powders. J. Mater. Sci. 57, 9218–9230 (2022). https://doi.org/10.1007/s10853-022-07238-0
Y.T. Fan, D. Yang, H. Mei, S.S. Xiao, Y.T. Yao et al., Tuning SiC nanowires interphase to improve the mechanical and electromagnetic wave absorption properties of SiCf/SiCnw/Si3N4 composites. J. Alloy. Compd. 896, 163017 (2022). https://doi.org/10.1016/j.jallcom.2021.163017
R.B. Wu, K. Zhou, Z.H. Yang, X.K. Qian, J. Wei et al., Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 15, 570–576 (2013). https://doi.org/10.1039/c2ce26510a
Y.H. Cheng, M.Y. Tan, Hu. Pi, X.H. Zhang, B.Q. Sun et al., Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018). https://doi.org/10.1016/j.apsusc.2018.04.132
M. Han, X. Yin, W. Duan, S. Ren, L. Zhang et al., Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36(11), 2695–2703 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.003
J. Chen, Q. Shi, W. Tang, Field emission performance of SiC nanowires directly grown on graphite substrate. Mater. Chem. Phys. 126(3), 655–659 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.066
Z.M. An, C.S. Ye, R.B. Zhang, P. Zhou, Flexible and recoverable SiC nanofiber aerogels for electromagnetic wave absorption. Ceram. Int. 45, 22793–22801 (2019). https://doi.org/10.1016/j.ceramint.2019.07.321
L. Su, H.J. Wang, M. Niu, S. Dai, Z.X. Cai et al., Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6(26), eaay6689 (2020). https://doi.org/10.1126/sciadv.aay6689
M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, A Raman spectroscopy study of individual SiC nanowires. Adv. Funct. Mater. 17(6), 939–943 (2007). https://doi.org/10.1002/adfm.200600816
C.L. Wang, Z.W. Fang, A.L. Yi, B.C. Yang, Z. Wang et al., High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 10, 139 (2021). https://doi.org/10.1038/s41377-021-00584-9
G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno et al., Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12(1), 521–532 (2018). https://doi.org/10.1021/acsnano.7b07117
K. Peng, J.X. Zhou, H.F. Gao, J.W. Wang, H.J. Wang et al., Emerging one-/two-dimensional heteronanostructure integrating SiC nanowires with MoS2 nanosheets for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 12(17), 19519–19529 (2020). https://doi.org/10.1021/acsami.0c02046
H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, W.J. Zhang et al., Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51(21), 5101–5105 (2012). https://doi.org/10.1002/anie.201200710
H.L. Wang, X. Zhang, N. Wang, Y. Li, X. Feng et al., Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci. Adv. 3(6), e1603170 (2017). https://doi.org/10.1126/sciadv.1603170
L. Su, M.Z. Li, H.J. Wang, M. Niu, D. Lu et al., Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 11(17), 15795–15803 (2019). https://doi.org/10.1021/acsami.9b02869
B. Ren, J.J. Liu, Y.D. Rong, L. Wang, Y.J. Lu et al., Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core−shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 13(10), 11603–11612 (2019). https://doi.org/10.1021/acsnano.9b05406
S. Chabi, V.G. Rocha, E. Garcia-Tunon, C. Ferraro, E. Saiz et al., Ultralight, strong, three-dimensional SiC structures. ACS Nano 10(2), 1871–1876 (2016). https://doi.org/10.1021/acsnano.5b05533
L. Wang, M.Y. Zhang, B. Yang, J.J. Tan, X.Y. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
Y. Chen, O. Ola, H.M. Chen, N.N. Wang, Y.D. Xia et al., SiC nanowire sponges as electropressure sensors. ACS Appl. Nano Mater. 2(12), 7540–7548 (2019). https://doi.org/10.1021/acsanm.9b01590
C.Y. Liang, Z.F. Wang, L. Wu, X.C. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
L. Su, H.J. Wang, M. Niu, X.Y. Fan, M.B. Ma et al., Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 12(4), 3103–3111 (2018). https://doi.org/10.1021/acsnano.7b08577
Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B Eng. 169, 221–228 (2019). https://doi.org/10.1016/j.compositesb.2019.04.008
H. Du, Q.P. Zhang, B. Zhao, F. Marken, Q.C. Gao et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Cream. 10, 1042–1051 (2021). https://doi.org/10.1007/s40145-021-0487-9
B. Huang, Z.Q. Wang, H.L. Hu, X.Z. Tang, X.Z. Huang et al., Enhancement of the microwave absorption properties of PyC-SiCf/SiC composites by electrophoretic deposition of SiC nanowires on SiC fibers. Ceram. Int. 46(7), 9303–9310 (2020). https://doi.org/10.1016/j.ceramint.2019.12.185
K.L. Zhang, J.Y. Zhang, Z.L. Hou, S. Bi, Q.L. Zhao, Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 141, 608–617 (2019). https://doi.org/10.1016/j.carbon.2018.10.024
H.R. Cheng, Y.M. Pan, X. Wang, C.T. Liu, C.Y. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00820-w
D. Ding, Y. Wang, X.D. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
W. Xue, G. Yang, S. Bi, J.Y. Zhang, Z.L. Hou, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 173, 521–527 (2021). https://doi.org/10.1016/j.carbon.2020.11.016
W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
X. Shi, J. Yuan, W. Zhou, J. Rong, M. Cao, Preparation and dielectric properties of nanostructured ZnO whiskers. Chin. Phys. Lett. 24, 2994–2997 (2007). https://doi.org/10.1088/0256-307X/24/10/078
X. Li, L. Wang, W.B. You, L.S. Xing, L.T. Yang et al., Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11(28), 13269–13281 (2019). https://doi.org/10.1039/c9nr02667c
C.S. Wang, S.Q. Wu, Z.Q. Li, S. Chen, A.N. Chen et al., 3D printed porous biomass-derived SiCnw/SiC composite for structure-function integrated electromagnetic aoborption. Virtual Phys. Prototy. 17, 718–733 (2022). https://doi.org/10.1080/17452759.2022.2056950
X.Y. Yuan, L.F. Cheng, L.T. Zhang, Electromagnetic wave absorbing properties of SiC/SiO2 composites with ordered inter-filled structure. J. Alloy. Compd. 680, 604–611 (2016). https://doi.org/10.1016/j.jallcom.2016.03.309
Z.J. Li, X.H. Wang, H.L. Ling, H. Lin, T. Wang et al., Electromagnetic wave absorption properties of SiC@SiO2 nanops fabricated by a catalyst-free precursor pyrolysis method. J. Alloy. Compd. 830, 154643 (2020). https://doi.org/10.1016/j.jallcom.2020.154643
C.H. Wang, Y.J. Ding, Y. Yuan, X.D. He, S.T. Wu et al., Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 3(45), 11893–11901 (2015). https://doi.org/10.1039/c5tc03127c
C. Liang, H. Qiu, Y. Han, H. Gu, P. Song et al., Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7(9), 2725–2733 (2019). https://doi.org/10.1039/c8tc05955a
B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
L.Y. Zhu, X.J. Zeng, M. Chen, R.H. Yu, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv. 7, 26801–26808 (2017). https://doi.org/10.1039/c7ra04456a
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
H. Zhang, Y. Xu, J. Zhou, J. Jiao, Y. Chen et al., Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires. J. Mater. Chem. C 3(17), 4416–4423 (2015). https://doi.org/10.1039/c5tc00405e
M. Qin, L.M. Zhang, H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Appl. Surf. Sci. 515, 146132 (2020). https://doi.org/10.1016/j.apsusc.2020.146132
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25(47), 6905–6910 (2013). https://doi.org/10.1002/adma.201303088
M. Kuriakose, S. Longuemart, M. Depriester, S. Delenclos, A.H. Sahraoui, Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E 89, 022511 (2014). https://doi.org/10.1103/PhysRevE.89.022511
M. Li, X. Yin, G. Zheng, M. Chen, M. Tao et al., High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics. J. Mater. Sci. 50, 1478–1487 (2014). https://doi.org/10.1007/s10853-014-8709-y