Self-Powered, Long-Durable, and Highly Selective Oil–Solid Triboelectric Nanogenerator for Energy Harvesting and Intelligent Monitoring
Corresponding Author: Yijun Shi
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 160
Abstract
Triboelectric nanogenerators (TENGs) have potential to achieve energy harvesting and condition monitoring of oils, the “lifeblood” of industry. However, oil absorption on the solid surfaces is a great challenge for oil–solid TENG (O-TENG). Here, oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties. The designed O-TENG can generate an excellent electricity (with a charge density of 9.1 µC m−2 and a power density of 1.23 mW m−2), which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide. It also has a significant durability (30,000 cycles) and can power a digital thermometer for self-powered sensor applications. Further, a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils. The O-TENG can detect particle contaminants at least down to 0.01 wt% and water contaminants down to 100 ppm, which are much better than previous online monitoring methods (particle > 0.1 wt%; water > 1000 ppm). More interesting, the developed O-TENG can also distinguish water from other contaminants, which means the developed O-TENG has a highly water-selective performance. This work provides an ideal strategy for enhancing the output and durability of TENGs for oil–solid contact and opens new intelligent pathways for oil–solid energy harvesting and oil condition monitoring.
Highlights:
1 The as-designed triboelectric nanogenerator (TENG) generates an excellent electric output, which is an order of magnitude higher than that of TENGs made from commercial dielectric materials.
2 The as-designed TENG-based sensor can detect worn debris in oils at least down to 0.01 wt% and water contamination down to 100 ppm, which are much better than other online monitoring methods (particle > 0.1 wt%; water > 1000 ppm).
3 A high-selective monitoring system is successfully developed for distinguishing water contamination from the multi-mixed contaminants in lubricating oils.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.F. Xiao, J.H. Kim, S.H. Cho, Y.C. Park, M.J. Kim et al., Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state li-metal batteries. ACS Nano 15(3), 4561–4575 (2021). https://doi.org/10.1021/acsnano.0c08691
- S. Fu, W. He, Q. Tang, Z. Wang, W. Liu et al., An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 34(2), 2105882 (2022). https://doi.org/10.1002/adma.202105882
- H. Askari, A. Khajepour, M.B. Khamesee, Z. Saadatnia, Z.L. Wang, Piezoelectric and triboelectric nanogenerators: trends and impacts. Nano Today 22, 10–13 (2018). https://doi.org/10.1016/j.nantod.2018.08.001
- V. Slabov, S. Kopyl, M.P.S. Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
- J. Zhu, M. Zhu, Q. Shi, F. Wen, L. Liu et al., Progress in teng technology-a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2(4), e12058 (2020). https://doi.org/10.1002/eom2.12058
- B. Yang, C. Lee, A wideband electromagnetic energy harvester for random vibration sources. Adv. Mater. Res. 74, 165–168 (2009). https://doi.org/10.4028/www.scientific.net/AMR.74.165
- D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla et al., Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3(5), 5–20 (2018). https://doi.org/10.1038/s41578-018-0005-z
- Y. Hu, C. Xu, Y. Zhang, L. Lin, R.L. Snyder et al., A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 23(35), 4068–4071 (2011). https://doi.org/10.1002/adma.201102067
- S. Kwon, H. Kim, S. Choi, E.G. Jeong, D. Kim et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2018). https://doi.org/10.1021/acs.nanolett.7b04204
- Y. Xi, J. Hua, Y. Shi, Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting. Nano Energy 69, 104390 (2020). https://doi.org/10.1016/j.nanoen.2019.104390
- Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan et al., Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 29(19), 1606679 (2017). https://doi.org/10.1002/adma.201606679
- J. Wu, Y. Xi, Y. Shi, Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 72, 104659 (2020). https://doi.org/10.1016/j.nanoen.2020.104659
- M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human - nanogenerator and self-powered sensor enabled sustainable wireless iot sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- M.L. Seol, S.B. Jeon, J.W. Han, Y.K. Choi, Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017). https://doi.org/10.1016/j.nanoen.2016.11.038
- F. Wen, Z. Zhang, T. He, C. Lee, AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12, 5378 (2021). https://doi.org/10.1038/s41467-021-25637-w
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4606 (2020). https://doi.org/10.1038/s41467-020-18086-4
- C. Shan, W. He, H. Wu, S. Fu, Q. Tang et al., A high-performance bidirectional direct current teng by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 12(25), 2200963 (2022). https://doi.org/10.1002/aenm.202200963
- L. Long, W. Liu, Z. Wang, W. He, G. Li et al., High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 12, 4689 (2021). https://doi.org/10.1038/s41467-021-25047-y
- D. Park, S.H. Shin, I.J. Yoon, J. Nah, Ferroelectric nanop-embedded sponge structure triboelectric generators. Nanotechnology 29(18), 185402 (2018). https://doi.org/10.1088/1361-6528/aaafa3
- R. Wang, L. Mu, Y. Bao, H. Lin, T. Ji et al., Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv. Mater. 32(32), 2002878 (2020). https://doi.org/10.1002/adma.202002878
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14, 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- K. Qin, C. Chen, X.J. Pu, Q. Tang, W.C. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019). https://doi.org/10.1002/adfm.201901069
- M. Kim, D. Park, M.M. Alam, S. Lee, P. Park et al., Remarkable output power density enhancement of triboelectric nanogenerators via polarized ferroelectric polymers and bulk MoS2 composites. ACS Nano 13(4), 4640–4646 (2019). https://doi.org/10.1021/acsnano.9b00750
- H. Wu, S. Wang, Z. Wang, Y. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 12, 5470 (2021). https://doi.org/10.1038/s41467-021-25753-7
- K. Wang, J. Li, Electricity generation from the interaction of liquid-solid interface: a review. J. Mater. Chem. A 9(14), 8870–8895 (2021). https://doi.org/10.1039/d0ta12073a
- C. Li, X. Liu, D. Yang, Z. Liu, Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy 95, 106998 (2022). https://doi.org/10.1016/j.nanoen.2022.106998
- J. Nie, Z. Ren, L. Xu, S. Lin, F. Zhan et al., Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv. Mater. 32(2), 1905696 (2020). https://doi.org/10.1002/adma.201905696
- A. Erdemir, G. Ramirez, O.L. Eryilmaz, B. Narayanan, Y. Liao et al., Carbon-based tribofilms from lubricating oils. Nature 536(7614), 67–71 (2016). https://doi.org/10.1038/nature18948
- J. Zhao, Y. Li, Y. He, J. Luo, In situ green synthesis of the new sandwichlike nanostructure of Mn3O4/graphene as lubricant additives. ACS Appl. Mater. Interfaces 11(40), 36931–36938 (2019). https://doi.org/10.1021/acsami.9b08993
- J. Zhao, Y. Huang, Y. He, Y. Shi, Nanolubricant additives: a review. Friction 9(5), 891–917 (2021). https://doi.org/10.1007/s40544-020-0450-8
- G. Wu, J. Yang, J. Shang, D. Fang, A rotary fluid power converter for improving energy efficiency of hydraulic system with variable load. Energy 195, 116957 (2020). https://doi.org/10.1016/j.energy.2020.116957
- M.H. Chua, W. Cheng, S.S. Goh, J. Kong, B. Li et al., Face masks in the new covid-19 normal: materials, testing, and perspectives. Research 2020, 1–40 (2020). https://doi.org/10.34133/2020/7286735
- J. Wang, J. He, L. Ma, Y. Zhang, L. Shen et al., Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chem. Eng. J. 390, 124508 (2020). https://doi.org/10.1016/j.cej.2020.124508
- J. Zhao, D. Wang, F. Zhang, Y. Liu, B. Chen et al., Real-time and online lubricating oil condition monitoring enabled by triboelectric nanogenerator. ACS Nano 15(7), 11869–11879 (2021). https://doi.org/10.1021/acsnano.1c02980
- J. Nie, Z. Wang, Z. Ren, S. Li, X. Chen et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10, 2264 (2019). https://doi.org/10.1038/s41467-019-10232-x
- S. Raadnui, S. Kleesuwan, Low-cost condition monitoring sensor for used oil analysis. Wear 259, 1502–1506 (2005). https://doi.org/10.1016/j.wear.2004.11.009
- L. Du, J. Zhe, J. Carletta, R. Veillette, F. Choy, Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive coulter counting device. Microfluid Nanofluidics 9(6), 1241–1245 (2010). https://doi.org/10.1007/s10404-010-0627-y
- M.G. Droubi, R.L. Reuben, J.I. Steel, Flow noise identification using acoustic emission (AE) energy decomposition for sand monitoring in flow pipeline. Appl. Acoust 131, 5–15 (2018). https://doi.org/10.1016/j.apacoust.2017.10.016
- M. Baghelani, N. Hosseini, M. Daneshmand, Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators. Measurement 177, 109286 (2021). https://doi.org/10.1016/j.measurement.2021.109286
- P. Liu, S. Liu, X. Yu, Y. Zhang, Silane-triggered fabrication of stable waterborne superamphiphobic coatings. Chem. Eng. J. 406, 127153 (2021). https://doi.org/10.1016/j.cej.2020.127153
- Q. Li, Z. Guo, A highly fluorinated SiO2 p assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials. Nanoscale 11(39), 18338–18346 (2019). https://doi.org/10.1039/c9nr07435j
- Y. Pan, S. Huang, F. Li, X. Zhao, W. Wang, Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation. J. Mater. Chem. A 6(31), 15057–15063 (2018). https://doi.org/10.1039/c8ta04725a
- X. Xie, X. Chen, C. Zhao, Y. Liu, X. Sun et al., Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy 79, 105439 (2021). https://doi.org/10.1016/j.nanoen.2020.105439
- C. Hughes, L.H. Yeh, S. Qian, Field effect modulation of surface charge property and electroosmotic flow in a nanochannel: stern layer effect. J. Phys. Chem. C 117(18), 9322–9331 (2013). https://doi.org/10.1021/jp402018u
- Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric Nanogenerators. (2016). https://doi.org/10.1007/978-3-319-40039-6
- P. Jiang, L. Zhang, H. Guo, C. Chen, C. Wu et al., Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Adv. Mater. 31(39), 1902793 (2019). https://doi.org/10.1002/adma.201902793
- P.D.S. Clermont, T. Paillat, G. Peres, Y. Duval, G. Touchard et al., Quantification of flow electrification in the context of a tank being filled with a dielectric liquid. IEEE Trans. Ind. Appl. 53(5), 4944–4949 (2017). https://doi.org/10.1109/tia.2017.2699664
- H.T. Baytekin, B. Baytekin, S. Soh, B.A. Grzybowski, Is water necessary for contact electrification? Angew. Chem. Int. Ed. 50(30), 6766–6770 (2011). https://doi.org/10.1002/anie.201008051
- T. Ishikawa, K. Yasuda, T. Igarashi, S. Yanabu, G. Ueta et al., Effect of temperature on the streaming electrification characteristics of silicone oil. IEEE. Trans. Dielectr. Electr. Insul. 16(1), 273–280 (2009). https://doi.org/10.1109/tdei.2009.4784577
- Z. Chu, Y. Feng, S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54(8), 2328–2338 (2015). https://doi.org/10.1002/anie.201405785
- X. Yao, Y. Song, L. Jiang, Applications of bio-inspired special wettable surfaces. Adv. Mater. 23(6), 719–734 (2011). https://doi.org/10.1002/adma.201002689
- N.K. Myshkin, L.V. Markova, On-line Condition Monitoring in Industrial Lubrication and Tribology. (2018). https://doi.org/10.1007/978-3-319-61134-1
- R.E. Cantley, The effect of water in lubricating oil on bearing fatigue life. ASLE Transact. 20(3), 244–248 (1977). https://doi.org/10.1080/05698197708982838
- M.F. Smiechowski, V.F. Lvovich, Electrochemical monitoring of water-surfactant interactions in industrial lubricants. J. Electroanal. Chem. 534(2), 171–180 (2002). https://doi.org/10.1016/s0022-0728(02)01106-3
- A. Urban, J. Zhe, A microsensor array for diesel engine lubricant monitoring using deep learning with stochastic global optimization. Sens. Actuator A Phys. 343, 113671 (2022). https://doi.org/10.1016/j.sna.2022.113671
References
C.F. Xiao, J.H. Kim, S.H. Cho, Y.C. Park, M.J. Kim et al., Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state li-metal batteries. ACS Nano 15(3), 4561–4575 (2021). https://doi.org/10.1021/acsnano.0c08691
S. Fu, W. He, Q. Tang, Z. Wang, W. Liu et al., An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 34(2), 2105882 (2022). https://doi.org/10.1002/adma.202105882
H. Askari, A. Khajepour, M.B. Khamesee, Z. Saadatnia, Z.L. Wang, Piezoelectric and triboelectric nanogenerators: trends and impacts. Nano Today 22, 10–13 (2018). https://doi.org/10.1016/j.nantod.2018.08.001
V. Slabov, S. Kopyl, M.P.S. Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
J. Zhu, M. Zhu, Q. Shi, F. Wen, L. Liu et al., Progress in teng technology-a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2(4), e12058 (2020). https://doi.org/10.1002/eom2.12058
B. Yang, C. Lee, A wideband electromagnetic energy harvester for random vibration sources. Adv. Mater. Res. 74, 165–168 (2009). https://doi.org/10.4028/www.scientific.net/AMR.74.165
D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla et al., Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3(5), 5–20 (2018). https://doi.org/10.1038/s41578-018-0005-z
Y. Hu, C. Xu, Y. Zhang, L. Lin, R.L. Snyder et al., A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 23(35), 4068–4071 (2011). https://doi.org/10.1002/adma.201102067
S. Kwon, H. Kim, S. Choi, E.G. Jeong, D. Kim et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2018). https://doi.org/10.1021/acs.nanolett.7b04204
Y. Xi, J. Hua, Y. Shi, Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting. Nano Energy 69, 104390 (2020). https://doi.org/10.1016/j.nanoen.2019.104390
Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan et al., Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 29(19), 1606679 (2017). https://doi.org/10.1002/adma.201606679
J. Wu, Y. Xi, Y. Shi, Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 72, 104659 (2020). https://doi.org/10.1016/j.nanoen.2020.104659
M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human - nanogenerator and self-powered sensor enabled sustainable wireless iot sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
M.L. Seol, S.B. Jeon, J.W. Han, Y.K. Choi, Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017). https://doi.org/10.1016/j.nanoen.2016.11.038
F. Wen, Z. Zhang, T. He, C. Lee, AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12, 5378 (2021). https://doi.org/10.1038/s41467-021-25637-w
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4606 (2020). https://doi.org/10.1038/s41467-020-18086-4
C. Shan, W. He, H. Wu, S. Fu, Q. Tang et al., A high-performance bidirectional direct current teng by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 12(25), 2200963 (2022). https://doi.org/10.1002/aenm.202200963
L. Long, W. Liu, Z. Wang, W. He, G. Li et al., High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 12, 4689 (2021). https://doi.org/10.1038/s41467-021-25047-y
D. Park, S.H. Shin, I.J. Yoon, J. Nah, Ferroelectric nanop-embedded sponge structure triboelectric generators. Nanotechnology 29(18), 185402 (2018). https://doi.org/10.1088/1361-6528/aaafa3
R. Wang, L. Mu, Y. Bao, H. Lin, T. Ji et al., Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv. Mater. 32(32), 2002878 (2020). https://doi.org/10.1002/adma.202002878
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14, 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
K. Qin, C. Chen, X.J. Pu, Q. Tang, W.C. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019). https://doi.org/10.1002/adfm.201901069
M. Kim, D. Park, M.M. Alam, S. Lee, P. Park et al., Remarkable output power density enhancement of triboelectric nanogenerators via polarized ferroelectric polymers and bulk MoS2 composites. ACS Nano 13(4), 4640–4646 (2019). https://doi.org/10.1021/acsnano.9b00750
H. Wu, S. Wang, Z. Wang, Y. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 12, 5470 (2021). https://doi.org/10.1038/s41467-021-25753-7
K. Wang, J. Li, Electricity generation from the interaction of liquid-solid interface: a review. J. Mater. Chem. A 9(14), 8870–8895 (2021). https://doi.org/10.1039/d0ta12073a
C. Li, X. Liu, D. Yang, Z. Liu, Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy 95, 106998 (2022). https://doi.org/10.1016/j.nanoen.2022.106998
J. Nie, Z. Ren, L. Xu, S. Lin, F. Zhan et al., Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv. Mater. 32(2), 1905696 (2020). https://doi.org/10.1002/adma.201905696
A. Erdemir, G. Ramirez, O.L. Eryilmaz, B. Narayanan, Y. Liao et al., Carbon-based tribofilms from lubricating oils. Nature 536(7614), 67–71 (2016). https://doi.org/10.1038/nature18948
J. Zhao, Y. Li, Y. He, J. Luo, In situ green synthesis of the new sandwichlike nanostructure of Mn3O4/graphene as lubricant additives. ACS Appl. Mater. Interfaces 11(40), 36931–36938 (2019). https://doi.org/10.1021/acsami.9b08993
J. Zhao, Y. Huang, Y. He, Y. Shi, Nanolubricant additives: a review. Friction 9(5), 891–917 (2021). https://doi.org/10.1007/s40544-020-0450-8
G. Wu, J. Yang, J. Shang, D. Fang, A rotary fluid power converter for improving energy efficiency of hydraulic system with variable load. Energy 195, 116957 (2020). https://doi.org/10.1016/j.energy.2020.116957
M.H. Chua, W. Cheng, S.S. Goh, J. Kong, B. Li et al., Face masks in the new covid-19 normal: materials, testing, and perspectives. Research 2020, 1–40 (2020). https://doi.org/10.34133/2020/7286735
J. Wang, J. He, L. Ma, Y. Zhang, L. Shen et al., Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chem. Eng. J. 390, 124508 (2020). https://doi.org/10.1016/j.cej.2020.124508
J. Zhao, D. Wang, F. Zhang, Y. Liu, B. Chen et al., Real-time and online lubricating oil condition monitoring enabled by triboelectric nanogenerator. ACS Nano 15(7), 11869–11879 (2021). https://doi.org/10.1021/acsnano.1c02980
J. Nie, Z. Wang, Z. Ren, S. Li, X. Chen et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10, 2264 (2019). https://doi.org/10.1038/s41467-019-10232-x
S. Raadnui, S. Kleesuwan, Low-cost condition monitoring sensor for used oil analysis. Wear 259, 1502–1506 (2005). https://doi.org/10.1016/j.wear.2004.11.009
L. Du, J. Zhe, J. Carletta, R. Veillette, F. Choy, Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive coulter counting device. Microfluid Nanofluidics 9(6), 1241–1245 (2010). https://doi.org/10.1007/s10404-010-0627-y
M.G. Droubi, R.L. Reuben, J.I. Steel, Flow noise identification using acoustic emission (AE) energy decomposition for sand monitoring in flow pipeline. Appl. Acoust 131, 5–15 (2018). https://doi.org/10.1016/j.apacoust.2017.10.016
M. Baghelani, N. Hosseini, M. Daneshmand, Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators. Measurement 177, 109286 (2021). https://doi.org/10.1016/j.measurement.2021.109286
P. Liu, S. Liu, X. Yu, Y. Zhang, Silane-triggered fabrication of stable waterborne superamphiphobic coatings. Chem. Eng. J. 406, 127153 (2021). https://doi.org/10.1016/j.cej.2020.127153
Q. Li, Z. Guo, A highly fluorinated SiO2 p assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials. Nanoscale 11(39), 18338–18346 (2019). https://doi.org/10.1039/c9nr07435j
Y. Pan, S. Huang, F. Li, X. Zhao, W. Wang, Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation. J. Mater. Chem. A 6(31), 15057–15063 (2018). https://doi.org/10.1039/c8ta04725a
X. Xie, X. Chen, C. Zhao, Y. Liu, X. Sun et al., Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy 79, 105439 (2021). https://doi.org/10.1016/j.nanoen.2020.105439
C. Hughes, L.H. Yeh, S. Qian, Field effect modulation of surface charge property and electroosmotic flow in a nanochannel: stern layer effect. J. Phys. Chem. C 117(18), 9322–9331 (2013). https://doi.org/10.1021/jp402018u
Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric Nanogenerators. (2016). https://doi.org/10.1007/978-3-319-40039-6
P. Jiang, L. Zhang, H. Guo, C. Chen, C. Wu et al., Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Adv. Mater. 31(39), 1902793 (2019). https://doi.org/10.1002/adma.201902793
P.D.S. Clermont, T. Paillat, G. Peres, Y. Duval, G. Touchard et al., Quantification of flow electrification in the context of a tank being filled with a dielectric liquid. IEEE Trans. Ind. Appl. 53(5), 4944–4949 (2017). https://doi.org/10.1109/tia.2017.2699664
H.T. Baytekin, B. Baytekin, S. Soh, B.A. Grzybowski, Is water necessary for contact electrification? Angew. Chem. Int. Ed. 50(30), 6766–6770 (2011). https://doi.org/10.1002/anie.201008051
T. Ishikawa, K. Yasuda, T. Igarashi, S. Yanabu, G. Ueta et al., Effect of temperature on the streaming electrification characteristics of silicone oil. IEEE. Trans. Dielectr. Electr. Insul. 16(1), 273–280 (2009). https://doi.org/10.1109/tdei.2009.4784577
Z. Chu, Y. Feng, S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54(8), 2328–2338 (2015). https://doi.org/10.1002/anie.201405785
X. Yao, Y. Song, L. Jiang, Applications of bio-inspired special wettable surfaces. Adv. Mater. 23(6), 719–734 (2011). https://doi.org/10.1002/adma.201002689
N.K. Myshkin, L.V. Markova, On-line Condition Monitoring in Industrial Lubrication and Tribology. (2018). https://doi.org/10.1007/978-3-319-61134-1
R.E. Cantley, The effect of water in lubricating oil on bearing fatigue life. ASLE Transact. 20(3), 244–248 (1977). https://doi.org/10.1080/05698197708982838
M.F. Smiechowski, V.F. Lvovich, Electrochemical monitoring of water-surfactant interactions in industrial lubricants. J. Electroanal. Chem. 534(2), 171–180 (2002). https://doi.org/10.1016/s0022-0728(02)01106-3
A. Urban, J. Zhe, A microsensor array for diesel engine lubricant monitoring using deep learning with stochastic global optimization. Sens. Actuator A Phys. 343, 113671 (2022). https://doi.org/10.1016/j.sna.2022.113671