Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries
Corresponding Author: Yi Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 5
Abstract
High-energy–density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g−1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10–10 cm2 s−1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g−1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g−1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g−1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.
Highlights:
1 The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10–10 cm2 s−1, theoretically proving Co2VO4 a promising anode in fast-charging lithium-ion batteries.
2 A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed, featuring a high specific surface area of 74.57 m2 g−1 and numerous pores with a pore size of 14 nm.
3 The PCVO ND shows excellent fast-charging performance (a high average capacity of 344.3 mAh g−1 at 10 C for 1000 cycles with only 0.024% capacity loss per cycle for 1000 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
- Y. Cao, K. Geng, H. Geng, H. Ang, J. Pei et al., Metal-oleate complex-derived bimetallic oxides nanoparticles encapsulated in 3D graphene networks as anodes for efficient lithium storage with pseudocapacitance. Nano-Micro Lett. 11, 15 (2019). https://doi.org/10.1007/s40820-019-0247-3
- F. Liao, E. Molin, B. van Wee, Consumer preferences for electric vehicles: a literature review. Transp. Rev. 37, 252–275 (2016). https://doi.org/10.1080/01441647.2016.1230794
- A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu et al., Lithium-ion battery fast charging: a review. eTransportation 1, 100011 (2019). https://doi.org/10.1016/j.etran.2019.100011
- A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy. Lett. 6, 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
- E.J. Berg, C. Villevieille, D. Streich, S. Trabesinger, P. Novák, Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015). https://doi.org/10.1149/2.0081514jes
- Y.X. Yao, C. Yan, Q. Zhang, Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem. Commun. 56, 14570–14584 (2020). https://doi.org/10.1039/d0cc05084a
- L. Wang, J. Han, D. Kong, Y. Tao, Q. Yang, Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro Lett. 11, 5 (2019). https://doi.org/10.1007/s40820-018-0233-1
- X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren et al., In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 (2021). https://doi.org/10.1038/s41467-021-24404-1
- D. Wang, H. Liu, Z. Shan, D. Xia, R. Na et al., Nitrogen, sulfur co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy. Storage. Mater. 27, 387–395 (2020). https://doi.org/10.1016/j.ensm.2020.02.019
- J. Liu, A. Wei, G. Pan, S. Shen, Z. Xiao et al., Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J. Energy Chem. 54, 754–760 (2021). https://doi.org/10.1016/j.jechem.2020.06.017
- B. Gangaja, S. Nair, D. Santhanagopalan, Surface-engineered Li4Ti5O12 nano-structures for high-power li-ion batteries. Nano-Micro Lett. 12, 30 (2020). https://doi.org/10.1007/s40820-020-0366-x
- G. Huang, J. Han, Z. Lu, D. Wei, H. Kashani et al., Ultrastable silicon anode by three-dimensional nanoarchitecture design. ACS Nano 14, 4374–4382 (2020). https://doi.org/10.1021/acsnano.9b09928
- X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT:PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
- Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu et al., Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater. 24, 565–573 (2020). https://doi.org/10.1016/j.ensm.2019.06.031
- J. Liu, P. Zhang, D. Yu, K. Li, J. Wu et al., Hierarchical Co2VO4 yolk-shell microspheres confined by N-doped carbon layer as anode for high-rate lithium-ion batteries. J. Electroanal. Chem. 882, 115027 (2021). https://doi.org/10.1016/j.jelechem.2021.115027
- C. Zhu, Z. Liu, J. Wang, J. Pu, W. Wu et al., Novel Co2VO4 anodes using ultralight 3d metallic current collector and carbon sandwiched structures for high-performance li-ion batteries. Small 13, 171260 (2017). https://doi.org/10.1002/smll.201701260
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Furthmuller, J. Hafner, Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 50, 13181–13185 (1994). https://doi.org/10.1103/PhysRevB.50.13181
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA1U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334
- F. Wu, C. Yu, W. Liu, T. Wang, J. Feng et al., Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A 3, 16728–16736 (2015). https://doi.org/10.1039/c5ta03106k
- W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Structures 1, 2000010 (2020). https://doi.org/10.1002/sstr.202000010
- C. Lin, B. Ding, Y. Xin, F. Cheng, M.O. Lai et al., Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: synergistic effect of doping and compositing. J. Power Sources 248, 1034–1041 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.120
- S.R. Sahu, V.R. Rikka, P. Haridoss, A. Chatterjee, R. Gopalan et al., A novel α-MoO3/single-walled carbon nanohorns composite as high-performance anode material for fast-charging lithium-ion battery. Adv. Energy Mater. 10, 2001627 (2020). https://doi.org/10.1002/aenm.202001627
- R. Tao, G. Yang, E.C. Self, J. Liang, J.R. Dunlap et al., Ionic liquid-directed nanoporous TiNb2O7 anodes with superior performance for fast-rechargeable lithium-ion batteries. Small 16, e2001884 (2020). https://doi.org/10.1002/smll.202001884
- Q. Sun, Z. Cao, J. Zhang, H. Cheng, J. Zhang et al., Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries. Adv. Funct. Mater. 31, 2009122 (2021). https://doi.org/10.1002/adfm.202009122
- H. Li, L. Jiang, Q. Feng, Z. Huang, H. Zhou et al., Ultra-fast transfer and high storage of Li+/Na+ in MnO quantum dots@carbon hetero-nanotubes: appropriate quantum dots to improve the rate. Energy Storage Mater. 17, 157–166 (2019). https://doi.org/10.1016/j.ensm.2018.07.021
- S. Chen, H. Duan, L. Zhao, Y. Zhao, A. Gupta et al., Electrochemical performance and Li+ insertion/extraction mechanism of carbon-coated cerium metavanadate as a novel anode for lithium-ion batteries. J. Power Sources 413, 250–258 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.053
- C. Mu, J. Mao, J. Guo, Q. Guo, Z. Li et al., Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv. Mater. 32, e1907168 (2020). https://doi.org/10.1002/adma.201907168
- D. Su, L. Liu, Z. Liu, J. Liu, M. Yang et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13, 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
- Y. Xiao, C. Tian, M. Tian, A. Wu, H. Yan et al., Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Sci. China Mater. 61, 80–90 (2017). https://doi.org/10.1007/s40843-017-9113-1
- Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13, 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
- B. He, J. Wang, Y. Fan, Y. Jiang, Y. Zhai et al., Mesoporous CoO/Co–N–C nanofibers as efficient cathode catalysts for Li–O2 batteries. J. Mater. Chem. A 6, 19075–19084 (2018). https://doi.org/10.1039/c8ta07185c
- L. Zhang, K. Zhao, Y. Luo, Y. Dong, W. Xu et al., Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudo-capacitive lithium-ion battery anode. ACS Appl. Mater. Inter. 8, 7139–7146 (2016). https://doi.org/10.1021/acsami.6b00596
- J.S. Lu, I.V.B. Maggay, W.R. Liu, CoV2O4: a novel anode material for lithium-ion batteries with excellent electrochemical performance. Chem. Commun. 54, 3094–3097 (2018). https://doi.org/10.1039/c7cc09762j
- J. Chen, Y. Luo, W. Zhang, Y. Qiao, X. Cao et al., Tuning interface bridging between MoSe2 and three-dimensional carbon framework by incorporation of mocintermediate to boost lithium storage capability. Nano-Micro Lett. 12, 171 (2020). https://doi.org/10.1007/s40820-020-00511-4
- H. Li, X. Liu, T. Zhai, D. Li, H. Zhou, Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv. Energy Mater. 3, 428–432 (2013). https://doi.org/10.1002/aenm.201200833
- S. Lu, T. Zhu, Z. Li, Y. Pang, L. Shi et al., Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance. J. Mater. Chem. A 6, 7005–7013 (2018). https://doi.org/10.1039/C7TA11268H
References
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
Y. Cao, K. Geng, H. Geng, H. Ang, J. Pei et al., Metal-oleate complex-derived bimetallic oxides nanoparticles encapsulated in 3D graphene networks as anodes for efficient lithium storage with pseudocapacitance. Nano-Micro Lett. 11, 15 (2019). https://doi.org/10.1007/s40820-019-0247-3
F. Liao, E. Molin, B. van Wee, Consumer preferences for electric vehicles: a literature review. Transp. Rev. 37, 252–275 (2016). https://doi.org/10.1080/01441647.2016.1230794
A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu et al., Lithium-ion battery fast charging: a review. eTransportation 1, 100011 (2019). https://doi.org/10.1016/j.etran.2019.100011
A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy. Lett. 6, 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
E.J. Berg, C. Villevieille, D. Streich, S. Trabesinger, P. Novák, Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015). https://doi.org/10.1149/2.0081514jes
Y.X. Yao, C. Yan, Q. Zhang, Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem. Commun. 56, 14570–14584 (2020). https://doi.org/10.1039/d0cc05084a
L. Wang, J. Han, D. Kong, Y. Tao, Q. Yang, Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro Lett. 11, 5 (2019). https://doi.org/10.1007/s40820-018-0233-1
X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren et al., In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 (2021). https://doi.org/10.1038/s41467-021-24404-1
D. Wang, H. Liu, Z. Shan, D. Xia, R. Na et al., Nitrogen, sulfur co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy. Storage. Mater. 27, 387–395 (2020). https://doi.org/10.1016/j.ensm.2020.02.019
J. Liu, A. Wei, G. Pan, S. Shen, Z. Xiao et al., Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J. Energy Chem. 54, 754–760 (2021). https://doi.org/10.1016/j.jechem.2020.06.017
B. Gangaja, S. Nair, D. Santhanagopalan, Surface-engineered Li4Ti5O12 nano-structures for high-power li-ion batteries. Nano-Micro Lett. 12, 30 (2020). https://doi.org/10.1007/s40820-020-0366-x
G. Huang, J. Han, Z. Lu, D. Wei, H. Kashani et al., Ultrastable silicon anode by three-dimensional nanoarchitecture design. ACS Nano 14, 4374–4382 (2020). https://doi.org/10.1021/acsnano.9b09928
X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT:PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu et al., Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater. 24, 565–573 (2020). https://doi.org/10.1016/j.ensm.2019.06.031
J. Liu, P. Zhang, D. Yu, K. Li, J. Wu et al., Hierarchical Co2VO4 yolk-shell microspheres confined by N-doped carbon layer as anode for high-rate lithium-ion batteries. J. Electroanal. Chem. 882, 115027 (2021). https://doi.org/10.1016/j.jelechem.2021.115027
C. Zhu, Z. Liu, J. Wang, J. Pu, W. Wu et al., Novel Co2VO4 anodes using ultralight 3d metallic current collector and carbon sandwiched structures for high-performance li-ion batteries. Small 13, 171260 (2017). https://doi.org/10.1002/smll.201701260
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Furthmuller, J. Hafner, Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 50, 13181–13185 (1994). https://doi.org/10.1103/PhysRevB.50.13181
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA1U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334
F. Wu, C. Yu, W. Liu, T. Wang, J. Feng et al., Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A 3, 16728–16736 (2015). https://doi.org/10.1039/c5ta03106k
W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Structures 1, 2000010 (2020). https://doi.org/10.1002/sstr.202000010
C. Lin, B. Ding, Y. Xin, F. Cheng, M.O. Lai et al., Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: synergistic effect of doping and compositing. J. Power Sources 248, 1034–1041 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.120
S.R. Sahu, V.R. Rikka, P. Haridoss, A. Chatterjee, R. Gopalan et al., A novel α-MoO3/single-walled carbon nanohorns composite as high-performance anode material for fast-charging lithium-ion battery. Adv. Energy Mater. 10, 2001627 (2020). https://doi.org/10.1002/aenm.202001627
R. Tao, G. Yang, E.C. Self, J. Liang, J.R. Dunlap et al., Ionic liquid-directed nanoporous TiNb2O7 anodes with superior performance for fast-rechargeable lithium-ion batteries. Small 16, e2001884 (2020). https://doi.org/10.1002/smll.202001884
Q. Sun, Z. Cao, J. Zhang, H. Cheng, J. Zhang et al., Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries. Adv. Funct. Mater. 31, 2009122 (2021). https://doi.org/10.1002/adfm.202009122
H. Li, L. Jiang, Q. Feng, Z. Huang, H. Zhou et al., Ultra-fast transfer and high storage of Li+/Na+ in MnO quantum dots@carbon hetero-nanotubes: appropriate quantum dots to improve the rate. Energy Storage Mater. 17, 157–166 (2019). https://doi.org/10.1016/j.ensm.2018.07.021
S. Chen, H. Duan, L. Zhao, Y. Zhao, A. Gupta et al., Electrochemical performance and Li+ insertion/extraction mechanism of carbon-coated cerium metavanadate as a novel anode for lithium-ion batteries. J. Power Sources 413, 250–258 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.053
C. Mu, J. Mao, J. Guo, Q. Guo, Z. Li et al., Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv. Mater. 32, e1907168 (2020). https://doi.org/10.1002/adma.201907168
D. Su, L. Liu, Z. Liu, J. Liu, M. Yang et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13, 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
Y. Xiao, C. Tian, M. Tian, A. Wu, H. Yan et al., Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Sci. China Mater. 61, 80–90 (2017). https://doi.org/10.1007/s40843-017-9113-1
Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13, 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
B. He, J. Wang, Y. Fan, Y. Jiang, Y. Zhai et al., Mesoporous CoO/Co–N–C nanofibers as efficient cathode catalysts for Li–O2 batteries. J. Mater. Chem. A 6, 19075–19084 (2018). https://doi.org/10.1039/c8ta07185c
L. Zhang, K. Zhao, Y. Luo, Y. Dong, W. Xu et al., Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudo-capacitive lithium-ion battery anode. ACS Appl. Mater. Inter. 8, 7139–7146 (2016). https://doi.org/10.1021/acsami.6b00596
J.S. Lu, I.V.B. Maggay, W.R. Liu, CoV2O4: a novel anode material for lithium-ion batteries with excellent electrochemical performance. Chem. Commun. 54, 3094–3097 (2018). https://doi.org/10.1039/c7cc09762j
J. Chen, Y. Luo, W. Zhang, Y. Qiao, X. Cao et al., Tuning interface bridging between MoSe2 and three-dimensional carbon framework by incorporation of mocintermediate to boost lithium storage capability. Nano-Micro Lett. 12, 171 (2020). https://doi.org/10.1007/s40820-020-00511-4
H. Li, X. Liu, T. Zhai, D. Li, H. Zhou, Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv. Energy Mater. 3, 428–432 (2013). https://doi.org/10.1002/aenm.201200833
S. Lu, T. Zhu, Z. Li, Y. Pang, L. Shi et al., Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance. J. Mater. Chem. A 6, 7005–7013 (2018). https://doi.org/10.1039/C7TA11268H