Multi-Dimensional Composite Frame as Bifunctional Catalytic Medium for Ultra-Fast Charging Lithium–Sulfur Battery
Corresponding Author: Shanglong Peng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 196
Abstract
The shuttle effect of soluble lithium polysulfides (LiPSs) between electrodes and slow reaction kinetics lead to extreme inefficiency and poor high current cycling stability, which limits the commercial application of Li–S batteries. Herein, the multi-dimensional composite frame has been proposed as the modified separator (MCCoS/PP) of Li–S battery, which is composed of CoS2 nanoparticles on alkali-treated MXene nanosheets and carbon nanotubes. Both experiments and theoretical calculations show that bifunctional catalytic activity can be achieved on the MCCoS/PP separator. It can not only promote the liquid–solid conversion in the reduction process, but also accelerate the decomposition of insoluble Li2S in the oxidation process. In addition, LiPSs shuttle effect has been inhibited without a decrease in lithium-ion transference numbers. Simultaneously, the MCCoS/PP separator with good LiPSs adsorption capability arouses redistribution and fixing of active substances, which is also beneficial to the rate performance and cycling stability. The Li–S batteries with the MCCoS/PP separator have a specific capacity of 368.6 mAh g−1 at 20C, and the capacity decay per cycle is only 0.033% in 1000 cycles at 7C. Also, high area capacity (6.34 mAh cm−2) with a high sulfur loading (7.7 mg cm−2) and a low electrolyte/sulfur ratio (7.5 μL mg−1) is achieved.
Highlights:
1 The presence of Ti–O-Co bonds of the multi-dimensional composite frame separator (MCCoS/PP) promotes kinetics and enables bifunctional catalysis.
2 The existence of MCCoS/PP cannot reduce the lithium-ion transference numbers.
3 The Li–S battery with MCCoS/PP achieves super-high rate (368.6 mAh g−1 at 20C) and ultra-low capacity attenuation rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Kim, D.J. Lee, H.G. Jung, Y.K. Sun, J. Hassoun et al., An advanced lithium-sulfur battery. Adv. Funct. Mater. 23(8), 1076–1080 (2013). https://doi.org/10.1002/adfm.201200689
- J. Wang, S. Yi, J. Liu, S. Sun, Y. Liu et al., Suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. ACS Nano 14(8), 9819–9831 (2020). https://doi.org/10.1021/acsnano.0c02241
- B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano-Micro Lett. 14, 40 (2022). https://doi.org/10.1007/s40820-021-00769-2
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- R. Wu, S. Chen, J. Deng, X. Huang, Y. Song et al., Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries. J. Energy Chem. 27(6), 1661–1667 (2018). https://doi.org/10.1016/j.jechem.2018.02.010
- T. Li, X. Bai, U. Gulzar, Y.J. Bai, C. Capiglia et al., A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29(32), 1901730 (2019). https://doi.org/10.1002/adfm.201901730
- M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2020). https://doi.org/10.1002/aenm.201903008
- X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9(32), 1901872 (2019). https://doi.org/10.1002/aenm.201901872
- Z. Cheng, Z. Xiao, H. Pan, S. Wang, R. Wang, Elastic sandwich-Type rGO–VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium–sulfur batteries with high energy density. Adv. Energy Mater. 8(10), 1702337 (2018). https://doi.org/10.1002/aenm.201702337
- S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29(38), 1903712 (2019). https://doi.org/10.1002/adfm.201903712
- S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017
- Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the Synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
- Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31(21), 2100457 (2021). https://doi.org/10.1002/adfm.202100457
- J.Q. Huang, Q. Zhang, F. Wei, Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008
- L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule 3(2), 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
- J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. Infomat 2(6), 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
- K. Liang, A. Tabassum, A. Majed, C. Dun, F. Yang et al., Synthesis of new two-dimensional titanium carbonitride Ti2C0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. Infomat 3(12), 1422–1430 (2021). https://doi.org/10.1002/inf2.12269
- S. Zhang, N. Zhong, X. Zhou, M. Zhang, X. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
- L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
- D. Xiong, S. Huang, D. Fang, D. Yan, G. Li et al., Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium–sulfur batteries. Small 17(34), 2007442 (2021). https://doi.org/10.1002/smll.202007442
- P. Li, H. Lv, Z. Li, X. Meng, Z. Lin et al., The electrostatic attraction and catalytic effect enabled by ionic–covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Adv. Mater. 33(17), 2007803 (2021). https://doi.org/10.1002/adma.202007803
- J. Xia, W. Chen, Y. Yang, X. Guan, T. Yang et al., In-situ growth of ultrathin sulfur microcrystal on MXene-based 3D matrice for flexible lithium–sulfur batteries. EcoMat 4(3), e12183 (2022). https://doi.org/10.1002/eom2.12183
- M. Xu, L. Liang, J. Qi, T. Wu, D. Zhou et al., Intralayered Ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium–sulfur batteries. Small 17(17), 2007446 (2021). https://doi.org/10.1002/smll.202007446
- S. Nam, J. Kim, V.H. Nguyen, M. Mahato, S. Oh et al., Collectively exhaustive MXene and graphene oxide multilayer for suppressing shuttling effect in flexible lithium sulfur battery. Adv. Mater. Technol. 7(5), 2101025 (2022). https://doi.org/10.1002/admt.202101025
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2019). https://doi.org/10.1002/smll.201902085
- X. Tang, X. Guo, W. Wu, G. Wang, 2d metal carbides and nitrides (mxenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 8(33), 1801897 (2018). https://doi.org/10.1002/aenm.201801897
- M. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- C.F. Du, X. Sun, H. Yu, W. Fang, Y. Jing et al., V4C3Tx MXene: a promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. Infomat 2(5), 950–959 (2020). https://doi.org/10.1002/inf2.12078
- P. Zeng, L. Huang, X. Zhang, Y. Han, Y. Chen, Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene Black-CoS2 modified separator: mechanism research and performance improvement. Appl. Surf. Sci. 427, 242–252 (2018). https://doi.org/10.1016/j.apsusc.2017.08.062
- Y. Boyjoo, H. Shi, Q. Tian, S. Liu, J. Liang et al., Engineering nanoreactors for metal–chalcogen batteries. Energy Environ. Sci. 14(2), 540–575 (2021). https://doi.org/10.1039/D0EE03316B
- H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Adv. Funct. Mater. 31(28), 2102314 (2021). https://doi.org/10.1002/adfm.202102314
- H. Shi, X. Zhao, Z. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
- C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium–sulfur batteries. Infomat 2(4), 613–638 (2020). https://doi.org/10.1002/inf2.12080
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
- J. Liu, A. Wei, G. Pan, Q. Xiong, F. Chen et al., Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode. Nano-Micro Lett. 11, 64 (2019). https://doi.org/10.1007/s40820-019-0295-8
- Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan et al., Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 15(51), 1904293 (2019). https://doi.org/10.1002/smll.201904293
- P. Liu, L. Qu, X. Tian, Y. Yi, J. Xia et al., Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium–sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 3, 2708–2718 (2020). https://doi.org/10.1021/acsaem.9b02385
- Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12(3), 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672
- H. Tang, W. Li, L. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li–S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
- Y. Boyjoo, H. Shi, E. Olsson, Q. Cai, Z. Wu et al., Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium–sulfur batteries. Adv. Energy Mater. 10(20), 2000651 (2020). https://doi.org/10.1002/aenm.202000651
- S. Zhang, H. Shi, J. Tang, W. Shi, Z. Wu et al., Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries. Sci. China Mater. 64, 2949–2957 (2021). https://doi.org/10.1007/s40843-021-1688-7
- H. Shi, Y. Dong, F. Zhou, J. Chen, Z. Wu, 2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium–sulfur batteries. J. Phys. Energy 1(1), 015002 (2018). https://doi.org/10.1088/2515-7655/aadef6
- Z. Zhao, H. Su, S. Li, C. Li, Z. Liu et al., Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries. J. Alloys Comput. 838, 155394 (2020). https://doi.org/10.1016/j.jallcom.2020.155394
- D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12(8), 2422–2432 (2019). https://doi.org/10.1039/C9EE00308H
- W. Bao, X. Xie, J. Xu, X. Guo, J. Song et al., Confined sulfur in 3 D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chem. A Eur. J. 23(51), 12613–12619 (2017). https://doi.org/10.1002/chem.201702387
- G. Ai, Q. Hu, L. Zhang, K. Dai, J. Wang et al., Investigation of the nanocrystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 11(37), 33987–33999 (2019). https://doi.org/10.1021/acsami.9b11561
- L. Hong, S. Ju, Y. Yang, J. Zheng, G. Xia et al., Hollow-shell structured porous CoSe2 microspheres encapsulated by MXene nanosheets for advanced lithium storage. Sustain. Energy Fuels 4(5), 2352–2362 (2020). https://doi.org/10.1039/C9SE01271K
- M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu et al., Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl. Mater. Interfaces 9(11), 9662–9668 (2017). https://doi.org/10.1021/acsami.6b16396
- Y. Li, R. Guo, Y. Sun, Y. Wang, W. Liu et al., Synthesis of CoS2 nanops/nitrogen-doped graphitic carbon/carbon nanotubes composite as an advanced anode for sodium-ion batteries. ChemElectroChem 7(13), 2752–2761 (2020). https://doi.org/10.1002/celc.201902053
- C. Ma, Y. Zhang, Y. Feng, N. Wang, L. Zhou et al., Engineering Fe–N coordination structures for fast redox conversion in lithium–sulfur batteries. Adv. Mater. 33, 2100171 (2021). https://doi.org/10.1002/adma.202100171
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33, 2101204 (2021). https://doi.org/10.1002/adma.202101204
- X. Huang, J. Tang, T. Qiu, R. Knibbe, Y. Hu et al., Nanoconfined topochemical conversion from MXene to ultrathin non-layered tin nanomesh toward superior electrocatalysts for lithium-sulfur batteries. Small 17(32), 2101360 (2021). https://doi.org/10.1002/smll.202101360
- J. Xu, L. Yang, S. Cao, J. Wang, Y. Ma et al., Sandwiched cathodes assembled from CoS2-modified carbon clothes for high-performance lithium-sulfur batteries. Adv. Sci. 8(16), 2101019 (2021). https://doi.org/10.1002/advs.202101019
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101250 (2021). https://doi.org/10.1002/aenm.202101250
- W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu et al., Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 15(7), 11619–11633 (2021). https://doi.org/10.1021/acsnano.1c02047
- Z. Xiao, Z. Li, P. Li, X. Meng, Z. Lin et al., Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries. ACS Nano 13(3), 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177
- D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
- Y. Li, P. Zhou, H. Li, T. Gao, L. Zhou et al., A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 4(3), 1900701 (2020). https://doi.org/10.1002/smtd.201900701
- Z. Cao, J. Guo, S. Chen, Z. Zhang, Z. Shi et al., In situ synthesis of an ultrafine heterostructural Nb2O5–NbC polysulfide promotor for high-performance Li–S batteries. J. Mater. Chem. A 9(38), 21867–21876 (2021). https://doi.org/10.1039/D1TA05657C
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled Nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- L.P. Lv, C.F. Guo, W. Sun, Y. Wang, Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium–sulfur batteries. Small 15(3), 1804338 (2019). https://doi.org/10.1002/smll.201804338
- W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, 3D metal Carbide@Mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 26(47), 8746–8756 (2016). https://doi.org/10.1002/adfm.201603704
- Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
- B. Zhang, C. Luo, G. Zhou, Z.Z. Pan, J. Ma et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 31(26), 2100793 (2021). https://doi.org/10.1002/adfm.202100793
- H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
References
J. Kim, D.J. Lee, H.G. Jung, Y.K. Sun, J. Hassoun et al., An advanced lithium-sulfur battery. Adv. Funct. Mater. 23(8), 1076–1080 (2013). https://doi.org/10.1002/adfm.201200689
J. Wang, S. Yi, J. Liu, S. Sun, Y. Liu et al., Suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. ACS Nano 14(8), 9819–9831 (2020). https://doi.org/10.1021/acsnano.0c02241
B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano-Micro Lett. 14, 40 (2022). https://doi.org/10.1007/s40820-021-00769-2
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
R. Wu, S. Chen, J. Deng, X. Huang, Y. Song et al., Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries. J. Energy Chem. 27(6), 1661–1667 (2018). https://doi.org/10.1016/j.jechem.2018.02.010
T. Li, X. Bai, U. Gulzar, Y.J. Bai, C. Capiglia et al., A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29(32), 1901730 (2019). https://doi.org/10.1002/adfm.201901730
M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2020). https://doi.org/10.1002/aenm.201903008
X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9(32), 1901872 (2019). https://doi.org/10.1002/aenm.201901872
Z. Cheng, Z. Xiao, H. Pan, S. Wang, R. Wang, Elastic sandwich-Type rGO–VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium–sulfur batteries with high energy density. Adv. Energy Mater. 8(10), 1702337 (2018). https://doi.org/10.1002/aenm.201702337
S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29(38), 1903712 (2019). https://doi.org/10.1002/adfm.201903712
S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017
Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the Synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31(21), 2100457 (2021). https://doi.org/10.1002/adfm.202100457
J.Q. Huang, Q. Zhang, F. Wei, Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008
L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule 3(2), 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. Infomat 2(6), 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
K. Liang, A. Tabassum, A. Majed, C. Dun, F. Yang et al., Synthesis of new two-dimensional titanium carbonitride Ti2C0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. Infomat 3(12), 1422–1430 (2021). https://doi.org/10.1002/inf2.12269
S. Zhang, N. Zhong, X. Zhou, M. Zhang, X. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
D. Xiong, S. Huang, D. Fang, D. Yan, G. Li et al., Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium–sulfur batteries. Small 17(34), 2007442 (2021). https://doi.org/10.1002/smll.202007442
P. Li, H. Lv, Z. Li, X. Meng, Z. Lin et al., The electrostatic attraction and catalytic effect enabled by ionic–covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Adv. Mater. 33(17), 2007803 (2021). https://doi.org/10.1002/adma.202007803
J. Xia, W. Chen, Y. Yang, X. Guan, T. Yang et al., In-situ growth of ultrathin sulfur microcrystal on MXene-based 3D matrice for flexible lithium–sulfur batteries. EcoMat 4(3), e12183 (2022). https://doi.org/10.1002/eom2.12183
M. Xu, L. Liang, J. Qi, T. Wu, D. Zhou et al., Intralayered Ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium–sulfur batteries. Small 17(17), 2007446 (2021). https://doi.org/10.1002/smll.202007446
S. Nam, J. Kim, V.H. Nguyen, M. Mahato, S. Oh et al., Collectively exhaustive MXene and graphene oxide multilayer for suppressing shuttling effect in flexible lithium sulfur battery. Adv. Mater. Technol. 7(5), 2101025 (2022). https://doi.org/10.1002/admt.202101025
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2019). https://doi.org/10.1002/smll.201902085
X. Tang, X. Guo, W. Wu, G. Wang, 2d metal carbides and nitrides (mxenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 8(33), 1801897 (2018). https://doi.org/10.1002/aenm.201801897
M. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
C.F. Du, X. Sun, H. Yu, W. Fang, Y. Jing et al., V4C3Tx MXene: a promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. Infomat 2(5), 950–959 (2020). https://doi.org/10.1002/inf2.12078
P. Zeng, L. Huang, X. Zhang, Y. Han, Y. Chen, Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene Black-CoS2 modified separator: mechanism research and performance improvement. Appl. Surf. Sci. 427, 242–252 (2018). https://doi.org/10.1016/j.apsusc.2017.08.062
Y. Boyjoo, H. Shi, Q. Tian, S. Liu, J. Liang et al., Engineering nanoreactors for metal–chalcogen batteries. Energy Environ. Sci. 14(2), 540–575 (2021). https://doi.org/10.1039/D0EE03316B
H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Adv. Funct. Mater. 31(28), 2102314 (2021). https://doi.org/10.1002/adfm.202102314
H. Shi, X. Zhao, Z. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium–sulfur batteries. Infomat 2(4), 613–638 (2020). https://doi.org/10.1002/inf2.12080
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
J. Liu, A. Wei, G. Pan, Q. Xiong, F. Chen et al., Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode. Nano-Micro Lett. 11, 64 (2019). https://doi.org/10.1007/s40820-019-0295-8
Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan et al., Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 15(51), 1904293 (2019). https://doi.org/10.1002/smll.201904293
P. Liu, L. Qu, X. Tian, Y. Yi, J. Xia et al., Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium–sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 3, 2708–2718 (2020). https://doi.org/10.1021/acsaem.9b02385
Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12(3), 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672
H. Tang, W. Li, L. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li–S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
Y. Boyjoo, H. Shi, E. Olsson, Q. Cai, Z. Wu et al., Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium–sulfur batteries. Adv. Energy Mater. 10(20), 2000651 (2020). https://doi.org/10.1002/aenm.202000651
S. Zhang, H. Shi, J. Tang, W. Shi, Z. Wu et al., Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries. Sci. China Mater. 64, 2949–2957 (2021). https://doi.org/10.1007/s40843-021-1688-7
H. Shi, Y. Dong, F. Zhou, J. Chen, Z. Wu, 2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium–sulfur batteries. J. Phys. Energy 1(1), 015002 (2018). https://doi.org/10.1088/2515-7655/aadef6
Z. Zhao, H. Su, S. Li, C. Li, Z. Liu et al., Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries. J. Alloys Comput. 838, 155394 (2020). https://doi.org/10.1016/j.jallcom.2020.155394
D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12(8), 2422–2432 (2019). https://doi.org/10.1039/C9EE00308H
W. Bao, X. Xie, J. Xu, X. Guo, J. Song et al., Confined sulfur in 3 D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chem. A Eur. J. 23(51), 12613–12619 (2017). https://doi.org/10.1002/chem.201702387
G. Ai, Q. Hu, L. Zhang, K. Dai, J. Wang et al., Investigation of the nanocrystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 11(37), 33987–33999 (2019). https://doi.org/10.1021/acsami.9b11561
L. Hong, S. Ju, Y. Yang, J. Zheng, G. Xia et al., Hollow-shell structured porous CoSe2 microspheres encapsulated by MXene nanosheets for advanced lithium storage. Sustain. Energy Fuels 4(5), 2352–2362 (2020). https://doi.org/10.1039/C9SE01271K
M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu et al., Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl. Mater. Interfaces 9(11), 9662–9668 (2017). https://doi.org/10.1021/acsami.6b16396
Y. Li, R. Guo, Y. Sun, Y. Wang, W. Liu et al., Synthesis of CoS2 nanops/nitrogen-doped graphitic carbon/carbon nanotubes composite as an advanced anode for sodium-ion batteries. ChemElectroChem 7(13), 2752–2761 (2020). https://doi.org/10.1002/celc.201902053
C. Ma, Y. Zhang, Y. Feng, N. Wang, L. Zhou et al., Engineering Fe–N coordination structures for fast redox conversion in lithium–sulfur batteries. Adv. Mater. 33, 2100171 (2021). https://doi.org/10.1002/adma.202100171
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33, 2101204 (2021). https://doi.org/10.1002/adma.202101204
X. Huang, J. Tang, T. Qiu, R. Knibbe, Y. Hu et al., Nanoconfined topochemical conversion from MXene to ultrathin non-layered tin nanomesh toward superior electrocatalysts for lithium-sulfur batteries. Small 17(32), 2101360 (2021). https://doi.org/10.1002/smll.202101360
J. Xu, L. Yang, S. Cao, J. Wang, Y. Ma et al., Sandwiched cathodes assembled from CoS2-modified carbon clothes for high-performance lithium-sulfur batteries. Adv. Sci. 8(16), 2101019 (2021). https://doi.org/10.1002/advs.202101019
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101250 (2021). https://doi.org/10.1002/aenm.202101250
W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu et al., Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 15(7), 11619–11633 (2021). https://doi.org/10.1021/acsnano.1c02047
Z. Xiao, Z. Li, P. Li, X. Meng, Z. Lin et al., Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries. ACS Nano 13(3), 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177
D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
Y. Li, P. Zhou, H. Li, T. Gao, L. Zhou et al., A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 4(3), 1900701 (2020). https://doi.org/10.1002/smtd.201900701
Z. Cao, J. Guo, S. Chen, Z. Zhang, Z. Shi et al., In situ synthesis of an ultrafine heterostructural Nb2O5–NbC polysulfide promotor for high-performance Li–S batteries. J. Mater. Chem. A 9(38), 21867–21876 (2021). https://doi.org/10.1039/D1TA05657C
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled Nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
L.P. Lv, C.F. Guo, W. Sun, Y. Wang, Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium–sulfur batteries. Small 15(3), 1804338 (2019). https://doi.org/10.1002/smll.201804338
W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, 3D metal Carbide@Mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 26(47), 8746–8756 (2016). https://doi.org/10.1002/adfm.201603704
Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
B. Zhang, C. Luo, G. Zhou, Z.Z. Pan, J. Ma et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 31(26), 2100793 (2021). https://doi.org/10.1002/adfm.202100793
H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447