A Universal Principle to Accurately Synthesize Atomically Dispersed Metal–N4 Sites for CO2 Electroreduction
Corresponding Author: Yang Hou
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 108
Abstract
Atomically dispersed metal–nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction (CO2ER), but they still suffer from the imprecisely control of type and coordination number of N atoms bonded with central metal. Herein, we develop a family of single metal atom bonded by N atoms anchored on carbons (SAs–M–N–C, M = Fe, Co, Ni, Cu) for CO2ER, which composed of accurate pyrrole-type M–N4 structures with isolated metal atom coordinated by four pyrrolic N atoms. Benefitting from atomically coordinated environment and specific selectivity of M–N4 centers, SAs–Ni–N–C exhibits superior CO2ER performance with onset potential of − 0.3 V, CO Faradaic efficiency (F.E.) of 98.5% at − 0.7 V, along with low Tafel slope of 115 mV dec−1 and superior stability of 50 h, exceeding all the previously reported M–N–C electrocatalysts for CO2-to-CO conversion. Experimental results manifest that the different intrinsic activities of M–N4 structures in SAs–M–N–C result in the corresponding sequence of Ni > Fe > Cu > Co for CO2ER performance. An integrated Zn–CO2 battery with Zn foil and SAs–Ni–N–C is constructed to simultaneously achieve CO2-to-CO conversion and electric energy output, which delivers a peak power density of 1.4 mW cm−2 and maximum CO F.E. of 93.3%.
Highlights:
1 A family of SAs–M–N–C consisted of carbon nanosheets supported atomic sites of isolated metal atom coordinated with four pyrrolic N atoms was fabricated.
2 The SAs–Ni–N–C exhibited superior electrochemical CO2 electroreduction (CO2ER) activity and selectivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu et al., Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3(2), 584–594 (2019). https://doi.org/10.1016/j.joule.2018.11.008
- J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 57(31), 9640–9644 (2018). https://doi.org/10.1002/anie.201802055
- Y. Gong, L. Jiao, Y. Qian, C. Pan, L. Zheng, X. Cai, B. Liu, S. Yu, H. Jiang, Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59(7), 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
- X. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo et al., Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. J. Mater. Chem. A 7(44), 25191–25202 (2019). https://doi.org/10.1039/C9TA09681G
- X. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
- W. Xiong, J. Yang, L. Shuai, Y. Hou, M. Qiu, X. Li, M.K.H. Leung, CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction. ChemElectroChem 6(24), 5951–5957 (2019). https://doi.org/10.1002/celc.201901381
- F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2019). https://doi.org/10.1038/s41586-019-1782-2
- Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo et al., Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138(26), 8076–8079 (2016). https://doi.org/10.1021/jacs.6b04746
- M. Luo, Z. Wang, Y. Li, J. Li, F. Li et al., Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10(1), 5814 (2019). https://doi.org/10.1038/s41467-019-13833-8
- H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, C. He, Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141(32), 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907
- W. Chen, Z. Fan, X. Pan, X. Bao, Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J. Am. Chem. Soc. 130(29), 9414–9419 (2008). https://doi.org/10.1021/ja8008192
- W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo et al., Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135(45), 16833–16836 (2013). https://doi.org/10.1021/ja409445p
- Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J. Chen, F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014). https://doi.org/10.1038/ncomms4242
- Y. Chen, C. Li, M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134(49), 19969–19972 (2012). https://doi.org/10.1021/ja309317u
- C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487
- Y. Zhao, J. Liang, C. Wang, J. Ma, G.G. Wallace, Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 8(10), 1702524 (2018). https://doi.org/10.1002/aenm.201702524
- F. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu, W. Xu, Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57(38), 12303–12307 (2018). https://doi.org/10.1002/anie.201805871
- T. Wang, Q. Zhao, Y. Fu, C. Lei, B. Yang et al., Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 3(10), 1900210 (2019). https://doi.org/10.1002/smtd.201900210
- C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia et al., Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 29(10), 1806884 (2019). https://doi.org/10.1002/adfm.201806884
- Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30(13), e1706287 (2018). https://doi.org/10.1002/adma.201706287
- B. Hu, Z. Wu, S. Chu, H. Zhu, H. Liang, J. Zhang, S. Yu, SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 11(8), 2208–2215 (2018). https://doi.org/10.1039/c8ee00673c
- X. Li, W. Bi, M. Chen, Y. Sun, H. Ju et al., Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139(42), 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
- W. Ju, A. Bagger, G. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8(1), 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
- Y. He, X. Zhuang, C. Lei, L. Lei, Y. Hou, Y. Mai, X. Feng, Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019). https://doi.org/10.1016/j.nantod.2018.12.004
- K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu et al., Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3(6), 950–960 (2017). https://doi.org/10.1016/j.chempr.2017.09.014
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140(12), 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang et al., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11(4), 893–903 (2018). https://doi.org/10.1039/c7ee03245e
- Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
- K.-P. Kuhl, E.-R. Cave, D.-N. Abram, T.-F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
- C. Yan, H. Li, Y. Ye, H. Wu, F. Cai et al., Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11(5), 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b
- J. Lu, C. Aydin, N. Browning, B. Gates, Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51(24), 5842–5846 (2012). https://doi.org/10.1002/anie.201107391
- Y. Zhao, K. Yang, Z. Wang, X. Yan, S. Cao et al., Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. 115(12), 2902 (2018). https://doi.org/10.1073/pnas.1722137115
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10(1), 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
- W. Zheng, C. Guo, J. Yang, F. He, B. Yang et al., Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon 150, 52–59 (2019). https://doi.org/10.1016/j.carbon.2019.04.112
- W. Bi, X. Li, R. You, M. Chen, R. Yuan et al., Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30(18), e1706617 (2018). https://doi.org/10.1002/adma.201706617
- T. Lim, G. Jung, J.H. Kim, S.O. Park, J. Park et al., Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 11(1), 412 (2020). https://doi.org/10.1038/s41467-019-14272-1
- S. Liu, H. Yang, S.F. Hung, J. Ding, W. Cai et al., Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59(2), 798–803 (2020). https://doi.org/10.1002/anie.201911995
- C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., FeN4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8(26), 1801912 (2018). https://doi.org/10.1002/aenm.201801912
- H. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni (I) as the active site for electrochemical CO2 reduction. Nat. Energy 3(2), 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12(1), 149–156 (2019). https://doi.org/10.1039/C8EE01841C
- Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
- X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang et al., A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J. Mater. Chem. A 7(3), 965–971 (2019). https://doi.org/10.1039/C8TA11223A
- S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
- R. Yang, J. Xie, Q. Liu, Y. Huang, J. Lv et al., A trifunctional Ni–N/P–O-co doped graphene electrocatalyst enables dual-model rechargeable Zn–CO2/Zn–O2 batteries. J. Mater. Chem. A 7(6), 2575–2580 (2019). https://doi.org/10.1039/c8ta10958c
- J. Xie, X. Wang, J. Lv, Y. Huang, M. Wu, Y. Wang, J. Yao, Reversible aqueous Zinc–CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem. Int. Ed. 57(52), 16996–17001 (2018). https://doi.org/10.1002/anie.201811853
- X. Wang, J. Xie, M.A. Ghausi, J. Lv, Y. Huang et al., Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 31(17), e1807807 (2019). https://doi.org/10.1002/adma.201807807
- W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2019). https://doi.org/10.1002/adfm.201907658
- M. Peng, S. Ci, P. Shao, Z. Wen, P. Cai, Cu3P/C nanocomposites for efficient electrocatalytic CO2 reduction and Zn–CO2 battery. J. Nanosci. Nanotechnol. 19(6), 3232–3236 (2019). https://doi.org/10.1166/jnn.2019.16589
References
C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu et al., Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3(2), 584–594 (2019). https://doi.org/10.1016/j.joule.2018.11.008
J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 57(31), 9640–9644 (2018). https://doi.org/10.1002/anie.201802055
Y. Gong, L. Jiao, Y. Qian, C. Pan, L. Zheng, X. Cai, B. Liu, S. Yu, H. Jiang, Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59(7), 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
X. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo et al., Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. J. Mater. Chem. A 7(44), 25191–25202 (2019). https://doi.org/10.1039/C9TA09681G
X. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
W. Xiong, J. Yang, L. Shuai, Y. Hou, M. Qiu, X. Li, M.K.H. Leung, CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction. ChemElectroChem 6(24), 5951–5957 (2019). https://doi.org/10.1002/celc.201901381
F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2019). https://doi.org/10.1038/s41586-019-1782-2
Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo et al., Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138(26), 8076–8079 (2016). https://doi.org/10.1021/jacs.6b04746
M. Luo, Z. Wang, Y. Li, J. Li, F. Li et al., Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10(1), 5814 (2019). https://doi.org/10.1038/s41467-019-13833-8
H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, C. He, Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141(32), 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907
W. Chen, Z. Fan, X. Pan, X. Bao, Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J. Am. Chem. Soc. 130(29), 9414–9419 (2008). https://doi.org/10.1021/ja8008192
W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo et al., Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135(45), 16833–16836 (2013). https://doi.org/10.1021/ja409445p
Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J. Chen, F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014). https://doi.org/10.1038/ncomms4242
Y. Chen, C. Li, M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134(49), 19969–19972 (2012). https://doi.org/10.1021/ja309317u
C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487
Y. Zhao, J. Liang, C. Wang, J. Ma, G.G. Wallace, Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 8(10), 1702524 (2018). https://doi.org/10.1002/aenm.201702524
F. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu, W. Xu, Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57(38), 12303–12307 (2018). https://doi.org/10.1002/anie.201805871
T. Wang, Q. Zhao, Y. Fu, C. Lei, B. Yang et al., Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 3(10), 1900210 (2019). https://doi.org/10.1002/smtd.201900210
C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia et al., Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 29(10), 1806884 (2019). https://doi.org/10.1002/adfm.201806884
Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30(13), e1706287 (2018). https://doi.org/10.1002/adma.201706287
B. Hu, Z. Wu, S. Chu, H. Zhu, H. Liang, J. Zhang, S. Yu, SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 11(8), 2208–2215 (2018). https://doi.org/10.1039/c8ee00673c
X. Li, W. Bi, M. Chen, Y. Sun, H. Ju et al., Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139(42), 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
W. Ju, A. Bagger, G. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8(1), 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
Y. He, X. Zhuang, C. Lei, L. Lei, Y. Hou, Y. Mai, X. Feng, Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019). https://doi.org/10.1016/j.nantod.2018.12.004
K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu et al., Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3(6), 950–960 (2017). https://doi.org/10.1016/j.chempr.2017.09.014
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140(12), 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang et al., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11(4), 893–903 (2018). https://doi.org/10.1039/c7ee03245e
Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
K.-P. Kuhl, E.-R. Cave, D.-N. Abram, T.-F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
C. Yan, H. Li, Y. Ye, H. Wu, F. Cai et al., Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11(5), 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b
J. Lu, C. Aydin, N. Browning, B. Gates, Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51(24), 5842–5846 (2012). https://doi.org/10.1002/anie.201107391
Y. Zhao, K. Yang, Z. Wang, X. Yan, S. Cao et al., Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. 115(12), 2902 (2018). https://doi.org/10.1073/pnas.1722137115
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10(1), 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
W. Zheng, C. Guo, J. Yang, F. He, B. Yang et al., Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon 150, 52–59 (2019). https://doi.org/10.1016/j.carbon.2019.04.112
W. Bi, X. Li, R. You, M. Chen, R. Yuan et al., Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30(18), e1706617 (2018). https://doi.org/10.1002/adma.201706617
T. Lim, G. Jung, J.H. Kim, S.O. Park, J. Park et al., Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 11(1), 412 (2020). https://doi.org/10.1038/s41467-019-14272-1
S. Liu, H. Yang, S.F. Hung, J. Ding, W. Cai et al., Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59(2), 798–803 (2020). https://doi.org/10.1002/anie.201911995
C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., FeN4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8(26), 1801912 (2018). https://doi.org/10.1002/aenm.201801912
H. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni (I) as the active site for electrochemical CO2 reduction. Nat. Energy 3(2), 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12(1), 149–156 (2019). https://doi.org/10.1039/C8EE01841C
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang et al., A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J. Mater. Chem. A 7(3), 965–971 (2019). https://doi.org/10.1039/C8TA11223A
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
R. Yang, J. Xie, Q. Liu, Y. Huang, J. Lv et al., A trifunctional Ni–N/P–O-co doped graphene electrocatalyst enables dual-model rechargeable Zn–CO2/Zn–O2 batteries. J. Mater. Chem. A 7(6), 2575–2580 (2019). https://doi.org/10.1039/c8ta10958c
J. Xie, X. Wang, J. Lv, Y. Huang, M. Wu, Y. Wang, J. Yao, Reversible aqueous Zinc–CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem. Int. Ed. 57(52), 16996–17001 (2018). https://doi.org/10.1002/anie.201811853
X. Wang, J. Xie, M.A. Ghausi, J. Lv, Y. Huang et al., Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 31(17), e1807807 (2019). https://doi.org/10.1002/adma.201807807
W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2019). https://doi.org/10.1002/adfm.201907658
M. Peng, S. Ci, P. Shao, Z. Wen, P. Cai, Cu3P/C nanocomposites for efficient electrocatalytic CO2 reduction and Zn–CO2 battery. J. Nanosci. Nanotechnol. 19(6), 3232–3236 (2019). https://doi.org/10.1166/jnn.2019.16589