A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities
Corresponding Author: Yang Hou
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 104
Abstract
Cost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction (OER) are critical to the energy crisis and environmental pollution. Herein, we report a superaerophobic three dimensional (3D) heterostructured nanowrinkles of bimetallic selenides consisting of crystalline NiSe2 and NiFe2Se4 grown on NiFe alloy (NiSe2/NiFe2Se4@NiFe) prepared by a thermal selenization procedure. In this unique 3D heterostructure, numerous nanowrinkles of NiSe2/NiFe2Se4 hybrid with a thickness of ~ 100 nm are grown on NiFe alloy in a uniform manner. Profiting by the large active surface area and high electronic conductivity, the superaerophobic NiSe2/NiFe2Se4@NiFe heterostructure exhibits excellent electrocatalytic activity and durability towards OER in alkaline media, outputting the low potentials of 1.53 and 1.54 V to achieve ultra-high current densities of 500 and 1000 mA cm−2, respectively, which is among the most active Ni/Fe-based selenides, and even superior to the benchmark Ir/C catalyst. The in-situ derived FeOOH and NiOOH species from NiSe2/NiFe2Se4@NiFe are deemed to be efficient active sites for OER.
Highlights:
1 A superaerophobic heterostructured nanowrinkles of bimetallic selenides is developed.
2 The 3D heterostructure exhibits excellent activity and stability towards oxygen evolution reaction (OER) in base.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Liang, A.N. Gandi, C. Xia, M.N. Hedhili, D.H. Anjum, U. Schwingenschlögl, H.N. Alshareef, Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2, 1035–1042 (2017). https://doi.org/10.1021/acsenergylett.7b00206
- Y.Z. Xu, C.Z. Yuan, X.P. Chen, Co-Doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction. RSC Adv. 6, 106832–106836 (2016). https://doi.org/10.1039/C6RA23580H
- H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C.W. Chu, Z. Ren, Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 114, 5607–5611 (2017). https://doi.org/10.1073/pnas.1701562114
- J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review. Nano-Micro Lett. 10, 69 (2018). https://doi.org/10.1007/s40820-018-0222-4
- Y. Hou, X. Zhuang, X. Feng, Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1, 1700090 (2017). https://doi.org/10.1002/smtd.201700090
- L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang, Z.M. Zhang, T.B. Lu, Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 5, 1800949 (2018). https://doi.org/10.1002/advs.201800949
- Y. Du, M. Zhang, Z. Wang, Y. Liu, Y. Liu, Y. Geng, L. Wang, A self-templating method for metal-organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 7, 8602–8608 (2019). https://doi.org/10.1039/C9TA00557A
- F. Zhang, Y. Ge, H. Chu, P. Dong, R. Baines, Y. Pei, M. Ye, J. Shen, Dual-functional starfish-like P-doped Co-Ni-S nanosheets supported on nickel foams with enhanced electrochemical performance and excellent stability for overall water splitting. ACS Appl. Mater. Interfaces 10, 7087–7095 (2018). https://doi.org/10.1021/acsami.7b18403
- X. Shi, H. Wang, P. Kannan, J. Ding, S. Ji, F. Liu, H. Gai, R. Wang, Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J. Mater. Chem. A 7, 3344–3352 (2019). https://doi.org/10.1039/C8TA10912E
- J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang, Q. Liu, Reverse microemulsion-assisted synthesis of NiCo2S4 nanoflakes supported on nickel foam for electrochemical overall water splitting. Adv. Mater. Interfaces 5, 1701396 (2018). https://doi.org/10.1002/admi.201701396
- Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang et al., Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 17, 4202–4209 (2017). https://doi.org/10.1021/acs.nanolett.7b01030
- Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.S. Kim, C. Yuan, X. Feng, Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29, 1701589 (2017). https://doi.org/10.1002/adma.201701589
- L. Wang, J. Cao, C. Lei, Q. Dai, B. Yang et al., Strongly coupled 3D N-doped MoO2/Ni3S2 hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading. ACS Appl. Mater. Interfaces 11, 27743–27750 (2019). https://doi.org/10.1021/acsami.9b06502
- K.L. Yan, J.F. Qin, ZZh Liu, B. Dong, J.Q. Chi et al., Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. 334, 922–931 (2018). https://doi.org/10.1016/j.cej.2017.10.074
- X. Shang, K.L. Yan, S.S. Lu, B. Dong, W.K. Gao et al., Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 363, 44–53 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.056
- X. Li, K.L. Yan, Y. Rao, B. Dong, X. Shang et al., Electrochemically activated NiSe-NixSy hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction. Electrochim. Acta 220, 536–544 (2016). https://doi.org/10.1016/j.electacta.2016.10.138
- F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig et al., Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: an excellent bifunctional electrocatalyst for overall water splitting. Adv. Mater. Interfaces 5, 1701507–1701509 (2018). https://doi.org/10.1002/admi.201701507
- C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, Q. Hao, Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B 262, 118245 (2020). https://doi.org/10.1016/j.apcatb.2019.118245
- H. Hu, J. Zhang, B. Guan, X.W.D. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
- W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc-air battery. Adv. Energy Mater. 8, 1800480 (2018). https://doi.org/10.1002/aenm.201800480
- C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., Fe[n.63743]N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8, 1801912 (2018). https://doi.org/10.1002/aenm.201801912
- C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, In situ formation of nanostructured core-shell Cu3N-CuO to promote alkaline water electrolysis. ACS Energy Lett. 4, 747–754 (2019). https://doi.org/10.1021/acsenergylett.9b00091
- C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12, 149–156 (2019). https://doi.org/10.1039/C8EE01841C
- Z. Li, Y. Fang, J. Zhang, X.W.D. Lou, Necklace-like structures composed of Fe3N@C yolk-shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. 30(30), 1800525 (2018). https://doi.org/10.1002/adma.201800525
- W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S.U. Khan, Y. Wang, Y. Li, Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. Dalton Trans. 47, 8787–8793 (2018). https://doi.org/10.1039/C8DT00765A
- H. Sun, Z. Ma, Y. Qiu, H. Liu, G. Gao, Ni@NiO nanowires on nickel foam prepared via "acid hungry" strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small 14, 1800294 (2018). https://doi.org/10.1002/smll.201800294
- G. Liu, Z. Sun, X. Zhang, H. Wang, G. Wang, X. Wu, H. Zhang, H. Zhao, Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting. J. Mater. Chem. A 6, 19201–19209 (2018). https://doi.org/10.1039/C8TA07162D
- K. Akbar, J.H. Jeon, M. Kim, J. Jeong, Y. Yi, S.H. Chun, Bifunctional electrodeposited 3D NiCoSe2/nickel foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustain. Chem. Eng. 6, 7735–7742 (2018). https://doi.org/10.1021/acssuschemeng.8b00644
- G. Wang, H. Wang, T. Chen, Y. Tan, Ni1-xMxSe2 (M = Fe Co, Cu) nanowires as anodes for ammonia-borane electrooxidation and the derived Ni1-xMxSe2-y-OOH ultrathin nanosheets as efficient electrocatalysts for oxygen evolution. J. Mater. Chem. A 7, 16372–16386 (2019). https://doi.org/10.1039/C9TA04681J
- H. Zhang, X. Li, A. Haehnel, V. Naumann, C. Lin et al., Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 28, 1703257 (2018). https://doi.org/10.1002/adfm.201706847
- K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol et al., Ultrathin porous nifev ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1703257 (2018). https://doi.org/10.1002/smll.201703257
- C. Andronescu, S. Seisel, P. Wilde, S. Barwe, J. Masa, Y.T. Chen, E. Ventosa, W. Schuhmann, Influence of temperature and electrolyte concentration on the structure and catalytic oxygen evolution activity of nickel-iron layered double hydroxide. Chem. Eur. J. 24, 13773–13777 (2018). https://doi.org/10.1002/chem.201803165
- B. Ren, D. Li, Q. Jin, H. Cui, C. Wang, In-situ tailoring cobalt nickel molybdenum oxide components for overall water-splitting at high current densities. ChemElectroChem 6, 413–420 (2019). https://doi.org/10.1002/celc.201801386
- J. Zhang, Y. Wang, C. Zhang, H. Gao, L. Lv, L. Han, Z. Zhang, Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 6, 2231–2239 (2018). https://doi.org/10.1021/acssuschemeng.7b03657
- Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29, 1604480 (2017). https://doi.org/10.1002/adma.201604480
- C. Xuan, K. Xia, W. Lei, W. Xia, W. Xiao, L. Chen, H.L. Xin, D. Wang, Composition-dependent electrocatalytic activities of NiFe-based selenides for the oxygen evolution reaction. Electrochim. Acta 291, 64–72 (2018). https://doi.org/10.1016/j.electacta.2018.08.106
- H. Zhou, Y. Wang, R. He, F. Yu, J. Sun et al., One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2015.12.008
- X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang et al., A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J. Mater. Chem. A 7, 965–971 (2019). https://doi.org/10.1039/C8TA11223A
- J.Q. Chi, X. Shang, F. Liang, B. Dong, X. Li et al., Facile synthesis of pyrite-type binary nickel iron diselenides as efficient electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 401, 17–24 (2017). https://doi.org/10.1016/j.apsusc.2016.12.243
- J. Nai, Y. Lu, L. Yu, X. Wang, X.W.D. Lou, Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv. Mater. 29(41), 1703870 (2017). https://doi.org/10.1002/adma.201703870
- J. Zhu, Y. Ni, Phase-controlled synthesis and the phase-dependent HER and OER performances of nickel selenide nanosheets prepared by an electrochemical deposition route. CrystEngComm 20, 3344–3352 (2018). https://doi.org/10.1039/C8CE00381E
- X. Bai, Z. Ren, S. Du, H. Meng, J. Wu, Y. Xue, X. Zhao, H. Fu, In-situ structure reconstitution of NiCo2Px for enhanced electrochemical water oxidation. Sci. Bull. 62, 1510–1518 (2017). https://doi.org/10.1016/j.scib.2017.10.019
- C. Deng, K.H. Wu, J. Scott, S. Zhu, R. Amal, D.W. Wang, Core/shell NiFe nanoalloy with a discrete n-doped graphitic carbon cover for enhanced water oxidation. ChemElectroChem 5, 732–736 (2018). https://doi.org/10.1002/celc.201701285
- B. Qiu, A. Han, D. Jiang, T. Wang, P. Du, Cobalt phosphide nanowire arrays on conductive substrate as an efficient bifunctional catalyst for overall water splitting. ACS Sustain. Chem. Eng. 7, 2360–2369 (2019). https://doi.org/10.1021/acssuschemeng.8b05137
- F. Rong, J. Zhao, Q. Yang, C. Li, Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential. RSC Adv. 6, 74536–74544 (2016). https://doi.org/10.1039/C6RA16450A
- X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324
- Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 9, 478–483 (2016). https://doi.org/10.1039/c5ee03440j
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/ncomms12324
- S. Niu, W.J. Jiang, Z. Wei, T. Tang, J. Ma, J.S. Hu, L.J. Wan, Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 141, 7005–7013 (2019). https://doi.org/10.1021/jacs.9b01214
- G. Liu, M. Wang, Y. Wu, N. Li, F. Zhao, Q. Zhao, J. Li, 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl. Catal. B 260, 118199 (2020). https://doi.org/10.1016/j.apcatb.2019.118199
- C. Wang, H. Yang, Y. Zhang, Q. Wang, NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem. Int. Ed. 58, 6099–6103 (2019). https://doi.org/10.1002/anie.201902446
- X. Cheng, C. Lei, J. Yang, B. Yang, Z. Li et al., Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5, 3866–3872 (2018). https://doi.org/10.1002/celc.201801104
- Y. Fu, H.Y. Yu, C. Jiang, T.H. Zhang, R. Zhan et al., NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv. Funct. Mater. 28, 1705094 (2018). https://doi.org/10.1002/adfm.201705094
- M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). https://doi.org/10.1021/ja405997s
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a
- X. Li, G.-Q. Han, Y.-R. Liu, B. Dong, W.-H. Hu, X. Shang, Y.-M. Chai, C.-G. Liu, NiSe@NiOOH core-shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 8, 20057–20066 (2016). https://doi.org/10.1021/acsami.6b05597
- H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu et al., Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 7, 12765 (2016). https://doi.org/10.1038/ncomms12765
- L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
- F. Yu, L. Yu, I.K. Mishra, Y. Yu, Z.F. Ren, H.Q. Zhou, Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 7, 121–138 (2018). https://doi.org/10.1016/j.mtphys.2018.11.007
- X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultra-high current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
- M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
References
H. Liang, A.N. Gandi, C. Xia, M.N. Hedhili, D.H. Anjum, U. Schwingenschlögl, H.N. Alshareef, Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2, 1035–1042 (2017). https://doi.org/10.1021/acsenergylett.7b00206
Y.Z. Xu, C.Z. Yuan, X.P. Chen, Co-Doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction. RSC Adv. 6, 106832–106836 (2016). https://doi.org/10.1039/C6RA23580H
H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C.W. Chu, Z. Ren, Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 114, 5607–5611 (2017). https://doi.org/10.1073/pnas.1701562114
J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review. Nano-Micro Lett. 10, 69 (2018). https://doi.org/10.1007/s40820-018-0222-4
Y. Hou, X. Zhuang, X. Feng, Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1, 1700090 (2017). https://doi.org/10.1002/smtd.201700090
L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang, Z.M. Zhang, T.B. Lu, Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 5, 1800949 (2018). https://doi.org/10.1002/advs.201800949
Y. Du, M. Zhang, Z. Wang, Y. Liu, Y. Liu, Y. Geng, L. Wang, A self-templating method for metal-organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 7, 8602–8608 (2019). https://doi.org/10.1039/C9TA00557A
F. Zhang, Y. Ge, H. Chu, P. Dong, R. Baines, Y. Pei, M. Ye, J. Shen, Dual-functional starfish-like P-doped Co-Ni-S nanosheets supported on nickel foams with enhanced electrochemical performance and excellent stability for overall water splitting. ACS Appl. Mater. Interfaces 10, 7087–7095 (2018). https://doi.org/10.1021/acsami.7b18403
X. Shi, H. Wang, P. Kannan, J. Ding, S. Ji, F. Liu, H. Gai, R. Wang, Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J. Mater. Chem. A 7, 3344–3352 (2019). https://doi.org/10.1039/C8TA10912E
J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang, Q. Liu, Reverse microemulsion-assisted synthesis of NiCo2S4 nanoflakes supported on nickel foam for electrochemical overall water splitting. Adv. Mater. Interfaces 5, 1701396 (2018). https://doi.org/10.1002/admi.201701396
Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang et al., Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 17, 4202–4209 (2017). https://doi.org/10.1021/acs.nanolett.7b01030
Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.S. Kim, C. Yuan, X. Feng, Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29, 1701589 (2017). https://doi.org/10.1002/adma.201701589
L. Wang, J. Cao, C. Lei, Q. Dai, B. Yang et al., Strongly coupled 3D N-doped MoO2/Ni3S2 hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading. ACS Appl. Mater. Interfaces 11, 27743–27750 (2019). https://doi.org/10.1021/acsami.9b06502
K.L. Yan, J.F. Qin, ZZh Liu, B. Dong, J.Q. Chi et al., Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. 334, 922–931 (2018). https://doi.org/10.1016/j.cej.2017.10.074
X. Shang, K.L. Yan, S.S. Lu, B. Dong, W.K. Gao et al., Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 363, 44–53 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.056
X. Li, K.L. Yan, Y. Rao, B. Dong, X. Shang et al., Electrochemically activated NiSe-NixSy hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction. Electrochim. Acta 220, 536–544 (2016). https://doi.org/10.1016/j.electacta.2016.10.138
F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig et al., Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: an excellent bifunctional electrocatalyst for overall water splitting. Adv. Mater. Interfaces 5, 1701507–1701509 (2018). https://doi.org/10.1002/admi.201701507
C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, Q. Hao, Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B 262, 118245 (2020). https://doi.org/10.1016/j.apcatb.2019.118245
H. Hu, J. Zhang, B. Guan, X.W.D. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc-air battery. Adv. Energy Mater. 8, 1800480 (2018). https://doi.org/10.1002/aenm.201800480
C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., Fe[n.63743]N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8, 1801912 (2018). https://doi.org/10.1002/aenm.201801912
C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, In situ formation of nanostructured core-shell Cu3N-CuO to promote alkaline water electrolysis. ACS Energy Lett. 4, 747–754 (2019). https://doi.org/10.1021/acsenergylett.9b00091
C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12, 149–156 (2019). https://doi.org/10.1039/C8EE01841C
Z. Li, Y. Fang, J. Zhang, X.W.D. Lou, Necklace-like structures composed of Fe3N@C yolk-shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. 30(30), 1800525 (2018). https://doi.org/10.1002/adma.201800525
W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S.U. Khan, Y. Wang, Y. Li, Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. Dalton Trans. 47, 8787–8793 (2018). https://doi.org/10.1039/C8DT00765A
H. Sun, Z. Ma, Y. Qiu, H. Liu, G. Gao, Ni@NiO nanowires on nickel foam prepared via "acid hungry" strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small 14, 1800294 (2018). https://doi.org/10.1002/smll.201800294
G. Liu, Z. Sun, X. Zhang, H. Wang, G. Wang, X. Wu, H. Zhang, H. Zhao, Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting. J. Mater. Chem. A 6, 19201–19209 (2018). https://doi.org/10.1039/C8TA07162D
K. Akbar, J.H. Jeon, M. Kim, J. Jeong, Y. Yi, S.H. Chun, Bifunctional electrodeposited 3D NiCoSe2/nickel foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustain. Chem. Eng. 6, 7735–7742 (2018). https://doi.org/10.1021/acssuschemeng.8b00644
G. Wang, H. Wang, T. Chen, Y. Tan, Ni1-xMxSe2 (M = Fe Co, Cu) nanowires as anodes for ammonia-borane electrooxidation and the derived Ni1-xMxSe2-y-OOH ultrathin nanosheets as efficient electrocatalysts for oxygen evolution. J. Mater. Chem. A 7, 16372–16386 (2019). https://doi.org/10.1039/C9TA04681J
H. Zhang, X. Li, A. Haehnel, V. Naumann, C. Lin et al., Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 28, 1703257 (2018). https://doi.org/10.1002/adfm.201706847
K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol et al., Ultrathin porous nifev ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1703257 (2018). https://doi.org/10.1002/smll.201703257
C. Andronescu, S. Seisel, P. Wilde, S. Barwe, J. Masa, Y.T. Chen, E. Ventosa, W. Schuhmann, Influence of temperature and electrolyte concentration on the structure and catalytic oxygen evolution activity of nickel-iron layered double hydroxide. Chem. Eur. J. 24, 13773–13777 (2018). https://doi.org/10.1002/chem.201803165
B. Ren, D. Li, Q. Jin, H. Cui, C. Wang, In-situ tailoring cobalt nickel molybdenum oxide components for overall water-splitting at high current densities. ChemElectroChem 6, 413–420 (2019). https://doi.org/10.1002/celc.201801386
J. Zhang, Y. Wang, C. Zhang, H. Gao, L. Lv, L. Han, Z. Zhang, Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 6, 2231–2239 (2018). https://doi.org/10.1021/acssuschemeng.7b03657
Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29, 1604480 (2017). https://doi.org/10.1002/adma.201604480
C. Xuan, K. Xia, W. Lei, W. Xia, W. Xiao, L. Chen, H.L. Xin, D. Wang, Composition-dependent electrocatalytic activities of NiFe-based selenides for the oxygen evolution reaction. Electrochim. Acta 291, 64–72 (2018). https://doi.org/10.1016/j.electacta.2018.08.106
H. Zhou, Y. Wang, R. He, F. Yu, J. Sun et al., One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2015.12.008
X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang et al., A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J. Mater. Chem. A 7, 965–971 (2019). https://doi.org/10.1039/C8TA11223A
J.Q. Chi, X. Shang, F. Liang, B. Dong, X. Li et al., Facile synthesis of pyrite-type binary nickel iron diselenides as efficient electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 401, 17–24 (2017). https://doi.org/10.1016/j.apsusc.2016.12.243
J. Nai, Y. Lu, L. Yu, X. Wang, X.W.D. Lou, Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv. Mater. 29(41), 1703870 (2017). https://doi.org/10.1002/adma.201703870
J. Zhu, Y. Ni, Phase-controlled synthesis and the phase-dependent HER and OER performances of nickel selenide nanosheets prepared by an electrochemical deposition route. CrystEngComm 20, 3344–3352 (2018). https://doi.org/10.1039/C8CE00381E
X. Bai, Z. Ren, S. Du, H. Meng, J. Wu, Y. Xue, X. Zhao, H. Fu, In-situ structure reconstitution of NiCo2Px for enhanced electrochemical water oxidation. Sci. Bull. 62, 1510–1518 (2017). https://doi.org/10.1016/j.scib.2017.10.019
C. Deng, K.H. Wu, J. Scott, S. Zhu, R. Amal, D.W. Wang, Core/shell NiFe nanoalloy with a discrete n-doped graphitic carbon cover for enhanced water oxidation. ChemElectroChem 5, 732–736 (2018). https://doi.org/10.1002/celc.201701285
B. Qiu, A. Han, D. Jiang, T. Wang, P. Du, Cobalt phosphide nanowire arrays on conductive substrate as an efficient bifunctional catalyst for overall water splitting. ACS Sustain. Chem. Eng. 7, 2360–2369 (2019). https://doi.org/10.1021/acssuschemeng.8b05137
F. Rong, J. Zhao, Q. Yang, C. Li, Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential. RSC Adv. 6, 74536–74544 (2016). https://doi.org/10.1039/C6RA16450A
X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324
Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 9, 478–483 (2016). https://doi.org/10.1039/c5ee03440j
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/ncomms12324
S. Niu, W.J. Jiang, Z. Wei, T. Tang, J. Ma, J.S. Hu, L.J. Wan, Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 141, 7005–7013 (2019). https://doi.org/10.1021/jacs.9b01214
G. Liu, M. Wang, Y. Wu, N. Li, F. Zhao, Q. Zhao, J. Li, 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl. Catal. B 260, 118199 (2020). https://doi.org/10.1016/j.apcatb.2019.118199
C. Wang, H. Yang, Y. Zhang, Q. Wang, NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem. Int. Ed. 58, 6099–6103 (2019). https://doi.org/10.1002/anie.201902446
X. Cheng, C. Lei, J. Yang, B. Yang, Z. Li et al., Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5, 3866–3872 (2018). https://doi.org/10.1002/celc.201801104
Y. Fu, H.Y. Yu, C. Jiang, T.H. Zhang, R. Zhan et al., NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv. Funct. Mater. 28, 1705094 (2018). https://doi.org/10.1002/adfm.201705094
M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). https://doi.org/10.1021/ja405997s
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a
X. Li, G.-Q. Han, Y.-R. Liu, B. Dong, W.-H. Hu, X. Shang, Y.-M. Chai, C.-G. Liu, NiSe@NiOOH core-shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 8, 20057–20066 (2016). https://doi.org/10.1021/acsami.6b05597
H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu et al., Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 7, 12765 (2016). https://doi.org/10.1038/ncomms12765
L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
F. Yu, L. Yu, I.K. Mishra, Y. Yu, Z.F. Ren, H.Q. Zhou, Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 7, 121–138 (2018). https://doi.org/10.1016/j.mtphys.2018.11.007
X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultra-high current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695