Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden–Popper Perovskite Solar Cells
Corresponding Author: Shaomin Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 35
Abstract
Layer-structured Ruddlesden–Popper (RP) perovskites (RPPs) with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell (PSC) technology. However, two-dimensional (2D) or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy, blocked charge transport and poor film quality, which restrict their photovoltaic performance. Fortunately, these issues can be readily resolved by rationally designing spacer cations of RPPs. This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications. We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics, charge transporting ability and stability of RPPs. Then we brought three aspects to attention for designing organic spacers. Finally, we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs. These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
Highlights:
1 Organic spacers in Ruddlesden–Popper (RP) perovskites play a vital role in tuning crystallization, charge transport and photovoltaic performance for RP perovskite solar cells (PSCs).
2 Fundamental understanding of the functions of molecular structure of organic spacers is the prerequisite to design high-performance PSCs.
3 This review proposes practical design strategies in seeking RP molecular structure to maximize its photovoltaic performance for PSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Hailegnaw, S. Demchyshyn, C. Putz, L.E. Lehner, F. Mayr et al., Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy 9, 677–690 (2024). https://doi.org/10.1038/s41560-024-01500-2
- J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D Ruddlesden-Popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 5, 296–310 (2022). https://doi.org/10.1039/D1EE01695D
- X. Sheng, Y. Li, M. Xia, E. Shi, Quasi-2D halide perovskite crystals and their optoelectronic applications. J. Mater. Chem. A 10, 19169–19183 (2022). https://doi.org/10.1039/D1EE01695D
- X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10, 2001832 (2020). https://doi.org/10.1002/aenm.202001832
- J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- J. Zhao, Z. Zhang, G. Li, M.H. Aldamasy, M. Li et al., Dimensional tuning in lead-free tin halide perovskite for solar cells. Adv. Energy Mater. 13, 2204233 (2023). https://doi.org/10.1002/aenm.202204233
- H. Peng, D. Li, Z. Li, Z. Xing, X. Hu et al., Ionic liquid assisted imprint for efficient and stable quasi-2D perovskite solar cells with controlled phase distribution. Nano-Micro Lett. 15, 91 (2023). https://doi.org/10.1007/s40820-023-01076-8
- M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13, 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
- X. Zhao, T. Liu, Y.-L. Loo, Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34, 2105849 (2022). https://doi.org/10.1002/adma.202105849
- L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- I. Metcalf, S. Sidhik, H. Zhang, A. Agrawal, J. Persaud et al., Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chem. Rev. 123, 9565–9652 (2023). https://doi.org/10.1021/acs.chemrev.3c00214
- G. Bravetti, D. Altamura, B. Paci, A. Generosi, S. Carallo et al., Addressing the role of 2D domains in high-dimensionality Ruddlesden-Popper perovskite for solar cells. Sol. RRL 7, 2200860 (2023). https://doi.org/10.1002/solr.202200860
- J. Gong, M. Hao, Y. Zhang, M. Liu, Y. Zhou, Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: Tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 134, e202112022 (2022). https://doi.org/10.1002/ange.202112022
- M.A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen et al., Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D–3D perovskite solar cells: A review. Adv. Funct. Mater. 32, 2009164 (2022). https://doi.org/10.1002/adfm.202009164
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
- M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 34, 2107211 (2022). https://doi.org/10.1002/adma.202107211
- A. Zhu, H. Gu, W. Li, J. Liao, J. Xia et al., Synergistic passivation with phenylpropylammonium bromide for efficient inverted perovskite solar cells. Small Methods 8, 2300428 (2024). https://doi.org/10.1002/smtd.202300428
- X. Chang, J.-X. Zhong, S. Li, Q. Yao, Y. Fang et al., Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62, e202309292 (2023). https://doi.org/10.1002/anie.202309292
- A.A. Sutanto, P. Caprioglio, N. Drigo, Y.J. Hofstetter, I. Garcia-Benito et al., 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 7, 1903–1916 (2021). https://doi.org/10.1016/j.chempr.2021.04.002
- X. Jiang, J. Zhang, Y. Liu, Z. Wang, X. Liu et al., Dopant-free polymer/2D/3D perovskite solar cells with high stability. Nano Energy 90, 106521 (2021). https://doi.org/10.1016/j.nanoen.2021.106521
- F. Yang, P. Zhang, M.A. Kamarudin, G. Kapil, T. Ma et al., Addition effect of pyreneammonium iodide to methylammonium lead halide perovskite-2D/3D heterostructured perovskite with enhanced stability. Adv. Funct. Mater. 28, 1804856 (2018). https://doi.org/10.1002/adfm.201804856
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- B. Fan, F. Lin, X. Wu, Z. Zhu, A.K.Y. Jen, Selenium-containing organic photovoltaic materials. Acc. Chem. Res. 54, 3906–3916 (2021). https://doi.org/10.1021/acs.accounts.1c00443
- R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron–phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16, 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
- C. Tang, Y. Liu, Y. Zheng, A. Sun, J. Liang et al., Infiltrated 2D/3D heterojunction with tunable electric field landscape for robust inverted perovskite solar cells with over 24% efficiency. Small 20, 2306978 (2024). https://doi.org/10.1002/smll.202306978
- Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim et al., A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15, 3369–3378 (2022). https://doi.org/10.1039/D2EE00759B
- Q. Cheng, B. Wang, G. Huang, Y. Li, X. Li et al., Impact of strain relaxation on 2D Ruddlesden-Popper perovskite solar cells. Angew. Chem. Int. Ed. 61, e202208264 (2022). https://doi.org/10.1002/anie.202208264
- P. Liu, N. Han, W. Wang, R. Ran, W. Zhou et al., High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33, 2002582 (2021). https://doi.org/10.1002/adma.202002582
- W. Kong, F. Zeng, Z. Su, T. Wang, L. Qiao et al., Oriented low-n Ruddlesden-Popper formamidinium-based perovskite for efficient and air stable solar cells. Adv. Energy Mater. 12, 2202704 (2022). https://doi.org/10.1002/aenm.202202704
- H.-H. Huang, T.-A. Yang, L.-Y. Su, C.-H. Chen, Y.-T. Chen et al., Thiophene-based polyelectrolyte boosts high-performance quasi-2D perovskite solar cells with ultralow energy loss. ACS Mater. Lett. 5, 1384–1394 (2023). https://doi.org/10.1021/acsmaterialslett.2c01104
- T. Zhang, Z. Miao, R. Zhao, F. Yuan, S. Peng et al., Optimization charge-carrier properties of 2D ruddlesden–popper perovskite for solar cells. ACS Energy Lett. 9, 2248–2256 (2024). https://doi.org/10.1021/acsenergylett.4c00724
- J. Lu, T. Yang, T. Niu, N. Bu, Y. Zhang et al., Formamidinium-based Ruddlesden-Popper perovskite films fabricated via two-step sequential deposition: Quantum well formation, physical properties and film-based solar cells. Energy Environ. Sci. 15, 1144–1155 (2022). https://doi.org/10.1039/D1EE02851K
- R. Jiang, T. Tian, B. Ke, Z. Kou, P. Müller-Buschbaum et al., Insights into the effects of oriented crystallization on the performance of quasi-two-dimensional perovskite solar cells. Next Mater. 1, 100044 (2023). https://doi.org/10.1016/j.nxmate.2023.100044
- X. Du, Y. Li, Z. Yu, C.M. Oh, Y. Zhang et al., Multi-functional ion-pairing additive for efficient quasi-2D perovskite light-emitting diodes and solar cells. Chem. Eng. J. 487, 150596 (2024). https://doi.org/10.1016/j.cej.2024.150596
- C. Xu, L. Cheng, Z. Li, X. Zheng, S. Shan et al., Fast solidification and slow growth strategy for high-performance quasi-2D perovskite solar cells. Adv. Energy Mater. 13, 2300168 (2023). https://doi.org/10.1002/aenm.202300168
- Q. Qu, J. Zhou, X. Xi, B. Wang, Z. Wan et al., Stable high conversion efficiency of quasi-2D perovskite solar cells via potassium iodide as additive. Chem. Eng. J. 466, 142999 (2023). https://doi.org/10.1016/j.cej.2023.142999
- S. Peng, Z. Miao, Y. Liang, R. Zhao, F. Yuan et al., Governing the dispersion of quasi-2D perovskite phases toward efficient and stable perovskite solar cells. Matter (2024). https://doi.org/10.1016/j.matt.2024.05.047
- R. Zhang, M. Li, Z. Liang, Y. Tang, C. Han et al., Synergistic effect of 4-hydroxypyridine for the vertical orientation of quasi-2D perovskite solar cells with enhanced efficiency. J. Phys. Chem. C 127, 14098–14106 (2023). https://doi.org/10.1021/acs.jpcc.3c02626
- Z. Zhou, L. Li, B. Li, J. Li, T. Liu et al., N-heterocyclic olefin type ionic liquid with innate soft Lewis base character as an effective additive for hybrid quasi-2D and 3D perovskite solar cells. Small 19, 2300013 (2023). https://doi.org/10.1002/smll.202300013
- T. Yue, K. Li, X. Li, N. Ahmad, H. Kang et al., A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability. ACS Nano 17, 14632–14643 (2023). https://doi.org/10.1021/acsnano.3c01908
- A.H. Coffey, S.J. Yang, M. Gómez, B.P. Finkenauer, T. Terlier et al., Controlling crystallization of quasi-2D perovskite solar cells: Incorporating bulky conjugated ligands. Adv. Energy Mater. 13, 2201501 (2023). https://doi.org/10.1002/aenm.202201501
- Y. Sun, S. Ji, C. Yu, W. Liu, K. Wang et al., Regulation of phase arrangement in 2D Ruddlesden-Popper perovskite films via anti-solvent method for efficient solar cells. Sol. Energy Mater. Sol. Cells 262, 112568 (2023). https://doi.org/10.1016/j.solmat.2023.112568
- Z. Pan, D. Peng, X. Zhao, W. Xu, Y. Bao et al., Side-chain functionalized polymer hole-transporting materials with defect passivation effect for highly efficient inverted quasi-2D perovskite solar cells. Adv. Funct. Mater. 33, 2304881 (2023). https://doi.org/10.1002/adfm.202304881
- L. Chen, E.K. Tekelenburg, K. Gahlot, M. Pitaro, J. Xi et al., In situ SnSe deposition as passivation for scalable and stable quasi-2D lead–tin perovskite solar cells. Energy Environ. Sci. 16, 5315–5324 (2023). https://doi.org/10.1039/D3EE02507A
- H. Wang, L. Deng, Y. Pan, X. Zhang, X. Li et al., Green solvent polishing enables highly efficient quasi-2D perovskite solar cells. ACS Appl. Mater. Interfaces 15, 36447–36456 (2023). https://doi.org/10.1021/acsami.3c08182
- Y. Chai, L. Wu, Y. Chen, G. Zhang, X. Guo et al., Tuning hole transport properties and perovskite crystallization via pyridine-based molecules for quasi-2D perovskite solar cells. Small 20, 2311569 (2024). https://doi.org/10.1002/smll.202311569
- Z. Qin, M. Pols, M. Qin, J. Zhang, H. Yan et al., Over-18%-efficiency quasi-2D Ruddlesden-Popper Pb–Sn mixed perovskite solar cells by compositional engineering. ACS Energy Lett. 8, 3188–3195 (2023). https://doi.org/10.1021/acsenergylett.3c00853
- D. Ren, X. Li, Z. Zhang, X. Chen, Z. Liu et al., Enhanced charge transfer in quasi-2D perovskite by formamidinium cation gradient incorporation for efficient and stable solar cells. Small (2024). https://doi.org/10.1002/smll.202401831
- R. Liu, Y. Yu, L. Deng, M. Xu, H. Ren et al., The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chem. Lett. (2024). https://doi.org/10.1016/j.cclet.2024.109545
- H. Yao, T. Wu, Y. Xiao, L. Ding, Y. Hua et al., Regulating the crystallization and carrier dynamics for high-performance quasi-2D tin perovskite solar cells. ACS Mater. Lett. 5, 3203–3211 (2023). https://doi.org/10.1021/acsmaterialslett.3c01145
- H. Wang, Y. Pan, X. Li, Z. Shi, X. Zhang et al., Band alignment boosts over 17% efficiency quasi-2D perovskite solar cells via bottom-side phase manipulation. ACS Energy Lett. 7, 3187–3196 (2022). https://doi.org/10.1021/acsenergylett.2c01453
- G. Zhang, J. Tang, C. Wang, X. Wu, J. Chen et al., Antisolvent effects in green solvent engineering of FA-based quasi-2D Ruddlesden-Popper perovskite films for efficient solar cells. Green Chem. 26, 5347–5355 (2024). https://doi.org/10.1039/D4GC00235K
- J.-H. Kim, C.-M. Oh, I.-W. Hwang, J. Kim, C. Lee et al., Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects. Adv. Mater. 35, 2302143 (2023). https://doi.org/10.1002/adma.202302143
- D. Li, Z. Xing, X. Meng, X. Hu, T. Hu et al., Selection of functional spacer cations for efficient 2D/3D perovskite solar cells. CCS Chem 5, 781–801 (2023). https://doi.org/10.31635/ccschem.023.202202409
- A. Caiazzo, R.A.J. Janssen, High efficiency quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 12, 2202830 (2022). https://doi.org/10.1002/aenm.202202830
- Q. Li, L. Zhou, T. Zhou, Fluorinated quasi 2D perovskite solar cells with improved stability and over 19% efficiency. Adv. Energy Mater. 14, 2400050 (2024). https://doi.org/10.1002/aenm.202400050
- H. Zheng, G. Liu, Y. Wang, F. Chen, X. Dong et al., Directional management self-additive spacer cations for stable 2D Ruddlesden-Popper perovskite solar cells with efficiency over 21%. Adv. Funct. Mater. 34, 2401546 (2024). https://doi.org/10.1002/adfm.202401546
- H. Zhang, R. Wang, L. Yang, Z. Hu, H. Liu et al., Modulating the dipole moment of secondary ammonium spacers for efficient 2D Ruddlesden-Popper perovskite solar cells. Angew. Chem. Int. Ed. 136, e202318206 (2024). https://doi.org/10.1002/ange.202318206
- Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable FA-based quasi-2D Ruddlesden-Popper perovskite solar cells by the incorporation of β-fluorophenylethanamine cations. Adv. Mater. 35, 2210836 (2023). https://doi.org/10.1002/adma.202210836
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- Q. Cao, P. Li, W. Chen, S. Zang, L. Han et al., Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
- C. Wang, X. Dong, F. Chen, G. Liu, H. Zheng, Recent progress of two-dimensional Ruddlesden-Popper perovskites in solar cells. Mater. Chem. Front. 7, 5786–5805 (2023). https://doi.org/10.1039/D3QM00547J
- Y. Gao, X. Dong, Y. Liu, Recent progress of layered perovskite solar cells incorporating aromatic spacers. Nano-Micro Lett. 15, 169 (2023). https://doi.org/10.1007/s40820-023-01141-2
- R. Stanton, D.J. Trivedi, Atomistic description of the impact of spacer selection on two-dimensional 2D perovskites: A case study of 2D Ruddlesden-Popper CsPbI3 analogues. J. Phys. Chem. Lett. 13, 12090–12098 (2022). https://doi.org/10.1021/acs.jpclett.2c03463
- T. Ji, T. Niu, J. Wang, R. Lu, Z. Wen et al., Crystallization regulation of solution-processed two-dimensional perovskite solar cells. J. Mater. Chem. A 10, 13625–13650 (2022). https://doi.org/10.1039/D2TA02574D
- N. Parikh, M.M. Tavakoli, M. Pandey, A. Kalam, D. Prochowicz et al., Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites. Sustain. Energy Fuels 5, 1255–1279 (2021). https://doi.org/10.1039/D0SE01469A
- N. Zhou, B. Huang, M. Sun, Y. Zhang, L. Li et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells. Adv. Energy Mater. 10, 1901566 (2020). https://doi.org/10.1002/aenm.201901566
- S. Chen, N. Shen, L. Zhang, W. Kong, L. Zhang et al., Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. J. Mater. Chem. A 7, 9542–9549 (2019). https://doi.org/10.1039/C8TA12476K
- S. Chen, N. Shen, L. Zhang, L. Zhang, S.H. Cheung et al., Understanding the interplay of binary organic spacer in Ruddlesden-Popper perovskites toward efficient and stable solar cells. Adv. Funct. Mater. 30, 1907759 (2020). https://doi.org/10.1002/adfm.201907759
- S. Tan, N. Zhou, Y. Chen, L. Li, G. Liu et al., Effect of high dipole moment cation on layered 2D organic–inorganic halide perovskite solar cells. Adv. Energy Mater. 9, 1803024 (2019). https://doi.org/10.1002/aenm.201803024
- G. Wu, T. Yang, X. Li, N. Ahmad, X. Zhang et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter 4, 582–599 (2021). https://doi.org/10.1016/j.matt.2020.11.011
- Y. Wang, D. Li, Z. Xing, J. Li, X. Hu et al., Quantum well growth management to smooth the energy transfer pathway for quasi-2D perovskite solar cells. Adv. Funct. (2024). https://doi.org/10.1002/adfm.202401203
- J. Xu, J. Chen, S. Chen, H. Gao, Y. Li et al., Organic spacer engineering of Ruddlesden-Popper perovskite materials toward efficient and stable solar cells. Chem. Eng. J. 453, 139790 (2023). https://doi.org/10.1016/j.cej.2022.139790
- M. Long, T. Zhang, D. Chen, M. Qin, Z. Chen et al., Interlayer interaction enhancement in Ruddlesden-Popper perovskite solar cells toward high efficiency and phase stability. ACS Energy Lett. 4, 1025–1033 (2019). https://doi.org/10.1021/acsenergylett.9b00351
- S. Wang, Y. Liu, J. Zou, J. Jin, Y. Jiang et al., Intermediate phase assisted sequential deposition of reverse-graded quasi-2D alternating cation perovskites for ma-free perovskite solar cells. InfoMat 5, e12396 (2023). https://doi.org/10.1002/inf2.12396
- A. Caiazzo, K. Datta, L. Bellini, M.M. Wienk, R.A. Janssen, Impact of alkyl chain length on the formation of regular- and reverse-graded quasi-2D perovskite thin films. ACS Mater. Lett. 6, 267–274 (2024). https://doi.org/10.1021/acsmaterialslett.3c01073
- X. Dong, Y. Li, X. Wang, Y. Zhou, Y. Zhao et al., Promoting Ruddlesden-Popper perovskite formation by tailoring spacer intramolecular interaction for efficient and stable solar cells. Small 40, 2309218 (2024). https://doi.org/10.1002/smll.202309218
- P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu et al., Dredging the charge-carrier transfer pathway for efficient low-dimensional Ruddlesden-Popper perovskite solar cells. Angew. Chem. Int. Ed. 62, e202217910 (2023). https://doi.org/10.1002/anie.202217910
- H. Zheng, W. Wu, H. Xu, F. Zheng, G. Liu et al., Self-additive low-dimensional Ruddlesden-Popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30, 2000034 (2020). https://doi.org/10.1002/adfm.202000034
- H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun et al., Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14, 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
- Y. Li, H. Cheng, K. Zhao, Z.-S. Wang, 4-(aminoethyl)pyridine as a bifunctional spacer cation for efficient and stable 2D Ruddlesden-Popper perovskite solar cells. ACS Appl. Mater. Interfaces 11, 37804–37811 (2019). https://doi.org/10.1021/acsami.9b13951
- H. Pan, Y. Zheng, W. He, W. Yang, X. Gong et al., Molecular interaction modulating Ruddlesden-Popper tin-based perovskite crystallization. J. Mater. Chem. A 11, 10319–10327 (2023). https://doi.org/10.1039/D3TA00873H
- R. Wang, X. Dong, Q. Ling, Z. Hu, Y. Gao et al., Nucleation and crystallization in 2D Ruddlesden-Popper perovskites using formamidinium-based organic semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 135, e202314690 (2023). https://doi.org/10.1002/ange.202314690
- D. Liang, C. Dong, L. Cai, Z. Su, J. Zang et al., Unveiling crystal orientation in quasi-2D perovskite films by in situ GIWAXS for high-performance photovoltaics. Small 17, 2100972 (2021). https://doi.org/10.1002/smll.202100972
- G. Wu, R. Liang, Z. Zhang, M. Ge, G. Xing et al., 2D hybrid halide perovskites: Structure, properties, and applications in solar cells. Small 17, 2103514 (2021). https://doi.org/10.1002/smll.202103514
- S. Shao, M.A. Loi, Advances and prospective in metal halide Ruddlesen-Popper perovskite solar cells. Adv. Energy Mater. 11, 2003907 (2021). https://doi.org/10.1002/aenm.202003907
- X. Dong, X. Li, X. Wang, Y. Zhao, W. Song et al., Improve the charge carrier transporting in two-dimensional Ruddlesden-Popper perovskite solar cells. Adv. Mater. 36, 2313056 (2024). https://doi.org/10.1002/adma.202313056
- J. Du, M. Zhang, J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells. Int. J. Min. Met. Mater. 29, 49–58 (2022). https://doi.org/10.1007/s12613-021-2341-z
- L.E. Lehner, S. Demchyshyn, K. Frank, A. Minenkov, D.J. Kubicki et al., Elucidating the origins of high preferential crystal orientation in quasi-2D perovskite solar cells. Adv. Mater. 35, 2208061 (2023). https://doi.org/10.1002/adma.202208061
- Z. Lu, X. Xu, Y. Gao, Z. Wu, A. Li et al., The effect of spacer cations on optoelectronic properties of two-dimensional perovskite based on first-principles calculations. Surf. Int. 34, 102343 (2022). https://doi.org/10.1016/j.surfin.2022.102343
- X. Zhao, M.L. Ball, A. Kakekhani, T. Liu, A.M. Rappe et al., A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nat. Commun. 13, 3970 (2022). https://doi.org/10.1038/s41467-022-31567-y
- Q. Wei, F. Zhang, X. Li, F. Wu, Z. Yue et al., Directed assembly of ordered mixed-spacer quasi-2D halide perovskites through homomeric chains of intermolecular bonds. Small 20, 2311969 (2023). https://doi.org/10.1002/smll.202311969
- N. Marchal, E. Mosconi, G. García-Espejo, T.M. Almutairi, C. Quarti et al., Cation engineering for resonant energy level alignment in two-dimensional lead halide perovskites. J. Phys. Chem. Lett. 12, 2528–2535 (2021). https://doi.org/10.1021/acs.jpclett.0c03843
- L. Yan, J. Ma, P. Li, S. Zang, L. Han et al., Charge-carrier transport in quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Mater. 34, 2106822 (2022). https://doi.org/10.1002/adma.202106822
- L. Wang, B. Chang, H. Li, Y. Wu, Z. Liu et al., [PbX6]4− modulation and organic spacer construction for stable perovskite solar cells. Energy Environ. Sci. 15, 4470–4510 (2022). https://doi.org/10.1039/D2EE02218D
- C. Zheng, F. Zheng, Carrier transport in 2D hybrid organic-inorganic perovskites: The role of spacer molecules. J. Phys. Chem. Lett. 15, 1254–1263 (2024). https://doi.org/10.1021/acs.jpclett.3c03357
- L. Chao, T. Niu, Y. Xia, X. Ran, Y. Chen et al., Efficient and stable low-dimensional Ruddlesden-Popper perovskite solar cells enabled by reducing tunnel barrier. J. Phys. Chem. Lett. 10, 1173–1179 (2019). https://doi.org/10.1021/acs.jpclett.9b00276
- Z. Wang, F. Wang, B. Zhao, S. Qu, T. Hayat et al., Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. J. Phys. Chem. Lett. 11, 1120–1127 (2020). https://doi.org/10.1021/acs.jpclett.9b03565
- G.C. Fish, A.T. Terpstra, A. Dučinskas, M. Almalki, L.C. Carbone et al., The impact of spacer size on charge transfer excitons in Dion-Jacobson and Ruddlesden-Popper layered hybrid perovskites. J. Phys. Chem. Lett. 14, 6248–6254 (2023). https://doi.org/10.1021/acs.jpclett.3c01125
- M. Chen, X. Dong, Y. Xin, Y. Gao, Q. Fu et al., Crystal growth regulation of Ruddlesden-Popper perovskites via self-assembly of semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 63, e202315943 (2024). https://doi.org/10.1002/anie.202315943
- J. Yang, T. He, M. Li, G. Li, H. Liu et al., π-conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7, 4451–4458 (2022). https://doi.org/10.1021/acsenergylett.2c02219
- J. Guo, Z. Shi, J. Xia, K. Wang, Q. Wei et al., Phase tailoring of Ruddlesden-Popper perovskite at fixed large spacer cation ratio. Small 17, 2100560 (2021). https://doi.org/10.1002/smll.202100560
- W. Fu, T. Zhao, H. Liu, F. Lin, L. Zuo et al., High-efficiency quasi-2D perovskite solar cells incorporating 2,2’-biimidazolium cation. Sol. RRL 5, 2000700 (2021). https://doi.org/10.1002/solr.202000700
- H. Yao, Z. Li, C. Shi, Y. Xu, Q. Wang et al., A novel multiple-ring aromatic spacer based 2D Ruddlesden-Popper CsPbI3 solar cell with record efficiency beyond 16%. Adv. Funct. Mater. 32, 2205029 (2022). https://doi.org/10.1002/adfm.202205029
- Y. Zhang, M. Sun, N. Zhou, B. Huang, H. Zhou, Electronic tunability and mobility anisotropy of quasi-2D perovskite single crystals with varied spacer cations. J. Phys. Chem. Lett. 11, 7610–7616 (2020). https://doi.org/10.1021/acs.jpclett.0c02274
- Z. Wang, L. Liu, X. Liu, D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022). https://doi.org/10.1016/j.cej.2021.134367
- H. Di, Z. Xing, X. Xie, Y. Zhao, B.-H. Li, Effects of the phase spatial distribution on the intrinsic carrier dynamics in quasi-2D perovskite films. ACS Mater. Lett. 6, 2223–2230 (2024). https://doi.org/10.1021/acsmaterialslett.4c00038
- B.-H. Li, H. Di, H. Li, J.-C. Wang, W. Zeng et al., Unveiling the intrinsic photophysics in quasi-two-dimensional perovskites. J. Am. Chem. Soc. 146, 6974–6982 (2024). https://doi.org/10.1021/jacs.3c14737
- C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
- D. Wang, S.-C. Chen, Q. Zheng, Enhancing the efficiency and stability of two-dimensional Dion-Jacobson perovskite solar cells using a fluorinated diammonium spacer. J. Mater. Chem. A 9, 11778–11786 (2021). https://doi.org/10.1039/D1TA01447A
- J. Byeon, S.H. Cho, J. Jiang, J. Jang, C. Katan et al., Structural isomer of fluorinated Ruddlesden-Popper perovskites toward efficient and stable 2D/3D perovskite solar cells. ACS Appl. Mater. Interfaces 15, 27853–27864 (2023). https://doi.org/10.1021/acsami.3c01754
- J. Ovčar, T.L. Leung, L. Grisanti, Ž Skoko, M. Vrankić et al., Mixed halide ordering as a tool for the stabilization of Ruddlesden-Popper structures. Chem. Mater. 34, 4286–4297 (2022). https://doi.org/10.1021/acs.chemmater.1c03815
- H. Yao, Z. Li, G. Peng, Y. Lei, Q. Wang et al., Novel PHA organic spacer increases interlayer interactions for high efficiency in 2D Ruddlesden-Popper CsPbI3 solar cells. ACS Appl. Mater. Interfaces 14, 35780–35788 (2022). https://doi.org/10.1021/acsami.2c09183
- Z. Fang, X. Hou, Y. Zheng, Z. Yang, K.-C. Chou et al., First-principles optimization of out-of-plane charge transport in Dion-Jacobson CsPbI3 perovskites with π-conjugated aromatic spacers. Adv. Funct. Mater. 31, 2102330 (2021). https://doi.org/10.1002/adfm.202102330
- J. Xi, I. Spanopoulos, K. Bang, J. Xu, H. Dong et al., Alternative organic spacers for more efficient perovskite solar cells containing Ruddlesden-Popper phases. J. Am. Chem. Soc. 142, 19705–19714 (2020). https://doi.org/10.1021/jacs.0c09647
- M. Mittal, R. Garg, A. Jana, Recent progress in the stabilization of low band-gap black-phase iodide perovskite solar cells. Dalton T. 52, 11750–11767 (2023). https://doi.org/10.1039/D3DT01581E
- Z. Xu, L. Li, X. Dong, D. Lu, R. Wang et al., CsPbI3-based phase-stable 2D Ruddlesden-Popper perovskites for efficient solar cells. Nano Lett. 22, 2874–2880 (2022). https://doi.org/10.1021/acs.nanolett.2c00002
- C. Liu, R. Liu, Z. Bi, Y. Yu, G. Xu et al., Multiple-ring aromatic spacer cation tailored interlayer interaction for efficient and air-stable Ruddlesden-Popper perovskite solar cells. Sol. RRL 5, 2100495 (2021). https://doi.org/10.1002/solr.202100495
- J. Wu, J. Shi, Y. Li, H. Li, H. Wu et al., Quantifying the interface defect for the stability origin of perovskite solar cells. Adv. Energy Mater. 9, 1901352 (2019). https://doi.org/10.1002/aenm.201901352
- A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 9, 1901489 (2019). https://doi.org/10.1002/aenm.201901489
- K. Li, X. Gan, R. Zheng, H. Zhang, M. Xiang et al., Comparative analysis of thiophene-based interlayer cations for enhanced performance in 2D Ruddlesden-Popper perovskite solar cells. ACS Appl. Mater. Interfaces 16, 7161–7170 (2024). https://doi.org/10.1021/acsami.3c16640
- B. Primera Darwich, N. Guijarro, H.-H. Cho, L. Yao, L. Monnier et al., Benzodithiophene-based spacers for layered and quasi-layered lead halide perovskite solar cells. ChemSusChem 14, 3001–3009 (2021). https://doi.org/10.1002/cssc.202100992
- W. Guo, J. Li, H. Cen, J. Duan, Y. Yang et al., Self-assembled molecules fostering ordered spatial heterogeneity for efficient Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202401303
- B. Wang, Q. Cheng, G. Huang, Y. Yue, W. Zhang et al., Sulfonium-cations-assisted intermediate engineering for quasi-2D perovskite solar cells. Adv. Mater. 35, 2207345 (2023). https://doi.org/10.1002/adma.202207345
- J. Zhang, J. Wu, Y. Zhao, Y. Zou, A. Barabash et al., Revealing the crystallization and thermal-induced phase evolution in aromatic-based quasi-2D perovskites using a robot-based platform. ACS Energy Lett. 8, 3595–3603 (2023). https://doi.org/10.1021/acsenergylett.3c01508
- C.J. Dahlman, R.M. Kennard, P. Paluch, N.R. Venkatesan, M.L. Chabinyc et al., Dynamic motion of organic spacer cations in Ruddlesden-Popper lead iodide perovskites probed by solid-state nmr spectroscopy. Chem. Mater. 33, 642–656 (2021). https://doi.org/10.1021/acs.chemmater.0c03958
- Y. Miao, Y. Chen, H. Chen, X. Wang, Y. Zhao, Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chem. Sci. 12, 7231–7247 (2021). https://doi.org/10.1039/D1SC01171E
- Z. Gozukara Karabag, A. Karabag, U. Gunes, X.-X. Gao, O.A. Syzgantseva et al., Tuning 2D perovskite passivation: Impact of electronic and steric effects on the performance of 3D/2D perovskite solar cells. Adv. Energy Mater. 13, 2302038 (2023). https://doi.org/10.1002/aenm.202302038
- L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15, 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
- Z. Li, N. Liu, K. Meng, Z. Liu, Y. Hu et al., A new organic interlayer spacer for stable and efficient 2D Ruddlesden-Popper perovskite solar cells. Nano Lett. 19, 5237–5245 (2019). https://doi.org/10.1021/acs.nanolett.9b01652
- H. Wang, Z. Dong, H. Liu, W. Li, L. Zhu et al., Roles of organic molecules in inorganic CsPbX3 perovskite solar cells. Adv. Energy Mater. 11, 2002940 (2021). https://doi.org/10.1002/aenm.202002940
- J. Zhang, J. Wu, S. Langner, B. Zhao, Z. Xie et al., Exploring the steric hindrance of alkylammonium cations in the structural reconfiguration of quasi-2D perovskite materials using a high-throughput experimental platform. Adv. Funct. Mater. 32, 2207101 (2022). https://doi.org/10.1002/adfm.202207101
- F. Li, Y. Xie, Y. Hu, M. Long, Y. Zhang et al., Effects of alkyl chain length on crystal growth and oxidation process of two-dimensional tin halide perovskites. ACS Energy Lett. 5, 1422–1429 (2020). https://doi.org/10.1021/acsenergylett.0c00286
- C. Chen, L. Gao, W. Gao, C. Ge, X. Du et al., Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019). https://doi.org/10.1038/s41467-019-09942-z
- L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 132, 6504–6512 (2020). https://doi.org/10.1002/ange.201915912
- Y. Qin, F.-F. Gao, S. Qian, T.-M. Guo, Y.-J. Gong et al., Multifunctional chiral 2D lead halide perovskites with circularly polarized photoluminescence and piezoelectric energy harvesting properties. ACS Nano 16, 3221–3230 (2022). https://doi.org/10.1021/acsnano.1c11101
- T. Liu, W. Shi, W. Tang, Z. Liu, B.C. Schroeder et al., High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films. ACS Nano 16, 2682–2689 (2022). https://doi.org/10.1021/acsnano.1c09521
- J. Son, S. Ma, Y.-K. Jung, J. Tan, G. Jang et al., Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite. Nat. Commun. 14, 3124 (2023). https://doi.org/10.1038/s41467-023-38927-2
- A. Shpatz Dayan, M. Wierzbowska, L. Etgar, Ruddlesden-Popper 2D chiral perovskite-based solar cells. Small Struct. 3, 2200051 (2022). https://doi.org/10.1002/sstr.202200051
- L. Scalon, Y. Vaynzof, A.F. Nogueira, C.C. Oliveira, How organic chemistry can affect perovskite photovoltaics. Cell Rep. Phys. Sci. 4, 1010358 (2023). https://doi.org/10.1016/j.xcrp.2023.101358
- Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang et al., Spacer cation tuning enables vertically oriented and graded quasi-2D perovskites for efficient solar cells. Adv. Funct. Mater. 31, 2008404 (2021). https://doi.org/10.1002/adfm.202008404
- Q. Fu, M. Chen, Q. Li, H. Liu, R. Wang et al., Selenophene-based 2D Ruddlesden-Popper perovskite solar cells with an efficiency exceeding 19%. J. Am. Chem. Soc. 145, 21687–21695 (2023). https://doi.org/10.1021/jacs.3c08604
- G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023). https://doi.org/10.1126/science.add7331
- S. Zhao, J. Xie, G. Cheng, Y. Xiang, H. Zhu et al., General nondestructive passivation by 4-fluoroaniline for perovskite solar cells with improved performance and stability. Small 14, 1803350 (2018). https://doi.org/10.1002/smll.201803350
- H. Pan, X. Zhao, X. Gong, Y. Shen, M. Wang, Atomic-scale tailoring of organic cation of layered Ruddlesden-Popper perovskite compounds. J. Phys. Chem. Lett. 10, 1813–1819 (2019). https://doi.org/10.1021/acs.jpclett.9b00479
- H. Su, L. Zhang, Y. Liu, Y. Hu, B. Zhang et al., Polarity regulation for stable 2D-perovskite-encapsulated high-efficiency 3D-perovskite solar cells. Nano Energy 95, 106965 (2022). https://doi.org/10.1016/j.nanoen.2022.106965
- Y. Zeng, R. Wang, K. Chen, X. Gao, X. Liu et al., Molecular engineering of 2D spacer cations to achieve efficient and stable 2D/3D perovskite solar cells. Sol. RRL 8, 2301077 (2024). https://doi.org/10.1002/solr.202301077
- C. Shi, Z. Li, K. Kang, X. Zhou, H. Wang et al., Fluorosubstitution boosting 2D Ruddlesden-Popper CsPbI3 with high stability and efficiency. Sol. RRL 6, 2200694 (2022). https://doi.org/10.1002/solr.202200694
- Y. Yan, S. Yu, A. Honarfar, T. Pullerits, K. Zheng et al., Benefiting from spontaneously generated 2D/3D bulk-heterojunctions in Ruddlesden−Popper perovskite by incorporation of S-bearing spacer cation. Adv. Sci. 6, 1900548 (2019). https://doi.org/10.1002/advs.201900548
- Q. Zhou, Q. Xiong, Z. Zhang, J. Hu, F. Lin et al., Fluoroaromatic cation-assisted planar junction perovskite solar cells with improved VOC and stability: The role of fluorination position. Sol. RRL 4, 2000107 (2020). https://doi.org/10.1002/solr.202000107
- Y. Liu, S. Han, J. Wang, Y. Ma, W. Guo et al., Spacer cation alloying of a homoconformational carboxylate trans isomer to boost in-plane ferroelectricity in a 2D hybrid perovskite. J. Am. Chem. Soc. 143, 2130–2137 (2021). https://doi.org/10.1021/jacs.0c12513
- M.A. Hope, T. Nakamura, P. Ahlawat, A. Mishra, M. Cordova et al., Nanoscale phase segregation in supramolecular π-templating for hybrid perovskite photovoltaics from nmr crystallography. J. Am. Chem. Soc. 143, 1529–1538 (2021). https://doi.org/10.1021/jacs.0c11563
- A.M. Najarian, M. Vafaie, R. Sabatini, S. Wang, P. Li et al., 2D hybrid perovskites employing an organic cation paired with a neutral molecule. J. Am. Chem. Soc. 145, 27242–27247 (2023). https://doi.org/10.1021/jacs.3c12172
- A. Morteza Najarian, F. Dinic, H. Chen, R. Sabatini, C. Zheng et al., Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023). https://doi.org/10.1038/s41586-023-06209-y
- W. Yu, Y. Zou, H. Wang, S. Qi, C. Wu et al., Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation. Chem. Soc. Rev. 53, 1769–1788 (2024). https://doi.org/10.1039/D3CS00728F
- W. Fu, H. Liu, X. Shi, L. Zuo, X. Li et al., Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells. Adv. Funct. Mater. 29, 1900221 (2019). https://doi.org/10.1002/adfm.201900221
- Y. Dong, D. Lu, Z. Xu, H. Lai, Y. Liu, 2-Thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis. Adv. Energy Mater. 10, 2000694 (2020). https://doi.org/10.1002/aenm.202000694
- M. Kundar, S. Bhandari, S. Chung, K. Cho, S.K. Sharma et al., Surface passivation by sulfur-based 2D (TEA)2PbI4 for stable and efficient perovskite solar cells. ACS Omega 8, 12842–12852 (2023). https://doi.org/10.1021/acsomega.2c08126
- C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin et al., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021). https://doi.org/10.1016/j.nanoen.2021.106608
- Y. Xu, K.-J. Jiang, P. Wang, W.-M. Gu, G.-H. Yu et al., Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New J. Chem. 46, 2259–2265 (2022). https://doi.org/10.1039/D1NJ05178D
- Y. Zheng, S.-C. Chen, Y. Ma, Q. Zheng, Furfurylammonium as a spacer for efficient 2D Ruddlesden-Popper perovskite solar cells. Sol. RRL 6, 2200221 (2022). https://doi.org/10.1002/solr.202200221
- H. Tsuji, E. Nakamura, Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc. Chem. Res. 50, 396–406 (2017). https://doi.org/10.1021/acs.accounts.6b00595
- L.A. Illicachi, J. Urieta-Mora, C. Momblona, A. Molina-Ontoria, J. Calbo et al., Selenophene-based hole-transporting materials for perovskite solar cells. ChemPlusChem 86, 1006–1013 (2021). https://doi.org/10.1002/cplu.202100208
- R. Wang, X. Dong, Q. Ling, Q. Fu, Z. Hu et al., Spacer engineering for 2D Ruddlesden-Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett. 7, 3656–3665 (2022). https://doi.org/10.1021/acsenergylett.2c01800
- M.-H. Jung, Highly stable thiophene perovskite enabled by an oxygen-containing moiety for efficient photovoltaics. J. Phys. Chem. C 125, 25430–25445 (2021). https://doi.org/10.1021/acs.jpcc.1c08095
- Y. Guo, M. Sun, W. Yang, S. Yuan, H. Xiong et al., Enhanced charge transport by regulating the electronic structure in 2D tin-based perovskite solar cells. J. Phys. Chem. C 126, 9425–9436 (2022). https://doi.org/10.1021/acs.jpcc.2c02830
- D. Fu, Z. Hou, Y. He, H. Wu, S. Wu et al., Formamidinium perovskitizers and aromatic spacers synergistically building bilayer Dion-Jacobson perovskite photoelectric bulk crystals. ACS Appl. Mater. Interfaces 14, 11690–11698 (2022). https://doi.org/10.1021/acsami.2c00806
- X. Li, W. Ke, B. Traoré, P. Guo, I. Hadar et al., Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
- S. Ahmad, M. Guan, J. Kim, X. He, Z. Ren et al., High-quality pure-phase MA-free formamdinium Dion-Jacobson 2D perovskites for stable unencapsulated photovoltaics. Adv. Energy Mater. 14, 2302774 (2024). https://doi.org/10.1002/aenm.202302774
- T. He, S. Li, Y. Jiang, C. Qin, M. Cui et al., Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11, 1672 (2020). https://doi.org/10.1038/s41467-020-15451-1
- E. Mahal, S.C. Mandal, B. Pathak, Band edge engineering of 2D perovskite structures through spacer cation engineering for solar cell applications. J. Phys. Chem. C 126, 9937–9947 (2022). https://doi.org/10.1021/acs.jpcc.2c01840
- C. Liu, Z. Fang, J. Sun, Q. Lou, J. Ge et al., Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett. 5, 3617–3627 (2020). https://doi.org/10.1021/acsenergylett.0c01784
- Y. Lao, S. Yang, W. Yu, H. Guo, Y. Zou et al., Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 9, 2105307 (2022). https://doi.org/10.1002/advs.202105307
- Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Nano 14, 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
- W. Yang, Y. Zhan, F. Yang, Y. Li, Hot-casting and anti-solvent free fabrication of efficient and stable two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Appl. Mater. Interfaces 13, 61039–61046 (2021). https://doi.org/10.1021/acsami.1c17169
- X. Dong, M. Chen, R. Wang, Q. Ling, Z. Hu et al., Quantum confinement breaking: Orbital coupling in 2D Ruddlesden-Popper perovskites enables efficient solar cells. Adv. Energy Mater. 13, 2301006 (2023). https://doi.org/10.1002/aenm.202301006
- R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao et al., Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018). https://doi.org/10.1002/adma.201804771
- T. Liu, J. Guo, D. Lu, Z. Xu, Q. Fu et al., Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15, 7811–7820 (2021). https://doi.org/10.1021/acsnano.1c02191
- X. Li, W. Hu, Y. Shang, X. Yu, X. Wang et al., Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability. J. Energy Chem. 66, 680–688 (2022). https://doi.org/10.1016/j.jechem.2021.09.026
- Z. Wang, X. Liu, H. Ren, L. Liu, X. Tang et al., Insight into the enhanced charge transport in quasi-2D perovskite via fluorination of ammonium cations for photovoltaic applications. ACS Appl. Mater. Interfaces 14, 7917–7925 (2022). https://doi.org/10.1021/acsami.1c21715
- H. Zhang, Z. Wang, H. Wang, X. Yao, F. Wang et al., Strain relaxation and phase regulation in quasi-2D perovskites for efficient solar cells. J. Mater. Chem. A 11, 15301–15310 (2023). https://doi.org/10.1039/D3TA01935G
- X. Lai, W. Li, X. Gu, H. Chen, Y. Zhang et al., High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem. Eng. J. 427, 130949 (2022). https://doi.org/10.1016/j.cej.2021.130949
- G. Liu, X.-X. Xu, S. Xu, L. Zhang, H. Xu et al., Passivation effect of halogenated benzylammonium as a second spacer cation for improved photovoltaic performance of quasi-2D perovskite solar cells. J. Mater. Chem. A 8, 5900–5906 (2020). https://doi.org/10.1039/C9TA14139A
- J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang et al., Fluorinated low-dimensional Ruddlesden-Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31, 1901673 (2019). https://doi.org/10.1002/adma.201901673
- S. Lu, K. Li, R. Zhen, M. Xiang, X. Gan et al., Incorporating formamidinium into 4-fluoro-phenethylammonium based quasi-2D perovskite films and their application in n-i-p perovskite solar cells. Opt. Mater. 136, 113453 (2023). https://doi.org/10.1016/j.optmat.2023.113453
- J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
- L. Sun, X. Cao, J. Wang, X. Tan, H. Huang et al., Synergistic effect of dual anions for efficient and stable quasi 2D perovskite solar cell. J. Alloy. Compd. 918, 165725 (2022). https://doi.org/10.1016/j.jallcom.2022.165725
- G. Yan, G. Sui, W. Chen, K. Su, Y. Feng et al., Selectively fluorinated benzylammonium-based spacer cation enables graded quasi-2D perovskites for efficient and stable solar cells. Chem. Mater. 34, 3346–3356 (2022). https://doi.org/10.1021/acs.chemmater.2c00146
- H. Lai, Z. Xu, Z. Shao, B. Cui, B. Tian et al., Rational regulation of organic spacer cations for quasi-2D perovskite solar cells. Sol. RRL 7, 2300132 (2023). https://doi.org/10.1002/solr.202300132
- Q. Li, Y. Dong, G. Lv, T. Liu, D. Lu et al., Fluorinated aromatic formamidinium spacers boost efficiency of layered Ruddlesden-Popper perovskite solar cells. ACS Energy Lett. 6, 2072–2080 (2021). https://doi.org/10.1021/acsenergylett.1c00620
- F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson et al., Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141, 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
- T. Niu, J. Lu, X. Jia, Z. Xu, M.-C. Tang et al., Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells. Nano Lett. 19, 7181–7190 (2019). https://doi.org/10.1021/acs.nanolett.9b02781
- L. Wang, Q. Zhou, Z. Zhang, W. Li, X. Wang et al., A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells: The more fluorination the better? J. Energy Chem. 64, 179–189 (2022). https://doi.org/10.1016/j.jechem.2021.04.063
- J. Hu, I.W.H. Oswald, H. Hu, S.J. Stuard, M.M. Nahid et al., Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. ACS Mater. Lett. 1, 171–176 (2019). https://doi.org/10.1021/acsmaterialslett.9b00102
- X. Dong, Y. Tang, Y. Li, X. Li, Y. Zhao et al., Boosting MA-based two-dimensional Ruddlesen-Popper perovskite solar cells by incorporating a binary spacer. J. Energy Chem. 95, 348–356 (2024). https://doi.org/10.1016/j.jechem.2024.03.047
- B.-E. Cohen, M. Wierzbowska, L. Etgar, High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustain. Energy Fuels 1, 1935–1943 (2017). https://doi.org/10.1039/C7SE00311K
- H. Xiang, P. Liu, R. Ran, W. Wang, W. Zhou et al., Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renew. Sust. Energy Rev. 166, 112614 (2022). https://doi.org/10.1016/j.rser.2022.112614
- J. Meng, D. Song, D. Huang, Y. Li, Y. Li et al., Enhanced Voc of two-dimensional ruddlesden–popper perovskite solar cells using binary synergetic organic spacer cations. Phys. Chem. Chem. Phys. 22, 54–61 (2020). https://doi.org/10.1039/C9CP04018H
- P. Cheng, Z. Xu, J. Li, Y. Liu, Y. Fan et al., Highly efficient Ruddlesden-Popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Lett. 3, 1975–1982 (2018). https://doi.org/10.1021/acsenergylett.8b01153
- Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7, 1700162 (2017). https://doi.org/10.1002/aenm.201700162
- H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32, 2001470 (2020). https://doi.org/10.1002/adma.202001470
References
B. Hailegnaw, S. Demchyshyn, C. Putz, L.E. Lehner, F. Mayr et al., Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy 9, 677–690 (2024). https://doi.org/10.1038/s41560-024-01500-2
J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D Ruddlesden-Popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 5, 296–310 (2022). https://doi.org/10.1039/D1EE01695D
X. Sheng, Y. Li, M. Xia, E. Shi, Quasi-2D halide perovskite crystals and their optoelectronic applications. J. Mater. Chem. A 10, 19169–19183 (2022). https://doi.org/10.1039/D1EE01695D
X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10, 2001832 (2020). https://doi.org/10.1002/aenm.202001832
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
J. Zhao, Z. Zhang, G. Li, M.H. Aldamasy, M. Li et al., Dimensional tuning in lead-free tin halide perovskite for solar cells. Adv. Energy Mater. 13, 2204233 (2023). https://doi.org/10.1002/aenm.202204233
H. Peng, D. Li, Z. Li, Z. Xing, X. Hu et al., Ionic liquid assisted imprint for efficient and stable quasi-2D perovskite solar cells with controlled phase distribution. Nano-Micro Lett. 15, 91 (2023). https://doi.org/10.1007/s40820-023-01076-8
M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13, 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
X. Zhao, T. Liu, Y.-L. Loo, Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34, 2105849 (2022). https://doi.org/10.1002/adma.202105849
L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
I. Metcalf, S. Sidhik, H. Zhang, A. Agrawal, J. Persaud et al., Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chem. Rev. 123, 9565–9652 (2023). https://doi.org/10.1021/acs.chemrev.3c00214
G. Bravetti, D. Altamura, B. Paci, A. Generosi, S. Carallo et al., Addressing the role of 2D domains in high-dimensionality Ruddlesden-Popper perovskite for solar cells. Sol. RRL 7, 2200860 (2023). https://doi.org/10.1002/solr.202200860
J. Gong, M. Hao, Y. Zhang, M. Liu, Y. Zhou, Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: Tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 134, e202112022 (2022). https://doi.org/10.1002/ange.202112022
M.A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen et al., Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D–3D perovskite solar cells: A review. Adv. Funct. Mater. 32, 2009164 (2022). https://doi.org/10.1002/adfm.202009164
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 34, 2107211 (2022). https://doi.org/10.1002/adma.202107211
A. Zhu, H. Gu, W. Li, J. Liao, J. Xia et al., Synergistic passivation with phenylpropylammonium bromide for efficient inverted perovskite solar cells. Small Methods 8, 2300428 (2024). https://doi.org/10.1002/smtd.202300428
X. Chang, J.-X. Zhong, S. Li, Q. Yao, Y. Fang et al., Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62, e202309292 (2023). https://doi.org/10.1002/anie.202309292
A.A. Sutanto, P. Caprioglio, N. Drigo, Y.J. Hofstetter, I. Garcia-Benito et al., 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 7, 1903–1916 (2021). https://doi.org/10.1016/j.chempr.2021.04.002
X. Jiang, J. Zhang, Y. Liu, Z. Wang, X. Liu et al., Dopant-free polymer/2D/3D perovskite solar cells with high stability. Nano Energy 90, 106521 (2021). https://doi.org/10.1016/j.nanoen.2021.106521
F. Yang, P. Zhang, M.A. Kamarudin, G. Kapil, T. Ma et al., Addition effect of pyreneammonium iodide to methylammonium lead halide perovskite-2D/3D heterostructured perovskite with enhanced stability. Adv. Funct. Mater. 28, 1804856 (2018). https://doi.org/10.1002/adfm.201804856
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
B. Fan, F. Lin, X. Wu, Z. Zhu, A.K.Y. Jen, Selenium-containing organic photovoltaic materials. Acc. Chem. Res. 54, 3906–3916 (2021). https://doi.org/10.1021/acs.accounts.1c00443
R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron–phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16, 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
C. Tang, Y. Liu, Y. Zheng, A. Sun, J. Liang et al., Infiltrated 2D/3D heterojunction with tunable electric field landscape for robust inverted perovskite solar cells with over 24% efficiency. Small 20, 2306978 (2024). https://doi.org/10.1002/smll.202306978
Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim et al., A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15, 3369–3378 (2022). https://doi.org/10.1039/D2EE00759B
Q. Cheng, B. Wang, G. Huang, Y. Li, X. Li et al., Impact of strain relaxation on 2D Ruddlesden-Popper perovskite solar cells. Angew. Chem. Int. Ed. 61, e202208264 (2022). https://doi.org/10.1002/anie.202208264
P. Liu, N. Han, W. Wang, R. Ran, W. Zhou et al., High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33, 2002582 (2021). https://doi.org/10.1002/adma.202002582
W. Kong, F. Zeng, Z. Su, T. Wang, L. Qiao et al., Oriented low-n Ruddlesden-Popper formamidinium-based perovskite for efficient and air stable solar cells. Adv. Energy Mater. 12, 2202704 (2022). https://doi.org/10.1002/aenm.202202704
H.-H. Huang, T.-A. Yang, L.-Y. Su, C.-H. Chen, Y.-T. Chen et al., Thiophene-based polyelectrolyte boosts high-performance quasi-2D perovskite solar cells with ultralow energy loss. ACS Mater. Lett. 5, 1384–1394 (2023). https://doi.org/10.1021/acsmaterialslett.2c01104
T. Zhang, Z. Miao, R. Zhao, F. Yuan, S. Peng et al., Optimization charge-carrier properties of 2D ruddlesden–popper perovskite for solar cells. ACS Energy Lett. 9, 2248–2256 (2024). https://doi.org/10.1021/acsenergylett.4c00724
J. Lu, T. Yang, T. Niu, N. Bu, Y. Zhang et al., Formamidinium-based Ruddlesden-Popper perovskite films fabricated via two-step sequential deposition: Quantum well formation, physical properties and film-based solar cells. Energy Environ. Sci. 15, 1144–1155 (2022). https://doi.org/10.1039/D1EE02851K
R. Jiang, T. Tian, B. Ke, Z. Kou, P. Müller-Buschbaum et al., Insights into the effects of oriented crystallization on the performance of quasi-two-dimensional perovskite solar cells. Next Mater. 1, 100044 (2023). https://doi.org/10.1016/j.nxmate.2023.100044
X. Du, Y. Li, Z. Yu, C.M. Oh, Y. Zhang et al., Multi-functional ion-pairing additive for efficient quasi-2D perovskite light-emitting diodes and solar cells. Chem. Eng. J. 487, 150596 (2024). https://doi.org/10.1016/j.cej.2024.150596
C. Xu, L. Cheng, Z. Li, X. Zheng, S. Shan et al., Fast solidification and slow growth strategy for high-performance quasi-2D perovskite solar cells. Adv. Energy Mater. 13, 2300168 (2023). https://doi.org/10.1002/aenm.202300168
Q. Qu, J. Zhou, X. Xi, B. Wang, Z. Wan et al., Stable high conversion efficiency of quasi-2D perovskite solar cells via potassium iodide as additive. Chem. Eng. J. 466, 142999 (2023). https://doi.org/10.1016/j.cej.2023.142999
S. Peng, Z. Miao, Y. Liang, R. Zhao, F. Yuan et al., Governing the dispersion of quasi-2D perovskite phases toward efficient and stable perovskite solar cells. Matter (2024). https://doi.org/10.1016/j.matt.2024.05.047
R. Zhang, M. Li, Z. Liang, Y. Tang, C. Han et al., Synergistic effect of 4-hydroxypyridine for the vertical orientation of quasi-2D perovskite solar cells with enhanced efficiency. J. Phys. Chem. C 127, 14098–14106 (2023). https://doi.org/10.1021/acs.jpcc.3c02626
Z. Zhou, L. Li, B. Li, J. Li, T. Liu et al., N-heterocyclic olefin type ionic liquid with innate soft Lewis base character as an effective additive for hybrid quasi-2D and 3D perovskite solar cells. Small 19, 2300013 (2023). https://doi.org/10.1002/smll.202300013
T. Yue, K. Li, X. Li, N. Ahmad, H. Kang et al., A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability. ACS Nano 17, 14632–14643 (2023). https://doi.org/10.1021/acsnano.3c01908
A.H. Coffey, S.J. Yang, M. Gómez, B.P. Finkenauer, T. Terlier et al., Controlling crystallization of quasi-2D perovskite solar cells: Incorporating bulky conjugated ligands. Adv. Energy Mater. 13, 2201501 (2023). https://doi.org/10.1002/aenm.202201501
Y. Sun, S. Ji, C. Yu, W. Liu, K. Wang et al., Regulation of phase arrangement in 2D Ruddlesden-Popper perovskite films via anti-solvent method for efficient solar cells. Sol. Energy Mater. Sol. Cells 262, 112568 (2023). https://doi.org/10.1016/j.solmat.2023.112568
Z. Pan, D. Peng, X. Zhao, W. Xu, Y. Bao et al., Side-chain functionalized polymer hole-transporting materials with defect passivation effect for highly efficient inverted quasi-2D perovskite solar cells. Adv. Funct. Mater. 33, 2304881 (2023). https://doi.org/10.1002/adfm.202304881
L. Chen, E.K. Tekelenburg, K. Gahlot, M. Pitaro, J. Xi et al., In situ SnSe deposition as passivation for scalable and stable quasi-2D lead–tin perovskite solar cells. Energy Environ. Sci. 16, 5315–5324 (2023). https://doi.org/10.1039/D3EE02507A
H. Wang, L. Deng, Y. Pan, X. Zhang, X. Li et al., Green solvent polishing enables highly efficient quasi-2D perovskite solar cells. ACS Appl. Mater. Interfaces 15, 36447–36456 (2023). https://doi.org/10.1021/acsami.3c08182
Y. Chai, L. Wu, Y. Chen, G. Zhang, X. Guo et al., Tuning hole transport properties and perovskite crystallization via pyridine-based molecules for quasi-2D perovskite solar cells. Small 20, 2311569 (2024). https://doi.org/10.1002/smll.202311569
Z. Qin, M. Pols, M. Qin, J. Zhang, H. Yan et al., Over-18%-efficiency quasi-2D Ruddlesden-Popper Pb–Sn mixed perovskite solar cells by compositional engineering. ACS Energy Lett. 8, 3188–3195 (2023). https://doi.org/10.1021/acsenergylett.3c00853
D. Ren, X. Li, Z. Zhang, X. Chen, Z. Liu et al., Enhanced charge transfer in quasi-2D perovskite by formamidinium cation gradient incorporation for efficient and stable solar cells. Small (2024). https://doi.org/10.1002/smll.202401831
R. Liu, Y. Yu, L. Deng, M. Xu, H. Ren et al., The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chem. Lett. (2024). https://doi.org/10.1016/j.cclet.2024.109545
H. Yao, T. Wu, Y. Xiao, L. Ding, Y. Hua et al., Regulating the crystallization and carrier dynamics for high-performance quasi-2D tin perovskite solar cells. ACS Mater. Lett. 5, 3203–3211 (2023). https://doi.org/10.1021/acsmaterialslett.3c01145
H. Wang, Y. Pan, X. Li, Z. Shi, X. Zhang et al., Band alignment boosts over 17% efficiency quasi-2D perovskite solar cells via bottom-side phase manipulation. ACS Energy Lett. 7, 3187–3196 (2022). https://doi.org/10.1021/acsenergylett.2c01453
G. Zhang, J. Tang, C. Wang, X. Wu, J. Chen et al., Antisolvent effects in green solvent engineering of FA-based quasi-2D Ruddlesden-Popper perovskite films for efficient solar cells. Green Chem. 26, 5347–5355 (2024). https://doi.org/10.1039/D4GC00235K
J.-H. Kim, C.-M. Oh, I.-W. Hwang, J. Kim, C. Lee et al., Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects. Adv. Mater. 35, 2302143 (2023). https://doi.org/10.1002/adma.202302143
D. Li, Z. Xing, X. Meng, X. Hu, T. Hu et al., Selection of functional spacer cations for efficient 2D/3D perovskite solar cells. CCS Chem 5, 781–801 (2023). https://doi.org/10.31635/ccschem.023.202202409
A. Caiazzo, R.A.J. Janssen, High efficiency quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 12, 2202830 (2022). https://doi.org/10.1002/aenm.202202830
Q. Li, L. Zhou, T. Zhou, Fluorinated quasi 2D perovskite solar cells with improved stability and over 19% efficiency. Adv. Energy Mater. 14, 2400050 (2024). https://doi.org/10.1002/aenm.202400050
H. Zheng, G. Liu, Y. Wang, F. Chen, X. Dong et al., Directional management self-additive spacer cations for stable 2D Ruddlesden-Popper perovskite solar cells with efficiency over 21%. Adv. Funct. Mater. 34, 2401546 (2024). https://doi.org/10.1002/adfm.202401546
H. Zhang, R. Wang, L. Yang, Z. Hu, H. Liu et al., Modulating the dipole moment of secondary ammonium spacers for efficient 2D Ruddlesden-Popper perovskite solar cells. Angew. Chem. Int. Ed. 136, e202318206 (2024). https://doi.org/10.1002/ange.202318206
Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable FA-based quasi-2D Ruddlesden-Popper perovskite solar cells by the incorporation of β-fluorophenylethanamine cations. Adv. Mater. 35, 2210836 (2023). https://doi.org/10.1002/adma.202210836
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
Q. Cao, P. Li, W. Chen, S. Zang, L. Han et al., Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
C. Wang, X. Dong, F. Chen, G. Liu, H. Zheng, Recent progress of two-dimensional Ruddlesden-Popper perovskites in solar cells. Mater. Chem. Front. 7, 5786–5805 (2023). https://doi.org/10.1039/D3QM00547J
Y. Gao, X. Dong, Y. Liu, Recent progress of layered perovskite solar cells incorporating aromatic spacers. Nano-Micro Lett. 15, 169 (2023). https://doi.org/10.1007/s40820-023-01141-2
R. Stanton, D.J. Trivedi, Atomistic description of the impact of spacer selection on two-dimensional 2D perovskites: A case study of 2D Ruddlesden-Popper CsPbI3 analogues. J. Phys. Chem. Lett. 13, 12090–12098 (2022). https://doi.org/10.1021/acs.jpclett.2c03463
T. Ji, T. Niu, J. Wang, R. Lu, Z. Wen et al., Crystallization regulation of solution-processed two-dimensional perovskite solar cells. J. Mater. Chem. A 10, 13625–13650 (2022). https://doi.org/10.1039/D2TA02574D
N. Parikh, M.M. Tavakoli, M. Pandey, A. Kalam, D. Prochowicz et al., Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites. Sustain. Energy Fuels 5, 1255–1279 (2021). https://doi.org/10.1039/D0SE01469A
N. Zhou, B. Huang, M. Sun, Y. Zhang, L. Li et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells. Adv. Energy Mater. 10, 1901566 (2020). https://doi.org/10.1002/aenm.201901566
S. Chen, N. Shen, L. Zhang, W. Kong, L. Zhang et al., Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. J. Mater. Chem. A 7, 9542–9549 (2019). https://doi.org/10.1039/C8TA12476K
S. Chen, N. Shen, L. Zhang, L. Zhang, S.H. Cheung et al., Understanding the interplay of binary organic spacer in Ruddlesden-Popper perovskites toward efficient and stable solar cells. Adv. Funct. Mater. 30, 1907759 (2020). https://doi.org/10.1002/adfm.201907759
S. Tan, N. Zhou, Y. Chen, L. Li, G. Liu et al., Effect of high dipole moment cation on layered 2D organic–inorganic halide perovskite solar cells. Adv. Energy Mater. 9, 1803024 (2019). https://doi.org/10.1002/aenm.201803024
G. Wu, T. Yang, X. Li, N. Ahmad, X. Zhang et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter 4, 582–599 (2021). https://doi.org/10.1016/j.matt.2020.11.011
Y. Wang, D. Li, Z. Xing, J. Li, X. Hu et al., Quantum well growth management to smooth the energy transfer pathway for quasi-2D perovskite solar cells. Adv. Funct. (2024). https://doi.org/10.1002/adfm.202401203
J. Xu, J. Chen, S. Chen, H. Gao, Y. Li et al., Organic spacer engineering of Ruddlesden-Popper perovskite materials toward efficient and stable solar cells. Chem. Eng. J. 453, 139790 (2023). https://doi.org/10.1016/j.cej.2022.139790
M. Long, T. Zhang, D. Chen, M. Qin, Z. Chen et al., Interlayer interaction enhancement in Ruddlesden-Popper perovskite solar cells toward high efficiency and phase stability. ACS Energy Lett. 4, 1025–1033 (2019). https://doi.org/10.1021/acsenergylett.9b00351
S. Wang, Y. Liu, J. Zou, J. Jin, Y. Jiang et al., Intermediate phase assisted sequential deposition of reverse-graded quasi-2D alternating cation perovskites for ma-free perovskite solar cells. InfoMat 5, e12396 (2023). https://doi.org/10.1002/inf2.12396
A. Caiazzo, K. Datta, L. Bellini, M.M. Wienk, R.A. Janssen, Impact of alkyl chain length on the formation of regular- and reverse-graded quasi-2D perovskite thin films. ACS Mater. Lett. 6, 267–274 (2024). https://doi.org/10.1021/acsmaterialslett.3c01073
X. Dong, Y. Li, X. Wang, Y. Zhou, Y. Zhao et al., Promoting Ruddlesden-Popper perovskite formation by tailoring spacer intramolecular interaction for efficient and stable solar cells. Small 40, 2309218 (2024). https://doi.org/10.1002/smll.202309218
P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu et al., Dredging the charge-carrier transfer pathway for efficient low-dimensional Ruddlesden-Popper perovskite solar cells. Angew. Chem. Int. Ed. 62, e202217910 (2023). https://doi.org/10.1002/anie.202217910
H. Zheng, W. Wu, H. Xu, F. Zheng, G. Liu et al., Self-additive low-dimensional Ruddlesden-Popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30, 2000034 (2020). https://doi.org/10.1002/adfm.202000034
H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun et al., Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14, 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
Y. Li, H. Cheng, K. Zhao, Z.-S. Wang, 4-(aminoethyl)pyridine as a bifunctional spacer cation for efficient and stable 2D Ruddlesden-Popper perovskite solar cells. ACS Appl. Mater. Interfaces 11, 37804–37811 (2019). https://doi.org/10.1021/acsami.9b13951
H. Pan, Y. Zheng, W. He, W. Yang, X. Gong et al., Molecular interaction modulating Ruddlesden-Popper tin-based perovskite crystallization. J. Mater. Chem. A 11, 10319–10327 (2023). https://doi.org/10.1039/D3TA00873H
R. Wang, X. Dong, Q. Ling, Z. Hu, Y. Gao et al., Nucleation and crystallization in 2D Ruddlesden-Popper perovskites using formamidinium-based organic semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 135, e202314690 (2023). https://doi.org/10.1002/ange.202314690
D. Liang, C. Dong, L. Cai, Z. Su, J. Zang et al., Unveiling crystal orientation in quasi-2D perovskite films by in situ GIWAXS for high-performance photovoltaics. Small 17, 2100972 (2021). https://doi.org/10.1002/smll.202100972
G. Wu, R. Liang, Z. Zhang, M. Ge, G. Xing et al., 2D hybrid halide perovskites: Structure, properties, and applications in solar cells. Small 17, 2103514 (2021). https://doi.org/10.1002/smll.202103514
S. Shao, M.A. Loi, Advances and prospective in metal halide Ruddlesen-Popper perovskite solar cells. Adv. Energy Mater. 11, 2003907 (2021). https://doi.org/10.1002/aenm.202003907
X. Dong, X. Li, X. Wang, Y. Zhao, W. Song et al., Improve the charge carrier transporting in two-dimensional Ruddlesden-Popper perovskite solar cells. Adv. Mater. 36, 2313056 (2024). https://doi.org/10.1002/adma.202313056
J. Du, M. Zhang, J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells. Int. J. Min. Met. Mater. 29, 49–58 (2022). https://doi.org/10.1007/s12613-021-2341-z
L.E. Lehner, S. Demchyshyn, K. Frank, A. Minenkov, D.J. Kubicki et al., Elucidating the origins of high preferential crystal orientation in quasi-2D perovskite solar cells. Adv. Mater. 35, 2208061 (2023). https://doi.org/10.1002/adma.202208061
Z. Lu, X. Xu, Y. Gao, Z. Wu, A. Li et al., The effect of spacer cations on optoelectronic properties of two-dimensional perovskite based on first-principles calculations. Surf. Int. 34, 102343 (2022). https://doi.org/10.1016/j.surfin.2022.102343
X. Zhao, M.L. Ball, A. Kakekhani, T. Liu, A.M. Rappe et al., A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nat. Commun. 13, 3970 (2022). https://doi.org/10.1038/s41467-022-31567-y
Q. Wei, F. Zhang, X. Li, F. Wu, Z. Yue et al., Directed assembly of ordered mixed-spacer quasi-2D halide perovskites through homomeric chains of intermolecular bonds. Small 20, 2311969 (2023). https://doi.org/10.1002/smll.202311969
N. Marchal, E. Mosconi, G. García-Espejo, T.M. Almutairi, C. Quarti et al., Cation engineering for resonant energy level alignment in two-dimensional lead halide perovskites. J. Phys. Chem. Lett. 12, 2528–2535 (2021). https://doi.org/10.1021/acs.jpclett.0c03843
L. Yan, J. Ma, P. Li, S. Zang, L. Han et al., Charge-carrier transport in quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Mater. 34, 2106822 (2022). https://doi.org/10.1002/adma.202106822
L. Wang, B. Chang, H. Li, Y. Wu, Z. Liu et al., [PbX6]4− modulation and organic spacer construction for stable perovskite solar cells. Energy Environ. Sci. 15, 4470–4510 (2022). https://doi.org/10.1039/D2EE02218D
C. Zheng, F. Zheng, Carrier transport in 2D hybrid organic-inorganic perovskites: The role of spacer molecules. J. Phys. Chem. Lett. 15, 1254–1263 (2024). https://doi.org/10.1021/acs.jpclett.3c03357
L. Chao, T. Niu, Y. Xia, X. Ran, Y. Chen et al., Efficient and stable low-dimensional Ruddlesden-Popper perovskite solar cells enabled by reducing tunnel barrier. J. Phys. Chem. Lett. 10, 1173–1179 (2019). https://doi.org/10.1021/acs.jpclett.9b00276
Z. Wang, F. Wang, B. Zhao, S. Qu, T. Hayat et al., Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. J. Phys. Chem. Lett. 11, 1120–1127 (2020). https://doi.org/10.1021/acs.jpclett.9b03565
G.C. Fish, A.T. Terpstra, A. Dučinskas, M. Almalki, L.C. Carbone et al., The impact of spacer size on charge transfer excitons in Dion-Jacobson and Ruddlesden-Popper layered hybrid perovskites. J. Phys. Chem. Lett. 14, 6248–6254 (2023). https://doi.org/10.1021/acs.jpclett.3c01125
M. Chen, X. Dong, Y. Xin, Y. Gao, Q. Fu et al., Crystal growth regulation of Ruddlesden-Popper perovskites via self-assembly of semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 63, e202315943 (2024). https://doi.org/10.1002/anie.202315943
J. Yang, T. He, M. Li, G. Li, H. Liu et al., π-conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7, 4451–4458 (2022). https://doi.org/10.1021/acsenergylett.2c02219
J. Guo, Z. Shi, J. Xia, K. Wang, Q. Wei et al., Phase tailoring of Ruddlesden-Popper perovskite at fixed large spacer cation ratio. Small 17, 2100560 (2021). https://doi.org/10.1002/smll.202100560
W. Fu, T. Zhao, H. Liu, F. Lin, L. Zuo et al., High-efficiency quasi-2D perovskite solar cells incorporating 2,2’-biimidazolium cation. Sol. RRL 5, 2000700 (2021). https://doi.org/10.1002/solr.202000700
H. Yao, Z. Li, C. Shi, Y. Xu, Q. Wang et al., A novel multiple-ring aromatic spacer based 2D Ruddlesden-Popper CsPbI3 solar cell with record efficiency beyond 16%. Adv. Funct. Mater. 32, 2205029 (2022). https://doi.org/10.1002/adfm.202205029
Y. Zhang, M. Sun, N. Zhou, B. Huang, H. Zhou, Electronic tunability and mobility anisotropy of quasi-2D perovskite single crystals with varied spacer cations. J. Phys. Chem. Lett. 11, 7610–7616 (2020). https://doi.org/10.1021/acs.jpclett.0c02274
Z. Wang, L. Liu, X. Liu, D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022). https://doi.org/10.1016/j.cej.2021.134367
H. Di, Z. Xing, X. Xie, Y. Zhao, B.-H. Li, Effects of the phase spatial distribution on the intrinsic carrier dynamics in quasi-2D perovskite films. ACS Mater. Lett. 6, 2223–2230 (2024). https://doi.org/10.1021/acsmaterialslett.4c00038
B.-H. Li, H. Di, H. Li, J.-C. Wang, W. Zeng et al., Unveiling the intrinsic photophysics in quasi-two-dimensional perovskites. J. Am. Chem. Soc. 146, 6974–6982 (2024). https://doi.org/10.1021/jacs.3c14737
C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
D. Wang, S.-C. Chen, Q. Zheng, Enhancing the efficiency and stability of two-dimensional Dion-Jacobson perovskite solar cells using a fluorinated diammonium spacer. J. Mater. Chem. A 9, 11778–11786 (2021). https://doi.org/10.1039/D1TA01447A
J. Byeon, S.H. Cho, J. Jiang, J. Jang, C. Katan et al., Structural isomer of fluorinated Ruddlesden-Popper perovskites toward efficient and stable 2D/3D perovskite solar cells. ACS Appl. Mater. Interfaces 15, 27853–27864 (2023). https://doi.org/10.1021/acsami.3c01754
J. Ovčar, T.L. Leung, L. Grisanti, Ž Skoko, M. Vrankić et al., Mixed halide ordering as a tool for the stabilization of Ruddlesden-Popper structures. Chem. Mater. 34, 4286–4297 (2022). https://doi.org/10.1021/acs.chemmater.1c03815
H. Yao, Z. Li, G. Peng, Y. Lei, Q. Wang et al., Novel PHA organic spacer increases interlayer interactions for high efficiency in 2D Ruddlesden-Popper CsPbI3 solar cells. ACS Appl. Mater. Interfaces 14, 35780–35788 (2022). https://doi.org/10.1021/acsami.2c09183
Z. Fang, X. Hou, Y. Zheng, Z. Yang, K.-C. Chou et al., First-principles optimization of out-of-plane charge transport in Dion-Jacobson CsPbI3 perovskites with π-conjugated aromatic spacers. Adv. Funct. Mater. 31, 2102330 (2021). https://doi.org/10.1002/adfm.202102330
J. Xi, I. Spanopoulos, K. Bang, J. Xu, H. Dong et al., Alternative organic spacers for more efficient perovskite solar cells containing Ruddlesden-Popper phases. J. Am. Chem. Soc. 142, 19705–19714 (2020). https://doi.org/10.1021/jacs.0c09647
M. Mittal, R. Garg, A. Jana, Recent progress in the stabilization of low band-gap black-phase iodide perovskite solar cells. Dalton T. 52, 11750–11767 (2023). https://doi.org/10.1039/D3DT01581E
Z. Xu, L. Li, X. Dong, D. Lu, R. Wang et al., CsPbI3-based phase-stable 2D Ruddlesden-Popper perovskites for efficient solar cells. Nano Lett. 22, 2874–2880 (2022). https://doi.org/10.1021/acs.nanolett.2c00002
C. Liu, R. Liu, Z. Bi, Y. Yu, G. Xu et al., Multiple-ring aromatic spacer cation tailored interlayer interaction for efficient and air-stable Ruddlesden-Popper perovskite solar cells. Sol. RRL 5, 2100495 (2021). https://doi.org/10.1002/solr.202100495
J. Wu, J. Shi, Y. Li, H. Li, H. Wu et al., Quantifying the interface defect for the stability origin of perovskite solar cells. Adv. Energy Mater. 9, 1901352 (2019). https://doi.org/10.1002/aenm.201901352
A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 9, 1901489 (2019). https://doi.org/10.1002/aenm.201901489
K. Li, X. Gan, R. Zheng, H. Zhang, M. Xiang et al., Comparative analysis of thiophene-based interlayer cations for enhanced performance in 2D Ruddlesden-Popper perovskite solar cells. ACS Appl. Mater. Interfaces 16, 7161–7170 (2024). https://doi.org/10.1021/acsami.3c16640
B. Primera Darwich, N. Guijarro, H.-H. Cho, L. Yao, L. Monnier et al., Benzodithiophene-based spacers for layered and quasi-layered lead halide perovskite solar cells. ChemSusChem 14, 3001–3009 (2021). https://doi.org/10.1002/cssc.202100992
W. Guo, J. Li, H. Cen, J. Duan, Y. Yang et al., Self-assembled molecules fostering ordered spatial heterogeneity for efficient Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202401303
B. Wang, Q. Cheng, G. Huang, Y. Yue, W. Zhang et al., Sulfonium-cations-assisted intermediate engineering for quasi-2D perovskite solar cells. Adv. Mater. 35, 2207345 (2023). https://doi.org/10.1002/adma.202207345
J. Zhang, J. Wu, Y. Zhao, Y. Zou, A. Barabash et al., Revealing the crystallization and thermal-induced phase evolution in aromatic-based quasi-2D perovskites using a robot-based platform. ACS Energy Lett. 8, 3595–3603 (2023). https://doi.org/10.1021/acsenergylett.3c01508
C.J. Dahlman, R.M. Kennard, P. Paluch, N.R. Venkatesan, M.L. Chabinyc et al., Dynamic motion of organic spacer cations in Ruddlesden-Popper lead iodide perovskites probed by solid-state nmr spectroscopy. Chem. Mater. 33, 642–656 (2021). https://doi.org/10.1021/acs.chemmater.0c03958
Y. Miao, Y. Chen, H. Chen, X. Wang, Y. Zhao, Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chem. Sci. 12, 7231–7247 (2021). https://doi.org/10.1039/D1SC01171E
Z. Gozukara Karabag, A. Karabag, U. Gunes, X.-X. Gao, O.A. Syzgantseva et al., Tuning 2D perovskite passivation: Impact of electronic and steric effects on the performance of 3D/2D perovskite solar cells. Adv. Energy Mater. 13, 2302038 (2023). https://doi.org/10.1002/aenm.202302038
L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15, 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
Z. Li, N. Liu, K. Meng, Z. Liu, Y. Hu et al., A new organic interlayer spacer for stable and efficient 2D Ruddlesden-Popper perovskite solar cells. Nano Lett. 19, 5237–5245 (2019). https://doi.org/10.1021/acs.nanolett.9b01652
H. Wang, Z. Dong, H. Liu, W. Li, L. Zhu et al., Roles of organic molecules in inorganic CsPbX3 perovskite solar cells. Adv. Energy Mater. 11, 2002940 (2021). https://doi.org/10.1002/aenm.202002940
J. Zhang, J. Wu, S. Langner, B. Zhao, Z. Xie et al., Exploring the steric hindrance of alkylammonium cations in the structural reconfiguration of quasi-2D perovskite materials using a high-throughput experimental platform. Adv. Funct. Mater. 32, 2207101 (2022). https://doi.org/10.1002/adfm.202207101
F. Li, Y. Xie, Y. Hu, M. Long, Y. Zhang et al., Effects of alkyl chain length on crystal growth and oxidation process of two-dimensional tin halide perovskites. ACS Energy Lett. 5, 1422–1429 (2020). https://doi.org/10.1021/acsenergylett.0c00286
C. Chen, L. Gao, W. Gao, C. Ge, X. Du et al., Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019). https://doi.org/10.1038/s41467-019-09942-z
L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 132, 6504–6512 (2020). https://doi.org/10.1002/ange.201915912
Y. Qin, F.-F. Gao, S. Qian, T.-M. Guo, Y.-J. Gong et al., Multifunctional chiral 2D lead halide perovskites with circularly polarized photoluminescence and piezoelectric energy harvesting properties. ACS Nano 16, 3221–3230 (2022). https://doi.org/10.1021/acsnano.1c11101
T. Liu, W. Shi, W. Tang, Z. Liu, B.C. Schroeder et al., High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films. ACS Nano 16, 2682–2689 (2022). https://doi.org/10.1021/acsnano.1c09521
J. Son, S. Ma, Y.-K. Jung, J. Tan, G. Jang et al., Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite. Nat. Commun. 14, 3124 (2023). https://doi.org/10.1038/s41467-023-38927-2
A. Shpatz Dayan, M. Wierzbowska, L. Etgar, Ruddlesden-Popper 2D chiral perovskite-based solar cells. Small Struct. 3, 2200051 (2022). https://doi.org/10.1002/sstr.202200051
L. Scalon, Y. Vaynzof, A.F. Nogueira, C.C. Oliveira, How organic chemistry can affect perovskite photovoltaics. Cell Rep. Phys. Sci. 4, 1010358 (2023). https://doi.org/10.1016/j.xcrp.2023.101358
Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang et al., Spacer cation tuning enables vertically oriented and graded quasi-2D perovskites for efficient solar cells. Adv. Funct. Mater. 31, 2008404 (2021). https://doi.org/10.1002/adfm.202008404
Q. Fu, M. Chen, Q. Li, H. Liu, R. Wang et al., Selenophene-based 2D Ruddlesden-Popper perovskite solar cells with an efficiency exceeding 19%. J. Am. Chem. Soc. 145, 21687–21695 (2023). https://doi.org/10.1021/jacs.3c08604
G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023). https://doi.org/10.1126/science.add7331
S. Zhao, J. Xie, G. Cheng, Y. Xiang, H. Zhu et al., General nondestructive passivation by 4-fluoroaniline for perovskite solar cells with improved performance and stability. Small 14, 1803350 (2018). https://doi.org/10.1002/smll.201803350
H. Pan, X. Zhao, X. Gong, Y. Shen, M. Wang, Atomic-scale tailoring of organic cation of layered Ruddlesden-Popper perovskite compounds. J. Phys. Chem. Lett. 10, 1813–1819 (2019). https://doi.org/10.1021/acs.jpclett.9b00479
H. Su, L. Zhang, Y. Liu, Y. Hu, B. Zhang et al., Polarity regulation for stable 2D-perovskite-encapsulated high-efficiency 3D-perovskite solar cells. Nano Energy 95, 106965 (2022). https://doi.org/10.1016/j.nanoen.2022.106965
Y. Zeng, R. Wang, K. Chen, X. Gao, X. Liu et al., Molecular engineering of 2D spacer cations to achieve efficient and stable 2D/3D perovskite solar cells. Sol. RRL 8, 2301077 (2024). https://doi.org/10.1002/solr.202301077
C. Shi, Z. Li, K. Kang, X. Zhou, H. Wang et al., Fluorosubstitution boosting 2D Ruddlesden-Popper CsPbI3 with high stability and efficiency. Sol. RRL 6, 2200694 (2022). https://doi.org/10.1002/solr.202200694
Y. Yan, S. Yu, A. Honarfar, T. Pullerits, K. Zheng et al., Benefiting from spontaneously generated 2D/3D bulk-heterojunctions in Ruddlesden−Popper perovskite by incorporation of S-bearing spacer cation. Adv. Sci. 6, 1900548 (2019). https://doi.org/10.1002/advs.201900548
Q. Zhou, Q. Xiong, Z. Zhang, J. Hu, F. Lin et al., Fluoroaromatic cation-assisted planar junction perovskite solar cells with improved VOC and stability: The role of fluorination position. Sol. RRL 4, 2000107 (2020). https://doi.org/10.1002/solr.202000107
Y. Liu, S. Han, J. Wang, Y. Ma, W. Guo et al., Spacer cation alloying of a homoconformational carboxylate trans isomer to boost in-plane ferroelectricity in a 2D hybrid perovskite. J. Am. Chem. Soc. 143, 2130–2137 (2021). https://doi.org/10.1021/jacs.0c12513
M.A. Hope, T. Nakamura, P. Ahlawat, A. Mishra, M. Cordova et al., Nanoscale phase segregation in supramolecular π-templating for hybrid perovskite photovoltaics from nmr crystallography. J. Am. Chem. Soc. 143, 1529–1538 (2021). https://doi.org/10.1021/jacs.0c11563
A.M. Najarian, M. Vafaie, R. Sabatini, S. Wang, P. Li et al., 2D hybrid perovskites employing an organic cation paired with a neutral molecule. J. Am. Chem. Soc. 145, 27242–27247 (2023). https://doi.org/10.1021/jacs.3c12172
A. Morteza Najarian, F. Dinic, H. Chen, R. Sabatini, C. Zheng et al., Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023). https://doi.org/10.1038/s41586-023-06209-y
W. Yu, Y. Zou, H. Wang, S. Qi, C. Wu et al., Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation. Chem. Soc. Rev. 53, 1769–1788 (2024). https://doi.org/10.1039/D3CS00728F
W. Fu, H. Liu, X. Shi, L. Zuo, X. Li et al., Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells. Adv. Funct. Mater. 29, 1900221 (2019). https://doi.org/10.1002/adfm.201900221
Y. Dong, D. Lu, Z. Xu, H. Lai, Y. Liu, 2-Thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis. Adv. Energy Mater. 10, 2000694 (2020). https://doi.org/10.1002/aenm.202000694
M. Kundar, S. Bhandari, S. Chung, K. Cho, S.K. Sharma et al., Surface passivation by sulfur-based 2D (TEA)2PbI4 for stable and efficient perovskite solar cells. ACS Omega 8, 12842–12852 (2023). https://doi.org/10.1021/acsomega.2c08126
C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin et al., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021). https://doi.org/10.1016/j.nanoen.2021.106608
Y. Xu, K.-J. Jiang, P. Wang, W.-M. Gu, G.-H. Yu et al., Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New J. Chem. 46, 2259–2265 (2022). https://doi.org/10.1039/D1NJ05178D
Y. Zheng, S.-C. Chen, Y. Ma, Q. Zheng, Furfurylammonium as a spacer for efficient 2D Ruddlesden-Popper perovskite solar cells. Sol. RRL 6, 2200221 (2022). https://doi.org/10.1002/solr.202200221
H. Tsuji, E. Nakamura, Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc. Chem. Res. 50, 396–406 (2017). https://doi.org/10.1021/acs.accounts.6b00595
L.A. Illicachi, J. Urieta-Mora, C. Momblona, A. Molina-Ontoria, J. Calbo et al., Selenophene-based hole-transporting materials for perovskite solar cells. ChemPlusChem 86, 1006–1013 (2021). https://doi.org/10.1002/cplu.202100208
R. Wang, X. Dong, Q. Ling, Q. Fu, Z. Hu et al., Spacer engineering for 2D Ruddlesden-Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett. 7, 3656–3665 (2022). https://doi.org/10.1021/acsenergylett.2c01800
M.-H. Jung, Highly stable thiophene perovskite enabled by an oxygen-containing moiety for efficient photovoltaics. J. Phys. Chem. C 125, 25430–25445 (2021). https://doi.org/10.1021/acs.jpcc.1c08095
Y. Guo, M. Sun, W. Yang, S. Yuan, H. Xiong et al., Enhanced charge transport by regulating the electronic structure in 2D tin-based perovskite solar cells. J. Phys. Chem. C 126, 9425–9436 (2022). https://doi.org/10.1021/acs.jpcc.2c02830
D. Fu, Z. Hou, Y. He, H. Wu, S. Wu et al., Formamidinium perovskitizers and aromatic spacers synergistically building bilayer Dion-Jacobson perovskite photoelectric bulk crystals. ACS Appl. Mater. Interfaces 14, 11690–11698 (2022). https://doi.org/10.1021/acsami.2c00806
X. Li, W. Ke, B. Traoré, P. Guo, I. Hadar et al., Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
S. Ahmad, M. Guan, J. Kim, X. He, Z. Ren et al., High-quality pure-phase MA-free formamdinium Dion-Jacobson 2D perovskites for stable unencapsulated photovoltaics. Adv. Energy Mater. 14, 2302774 (2024). https://doi.org/10.1002/aenm.202302774
T. He, S. Li, Y. Jiang, C. Qin, M. Cui et al., Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11, 1672 (2020). https://doi.org/10.1038/s41467-020-15451-1
E. Mahal, S.C. Mandal, B. Pathak, Band edge engineering of 2D perovskite structures through spacer cation engineering for solar cell applications. J. Phys. Chem. C 126, 9937–9947 (2022). https://doi.org/10.1021/acs.jpcc.2c01840
C. Liu, Z. Fang, J. Sun, Q. Lou, J. Ge et al., Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett. 5, 3617–3627 (2020). https://doi.org/10.1021/acsenergylett.0c01784
Y. Lao, S. Yang, W. Yu, H. Guo, Y. Zou et al., Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 9, 2105307 (2022). https://doi.org/10.1002/advs.202105307
Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Nano 14, 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
W. Yang, Y. Zhan, F. Yang, Y. Li, Hot-casting and anti-solvent free fabrication of efficient and stable two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Appl. Mater. Interfaces 13, 61039–61046 (2021). https://doi.org/10.1021/acsami.1c17169
X. Dong, M. Chen, R. Wang, Q. Ling, Z. Hu et al., Quantum confinement breaking: Orbital coupling in 2D Ruddlesden-Popper perovskites enables efficient solar cells. Adv. Energy Mater. 13, 2301006 (2023). https://doi.org/10.1002/aenm.202301006
R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao et al., Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018). https://doi.org/10.1002/adma.201804771
T. Liu, J. Guo, D. Lu, Z. Xu, Q. Fu et al., Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15, 7811–7820 (2021). https://doi.org/10.1021/acsnano.1c02191
X. Li, W. Hu, Y. Shang, X. Yu, X. Wang et al., Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability. J. Energy Chem. 66, 680–688 (2022). https://doi.org/10.1016/j.jechem.2021.09.026
Z. Wang, X. Liu, H. Ren, L. Liu, X. Tang et al., Insight into the enhanced charge transport in quasi-2D perovskite via fluorination of ammonium cations for photovoltaic applications. ACS Appl. Mater. Interfaces 14, 7917–7925 (2022). https://doi.org/10.1021/acsami.1c21715
H. Zhang, Z. Wang, H. Wang, X. Yao, F. Wang et al., Strain relaxation and phase regulation in quasi-2D perovskites for efficient solar cells. J. Mater. Chem. A 11, 15301–15310 (2023). https://doi.org/10.1039/D3TA01935G
X. Lai, W. Li, X. Gu, H. Chen, Y. Zhang et al., High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem. Eng. J. 427, 130949 (2022). https://doi.org/10.1016/j.cej.2021.130949
G. Liu, X.-X. Xu, S. Xu, L. Zhang, H. Xu et al., Passivation effect of halogenated benzylammonium as a second spacer cation for improved photovoltaic performance of quasi-2D perovskite solar cells. J. Mater. Chem. A 8, 5900–5906 (2020). https://doi.org/10.1039/C9TA14139A
J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang et al., Fluorinated low-dimensional Ruddlesden-Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31, 1901673 (2019). https://doi.org/10.1002/adma.201901673
S. Lu, K. Li, R. Zhen, M. Xiang, X. Gan et al., Incorporating formamidinium into 4-fluoro-phenethylammonium based quasi-2D perovskite films and their application in n-i-p perovskite solar cells. Opt. Mater. 136, 113453 (2023). https://doi.org/10.1016/j.optmat.2023.113453
J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
L. Sun, X. Cao, J. Wang, X. Tan, H. Huang et al., Synergistic effect of dual anions for efficient and stable quasi 2D perovskite solar cell. J. Alloy. Compd. 918, 165725 (2022). https://doi.org/10.1016/j.jallcom.2022.165725
G. Yan, G. Sui, W. Chen, K. Su, Y. Feng et al., Selectively fluorinated benzylammonium-based spacer cation enables graded quasi-2D perovskites for efficient and stable solar cells. Chem. Mater. 34, 3346–3356 (2022). https://doi.org/10.1021/acs.chemmater.2c00146
H. Lai, Z. Xu, Z. Shao, B. Cui, B. Tian et al., Rational regulation of organic spacer cations for quasi-2D perovskite solar cells. Sol. RRL 7, 2300132 (2023). https://doi.org/10.1002/solr.202300132
Q. Li, Y. Dong, G. Lv, T. Liu, D. Lu et al., Fluorinated aromatic formamidinium spacers boost efficiency of layered Ruddlesden-Popper perovskite solar cells. ACS Energy Lett. 6, 2072–2080 (2021). https://doi.org/10.1021/acsenergylett.1c00620
F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson et al., Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141, 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
T. Niu, J. Lu, X. Jia, Z. Xu, M.-C. Tang et al., Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells. Nano Lett. 19, 7181–7190 (2019). https://doi.org/10.1021/acs.nanolett.9b02781
L. Wang, Q. Zhou, Z. Zhang, W. Li, X. Wang et al., A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells: The more fluorination the better? J. Energy Chem. 64, 179–189 (2022). https://doi.org/10.1016/j.jechem.2021.04.063
J. Hu, I.W.H. Oswald, H. Hu, S.J. Stuard, M.M. Nahid et al., Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. ACS Mater. Lett. 1, 171–176 (2019). https://doi.org/10.1021/acsmaterialslett.9b00102
X. Dong, Y. Tang, Y. Li, X. Li, Y. Zhao et al., Boosting MA-based two-dimensional Ruddlesen-Popper perovskite solar cells by incorporating a binary spacer. J. Energy Chem. 95, 348–356 (2024). https://doi.org/10.1016/j.jechem.2024.03.047
B.-E. Cohen, M. Wierzbowska, L. Etgar, High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustain. Energy Fuels 1, 1935–1943 (2017). https://doi.org/10.1039/C7SE00311K
H. Xiang, P. Liu, R. Ran, W. Wang, W. Zhou et al., Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renew. Sust. Energy Rev. 166, 112614 (2022). https://doi.org/10.1016/j.rser.2022.112614
J. Meng, D. Song, D. Huang, Y. Li, Y. Li et al., Enhanced Voc of two-dimensional ruddlesden–popper perovskite solar cells using binary synergetic organic spacer cations. Phys. Chem. Chem. Phys. 22, 54–61 (2020). https://doi.org/10.1039/C9CP04018H
P. Cheng, Z. Xu, J. Li, Y. Liu, Y. Fan et al., Highly efficient Ruddlesden-Popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Lett. 3, 1975–1982 (2018). https://doi.org/10.1021/acsenergylett.8b01153
Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7, 1700162 (2017). https://doi.org/10.1002/aenm.201700162
H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32, 2001470 (2020). https://doi.org/10.1002/adma.202001470