The Inhibition Effect of Tert-Butyl Alcohol on the TiO2 Nano Assays Photoelectrocatalytic Degradation of Different Organics and Its Mechanism
Corresponding Author: Baoxue Zhou
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 221-231
Abstract
The inhibition effect of tert-butyl alcohol (TBA), identified as the •OH radical inhibitor, on the TiO2 nano assays (TNA) photoelectrocatalytic oxidation of different organics such as glucose and phthalate was reported. The adsorption performance of these organics on the TNA photoelectrode was investigated by using the instantaneous photocurrent value, and the degradation property was examined by using the exhausted reaction. The results showed that glucose exhibited the poor adsorption and easy degradation performance, phthalate showed the strong adsorption and hard-degradation, but TBA showed the weak adsorption and was the most difficult to be degraded. The degradation of both glucose and phthalate could be inhibited evidently by TBA. But the effect on glucose was more obvious. The different inhibition effects of TBA on different organics could be attributed to the differences in the adsorption and the degradation property. For instance, phthalate of the strong adsorption property could avoid from the capture of •OH radicals by TBA in TNA photoelectrocatalytic process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.W. Zhang, D.K. Wang, J.C. Diniz Da Costa, Recent progresses on fabrication of photocatalytic membranes for water treatment. Catal. Today 230, 47–54 (2014). doi:10.1016/j.cattod.2013.11.019
- J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao, S.D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
- C.M. Teh, A.R. Mohamed, Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J. Alloy. Compd. 509(5), 1648–1660 (2011). doi:10.1016/j.jallcom.2010.10.181
- H. Wei, L. Wang, Zh Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2core-shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). doi:10.1007/BF03353645
- K. Nakata, A. Fujishima, TiO2photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012). doi:10.1016/j.jphotochemrev.2012.06.001
- S. Song, Z.W. Liu, Z.Q. He, A.L. Zhang, J.M. Chen, Y.P. Yang, X.H. Xu, Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ. Sci. Technol. 44, 3913–3918 (2010). doi:10.1021/es100456n
- D. Wang, X.T. Zhang, P.P. Sun, S. Lu, L.L. Wang, Y.A. Wei, Y.C. Liu, Enhance photoelectrochemical water splitting on hematite films with layer-by-layer deposited ultrathin TiO2 underlayer. Int. J. Hydrogen Energy 39(28), 16212–16219 (2014). doi:10.1016/j.ijhydene.2014.01.164
- X.Z. Li, H.L. Liu, P.T. Yue, Y.P. Sun, Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ. Sci. Technol. 34, 4401–4406 (2000). doi:10.1021/es000939k
- Y.B. Liu, H.B. Zhou, J.H. Li, H.C. Chen, D. Li, B.X. Zhou, W.M. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.1007/BF03353855
- K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor et al., Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113(16), 6327–6359 (2009). doi:10.1021/jp809385x
- Z.Y. Liu, X.T. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42(22), 8547–8551 (2008). doi:10.1021/es8016842
- M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
- S. Song, J.J. Tu, Z.Q. He, F.Y. Hong, W.P. Liu, J.M. Chen, Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl. Catal. A 378(2), 169–174 (2010). doi:10.1016/j.apcata.2010.02.014
- X.C. Meng, Z.S. Zhanga, X.G. Lia, Synergetic photoelectrocatalytic reactors for environmental remediation: a review. J. Photoch. Photobio. C: Photochem. Rev. 24, 83–101 (2015). doi:10.1016/j.jphotochemrev.2015.07.003
- R.J. Candal, W.A. Zeltener, M.A. Anderson, Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ. Sci. Technol. 34(16), 3443–3451 (2000). doi:10.1021/es991024c
- J. Staehelin, J. Hoigne, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19(12), 1206–1213 (1985). doi:10.1021/es00142a012
- Y.Z. Liu, J. Jiang, J. Ma, Y. Yang, C.W. Luo, X.L. Huangfu, Z.K. Guo, Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. Water Res. 68, 750–758 (2015). doi:10.1016/j.watres.2014.10.050
- J. Cong, G. Wen, T.L. Huang, L.Y. Deng, J. Ma, Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution. Chem. Eng. J. 264, 399–403 (2015). doi:10.1016/j.cej.2014.11.086
- J.L. Acero, U. Gunten, Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment. Ozone. Sci. Eng. 22(3), 305–328 (2000). doi:10.1080/01919510008547213
- H.F. Miao, W.Y. Tao, F.J. Cui, Z.H. Xu, Z.H. Ao, Kinetic study of humic acid ozonation in aqueous media. Clean 36(10–11), 893–899 (2008). doi:10.1002/clen.200800025
- Y.H. Dao, J. De, Laat, hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. Water Res. 45(11), 3309–3317 (2011). doi:10.1016/j.watres.2011.03.043
- Q.Y. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20(1), 230–236 (2005). doi:10.1557/JMR.2005.0020
- X.J. Li, W.P. Yin, J.Y. Li, J. Bai, K. Huang, J.H. Li, B.X. Zhou, TiO2 nanotube sensor for online chemical oxygen demand determination in conjunction with flow injection technique. Water Environ. Res. 86(6), 532–539 (2014). doi:10.2175/106143014X13975035524943
- R.W. Matthews, M. Abdullah, G.K.C. Low, Photocatalytic oxidation for total organic carbon analysis. Anal. Chim. Acta 233, 171–179 (1990). doi:10.1016/S0003-2670(00)83476-5
- B.C. Liu, J.H. Li, B.X. Zhou, Q. Zheng, J. Bai, J.L. Zhang, Y.B. Liu, W.M. Cai, Kinetics and mechanisms for photoelectrochemical degradation of glucose on highly effective self-organized TiO2 nanotube arrays. Chin. J. Catal. 31(2), 163–170 (2010). doi:10.1016/S1872-2067(09)60042-5
- J. Bai, Y.B. Liu, J.H. Li, B.X. Zhou, Q. Zheng, W.M. Cai, A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B-Environ. 98(3–4), 154–160 (2010). doi:10.1016/j.apcatb.2010.05.024
- J. Ma, N.J.D. Graham, Degradation of atrazine by manganese-catalyzed ozonation-influence of radical scavengers. Water Res. 34(15), 3822–3828 (2000). doi:10.1016/S0043-1354(00)00130-5
- A. Roberto, C. Vincenzo, I. Amedeo, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53(1), 51–59 (1999). doi:10.1016/S0920-5861(99)00102-9
References
X.W. Zhang, D.K. Wang, J.C. Diniz Da Costa, Recent progresses on fabrication of photocatalytic membranes for water treatment. Catal. Today 230, 47–54 (2014). doi:10.1016/j.cattod.2013.11.019
J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao, S.D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
C.M. Teh, A.R. Mohamed, Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J. Alloy. Compd. 509(5), 1648–1660 (2011). doi:10.1016/j.jallcom.2010.10.181
H. Wei, L. Wang, Zh Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2core-shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). doi:10.1007/BF03353645
K. Nakata, A. Fujishima, TiO2photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012). doi:10.1016/j.jphotochemrev.2012.06.001
S. Song, Z.W. Liu, Z.Q. He, A.L. Zhang, J.M. Chen, Y.P. Yang, X.H. Xu, Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ. Sci. Technol. 44, 3913–3918 (2010). doi:10.1021/es100456n
D. Wang, X.T. Zhang, P.P. Sun, S. Lu, L.L. Wang, Y.A. Wei, Y.C. Liu, Enhance photoelectrochemical water splitting on hematite films with layer-by-layer deposited ultrathin TiO2 underlayer. Int. J. Hydrogen Energy 39(28), 16212–16219 (2014). doi:10.1016/j.ijhydene.2014.01.164
X.Z. Li, H.L. Liu, P.T. Yue, Y.P. Sun, Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ. Sci. Technol. 34, 4401–4406 (2000). doi:10.1021/es000939k
Y.B. Liu, H.B. Zhou, J.H. Li, H.C. Chen, D. Li, B.X. Zhou, W.M. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.1007/BF03353855
K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor et al., Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113(16), 6327–6359 (2009). doi:10.1021/jp809385x
Z.Y. Liu, X.T. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42(22), 8547–8551 (2008). doi:10.1021/es8016842
M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
S. Song, J.J. Tu, Z.Q. He, F.Y. Hong, W.P. Liu, J.M. Chen, Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl. Catal. A 378(2), 169–174 (2010). doi:10.1016/j.apcata.2010.02.014
X.C. Meng, Z.S. Zhanga, X.G. Lia, Synergetic photoelectrocatalytic reactors for environmental remediation: a review. J. Photoch. Photobio. C: Photochem. Rev. 24, 83–101 (2015). doi:10.1016/j.jphotochemrev.2015.07.003
R.J. Candal, W.A. Zeltener, M.A. Anderson, Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ. Sci. Technol. 34(16), 3443–3451 (2000). doi:10.1021/es991024c
J. Staehelin, J. Hoigne, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19(12), 1206–1213 (1985). doi:10.1021/es00142a012
Y.Z. Liu, J. Jiang, J. Ma, Y. Yang, C.W. Luo, X.L. Huangfu, Z.K. Guo, Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. Water Res. 68, 750–758 (2015). doi:10.1016/j.watres.2014.10.050
J. Cong, G. Wen, T.L. Huang, L.Y. Deng, J. Ma, Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution. Chem. Eng. J. 264, 399–403 (2015). doi:10.1016/j.cej.2014.11.086
J.L. Acero, U. Gunten, Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment. Ozone. Sci. Eng. 22(3), 305–328 (2000). doi:10.1080/01919510008547213
H.F. Miao, W.Y. Tao, F.J. Cui, Z.H. Xu, Z.H. Ao, Kinetic study of humic acid ozonation in aqueous media. Clean 36(10–11), 893–899 (2008). doi:10.1002/clen.200800025
Y.H. Dao, J. De, Laat, hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. Water Res. 45(11), 3309–3317 (2011). doi:10.1016/j.watres.2011.03.043
Q.Y. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20(1), 230–236 (2005). doi:10.1557/JMR.2005.0020
X.J. Li, W.P. Yin, J.Y. Li, J. Bai, K. Huang, J.H. Li, B.X. Zhou, TiO2 nanotube sensor for online chemical oxygen demand determination in conjunction with flow injection technique. Water Environ. Res. 86(6), 532–539 (2014). doi:10.2175/106143014X13975035524943
R.W. Matthews, M. Abdullah, G.K.C. Low, Photocatalytic oxidation for total organic carbon analysis. Anal. Chim. Acta 233, 171–179 (1990). doi:10.1016/S0003-2670(00)83476-5
B.C. Liu, J.H. Li, B.X. Zhou, Q. Zheng, J. Bai, J.L. Zhang, Y.B. Liu, W.M. Cai, Kinetics and mechanisms for photoelectrochemical degradation of glucose on highly effective self-organized TiO2 nanotube arrays. Chin. J. Catal. 31(2), 163–170 (2010). doi:10.1016/S1872-2067(09)60042-5
J. Bai, Y.B. Liu, J.H. Li, B.X. Zhou, Q. Zheng, W.M. Cai, A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B-Environ. 98(3–4), 154–160 (2010). doi:10.1016/j.apcatb.2010.05.024
J. Ma, N.J.D. Graham, Degradation of atrazine by manganese-catalyzed ozonation-influence of radical scavengers. Water Res. 34(15), 3822–3828 (2000). doi:10.1016/S0043-1354(00)00130-5
A. Roberto, C. Vincenzo, I. Amedeo, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53(1), 51–59 (1999). doi:10.1016/S0920-5861(99)00102-9