BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications
Corresponding Author: Baoxue Zhou
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 14
Abstract
We report the development of a novel visible response BiVO4/TiO2(N2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO2 nanotube shows a high carrier concentration rate, thus resulting in a high efficient charge transportation and low electron–hole recombination in the TiO2–BiVO4. Therefore, the BiVO4/TiO2(N2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm−2 (at 1 V vs. Ag/AgCl) and a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometer, and UV–Vis absorption spectrum were conducted to characterize the photoanode and demonstrated the presence of both metal oxides as a junction composite.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). doi:10.1021/cr1002326
- J. Bai, J.H. Li, Y.B. Liu, B.X. Zhou, W.M. Cai, A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays. Appl. Catal. B 95(3–4), 408–413 (2010). doi:10.1016/j.apcatb.2010.01.020
- Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(1), 253–259 (2008). doi:10.1021/jp0772732
- J. Bai, Y.B. Liu, J.H. Li, B.X. Zhou, Q. Zheng, W.M. Cal, A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B 98(3–4), 154–160 (2010). doi:10.1016/j.apcatb.2010.05.024
- J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 43(34), 4463–4466 (2004). doi:10.1002/anie.200353594
- Z.G. Zou, H. Arakawa, Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J. Photochem. Photobiol. A 158(2–3), 145–162 (2003). doi:10.1016/S1010-6030(03)00029-7
- A. Kudo, Photocatalyst materials for water splitting. Catal. Surv. Asia 7(1), 31–38 (2003). doi:10.1023/A:1023480507710
- Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/C2CS35260E
- Y.B. Kuang, Q.X. Jia, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 6(2), 1501645 (2016). doi:10.1002/aenm.201501645
- S.M. Thalluri, S. Hernandez, S. Bensaid, G. Saracco, N. Russo, Green-synthesized W- and Mo-doped BiVO4 oriented along the 040 facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B 180, 630–636 (2016). doi:10.1016/j.apcatb.2015.07.029
- T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.1126/science.1246913
- L. Zhang, D.R. Chen, X.L. Jiao, Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 110(6), 2668–2673 (2006). doi:10.1021/jp056367d
- Y. Hu, D.Z. Li, Y. Zheng, W. Chen, Y.H. He, Y. Shao, X.Z. Fu, G.C. Xiao, BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104(1–2), 30–36 (2011). doi:10.1016/j.apcatb.2011.02.031
- J. Bai, B.X. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014). doi:10.1021/cr400625j
- X.Z. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren et al., Self-Assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25(12), 1769–1773 (2013). doi:10.1002/adma.201203759
- B. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation. Appl. Catal. B 83(3–4), 202–207 (2008). doi:10.1016/j.apcatb.2008.02.017
- K. Sridharan, E. Jang, T.J. Park, Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B 142, 718–728 (2013). doi:10.1016/j.apcatb.2013.05.077
- Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou, W. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.3786/nml.v2i4.p277-284
- M.Z. Xie, X.D. Fu, L.Q. Jing, P. Luan, Y.J. Feng, H.G. Fu, Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). doi:10.1002/aenm.201300995
- H.F. Li, H.T. Yu, X. Quan, S. Chen, H.M. Zhao, Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the 110 facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater. 25(20), 3074–3080 (2015). doi:10.1002/adfm.201500521
- J. Bai, R. Wang, Y.P. Li, Y.Y. Tang, Q.Y. Zeng et al., A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J. Hazard. Mater. 311, 51–62 (2016). doi:10.1016/j.jhazmat.2016.02.052
- L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42(26), 3031–3034 (2003). doi:10.1002/anie.200351461
- J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, Fabrication of aligned TiO2 nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B 109(27), 13056–13059 (2005). doi:10.1021/jp052203l
- Q.X. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
- V.K. Mahajan, M. Misra, K.S. Raja, S.K. Mohapatra, Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures. J. Phys. D 41(12), 125307 (2008). doi:10.1088/0022-3727/41/12/125307
- C. Jin, W.G. Zhang, S.W. Yao, H.Z. Wang, Effect of heat-treatment process on the structure and photoelectric performance of TiO2 nanotube arrays. J. Inorg. Mater. 27(1), 54–58 (2012). doi:10.3724/SP.J.1077.2012.00054
- R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P. Dick, N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 8(4), 544–548 (2006). doi:10.1016/j.elecom.2006.01.023
- A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J. Mater. Chem. 20(35), 7536–7542 (2010). doi:10.1039/c0jm00961j
- C. Liu, Y. Ding, W. Wu, Y. Teng, A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem. Eng. J. 306, 22–30 (2016). doi:10.1016/j.cej.2016.07.043
- X. Zhao, J.J. Zhang, M. Qiao, H.J. Liu, J.H. Qu, Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7. Environ. Sci. Technol. 49(7), 4567–4574 (2015). doi:10.1021/es5062374
- L. Liu, R. Li, Y. Liu, J. Zhang, Simultaneous degradation of loxacin and recovery of Cu(II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. J. Hazard. Mater. 308, 264–275 (2016). doi:10.1016/j.jhazmat.2016.01.046
- A.G. Munoz, Semiconducting properties of self-organized TiO2 nanotubes. Electrochim. Acta 52(12), 4167–4176 (2007). doi:10.1016/j.electacta.2006.11.035
- J. Kruger, R. Plass, M. Gratzel, P.J. Cameron, L.M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107(31), 7536–7539 (2003). doi:10.1021/jp0348777
References
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). doi:10.1021/cr1002326
J. Bai, J.H. Li, Y.B. Liu, B.X. Zhou, W.M. Cai, A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays. Appl. Catal. B 95(3–4), 408–413 (2010). doi:10.1016/j.apcatb.2010.01.020
Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(1), 253–259 (2008). doi:10.1021/jp0772732
J. Bai, Y.B. Liu, J.H. Li, B.X. Zhou, Q. Zheng, W.M. Cal, A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B 98(3–4), 154–160 (2010). doi:10.1016/j.apcatb.2010.05.024
J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 43(34), 4463–4466 (2004). doi:10.1002/anie.200353594
Z.G. Zou, H. Arakawa, Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J. Photochem. Photobiol. A 158(2–3), 145–162 (2003). doi:10.1016/S1010-6030(03)00029-7
A. Kudo, Photocatalyst materials for water splitting. Catal. Surv. Asia 7(1), 31–38 (2003). doi:10.1023/A:1023480507710
Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/C2CS35260E
Y.B. Kuang, Q.X. Jia, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 6(2), 1501645 (2016). doi:10.1002/aenm.201501645
S.M. Thalluri, S. Hernandez, S. Bensaid, G. Saracco, N. Russo, Green-synthesized W- and Mo-doped BiVO4 oriented along the 040 facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B 180, 630–636 (2016). doi:10.1016/j.apcatb.2015.07.029
T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.1126/science.1246913
L. Zhang, D.R. Chen, X.L. Jiao, Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 110(6), 2668–2673 (2006). doi:10.1021/jp056367d
Y. Hu, D.Z. Li, Y. Zheng, W. Chen, Y.H. He, Y. Shao, X.Z. Fu, G.C. Xiao, BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104(1–2), 30–36 (2011). doi:10.1016/j.apcatb.2011.02.031
J. Bai, B.X. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014). doi:10.1021/cr400625j
X.Z. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren et al., Self-Assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25(12), 1769–1773 (2013). doi:10.1002/adma.201203759
B. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation. Appl. Catal. B 83(3–4), 202–207 (2008). doi:10.1016/j.apcatb.2008.02.017
K. Sridharan, E. Jang, T.J. Park, Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B 142, 718–728 (2013). doi:10.1016/j.apcatb.2013.05.077
Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou, W. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.3786/nml.v2i4.p277-284
M.Z. Xie, X.D. Fu, L.Q. Jing, P. Luan, Y.J. Feng, H.G. Fu, Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). doi:10.1002/aenm.201300995
H.F. Li, H.T. Yu, X. Quan, S. Chen, H.M. Zhao, Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the 110 facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater. 25(20), 3074–3080 (2015). doi:10.1002/adfm.201500521
J. Bai, R. Wang, Y.P. Li, Y.Y. Tang, Q.Y. Zeng et al., A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J. Hazard. Mater. 311, 51–62 (2016). doi:10.1016/j.jhazmat.2016.02.052
L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42(26), 3031–3034 (2003). doi:10.1002/anie.200351461
J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, Fabrication of aligned TiO2 nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B 109(27), 13056–13059 (2005). doi:10.1021/jp052203l
Q.X. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
V.K. Mahajan, M. Misra, K.S. Raja, S.K. Mohapatra, Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures. J. Phys. D 41(12), 125307 (2008). doi:10.1088/0022-3727/41/12/125307
C. Jin, W.G. Zhang, S.W. Yao, H.Z. Wang, Effect of heat-treatment process on the structure and photoelectric performance of TiO2 nanotube arrays. J. Inorg. Mater. 27(1), 54–58 (2012). doi:10.3724/SP.J.1077.2012.00054
R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P. Dick, N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 8(4), 544–548 (2006). doi:10.1016/j.elecom.2006.01.023
A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J. Mater. Chem. 20(35), 7536–7542 (2010). doi:10.1039/c0jm00961j
C. Liu, Y. Ding, W. Wu, Y. Teng, A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem. Eng. J. 306, 22–30 (2016). doi:10.1016/j.cej.2016.07.043
X. Zhao, J.J. Zhang, M. Qiao, H.J. Liu, J.H. Qu, Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7. Environ. Sci. Technol. 49(7), 4567–4574 (2015). doi:10.1021/es5062374
L. Liu, R. Li, Y. Liu, J. Zhang, Simultaneous degradation of loxacin and recovery of Cu(II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. J. Hazard. Mater. 308, 264–275 (2016). doi:10.1016/j.jhazmat.2016.01.046
A.G. Munoz, Semiconducting properties of self-organized TiO2 nanotubes. Electrochim. Acta 52(12), 4167–4176 (2007). doi:10.1016/j.electacta.2006.11.035
J. Kruger, R. Plass, M. Gratzel, P.J. Cameron, L.M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107(31), 7536–7539 (2003). doi:10.1021/jp0348777